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Organization of this talk

1 Introduction

2 Basic Notions of Mathematical Morphology

3 The KS-FAM: Motivation and Definition

4 Experimental Results Using Gray-Scale Images

5 Concluding Remarks
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Fuzzy Associative Memories (FAMs)

FAMs are fuzzy neural networks that serve as associative
memories.

Examples of FAM models:

1 Kosko’s max-min and max-product FAMs;
2 Generalized FAMs of Chung and Lee;
3 Max-min FAM of Junbo et al.;
4 Liu’s max-min FAM with threshold;
5 Fuzzy logical bidirectional associative memory of

Bělohlávek;
6 Implicative fuzzy associative memories.

A new FAM model called Kosko Subsethood FAM (KS-FAM) is
based on ideas of Mathematical Morphology (MM).
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Mathematical Morphology

Mathematical Morphology (MM) is a theory for the processing
and analysis of images using structuring elements (SEs).

Applications of MM include

1 noise removal;
2 skeletonizing;
3 edge detection;
4 automatic target recognition;
5 image segmentation;
6 image restauration.



Introduction Basic Notions of MM The KS-FAM Experimental Results Conclusion

Elementary Operations of MM

Erosion, dilation, anti-erosion, anti-dilation.

MM from two different points of view:

MM in the intuitive or geometrical sense: based on
inclusion e intersection measures;

MM in the algebraic sense: defined in a complete lattice
setting.

MM in the intuitive or geometrical sense

Erosion: yields the (crisp or fuzzy) degree of inclusion of
the translated SE at every pixel;

Dilation: yields the (crisp or fuzzy) degree of intersection of
the image with the (reflected and) translated SE at every
pixel.
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Binary Example

a) Original image b) Structuring element

c) Erode image d) Dilate image
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Fuzzy/Grayscale Example

a) Original image (256x256) b) Structuring element (21x21)

c) Erode image (256x256) d) Dilate image (256x256)



Introduction Basic Notions of MM The KS-FAM Experimental Results Conclusion

Fuzzy Morphological Associative Memories

A FAM model is called a fuzzy morphological associative
memory (FMAM) if its neurons perform elementary operations
of MM.

Many well-known FAM models - including the ones mentioned
above - belong to the class of FMAMs (in the algebraic sense).

The KS-FAM introduced in this talk can be viewed as an FMAM
model in the intuitive sense.
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The Complete Lattice Framework of MM

The algebraic framework of MM is given by complete lattices.

A complete lattice is a partially ordered set L such that every
Y ⊆ L has an infimum, denoted by

∧

Y and a supremum,
denoted by

∨

Y in L.

Examples of complete lattices include R±∞ = R ∪ {+∞,−∞},
R

n
±∞ = (R±∞)n, [0, 1] and [0, 1]X, the class of fuzzy sets over

the universe X.

From now on, the symbols L and M denote complete lattices.
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Basic Operators of MM

Erosion

An operator ε : L → M represents an (algebraic) erosion if

ε
(

∧

Y
)

=
∧

y∈Y

ε(y) , ∀Y ⊆ L .

Dilation

An operator δ : L → M represents a (algebraic) dilation if

δ
(

∨

Y
)

=
∨

y∈Y

δ(y) , ∀Y ⊆ L .
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Negations

A negation on L is an involutive bijection νL : L → L that
reverses the partial ordering.

Examples of Negation

1 For L = [0, 1]:
νL(x) = x̄ = 1 − x .

2 For L = R±∞ = R ∪ {−∞,+∞}:

νL(x) = x∗ =







−x , if x ∈ R ,

+∞, if x = −∞ ,

−∞, if x = ∞ .

3 For L = R
m×n
±∞ = (R±∞)m×n:

(νL(X ))ij = (X ∗)ij = (xji)
∗ ∀i = 1, . . . , n, j = 1, . . . ,m.
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Max Product and Min Product

Let A ∈ R
m×n e B ∈ R

n×p
±∞ . We have:

C = A ∨� B - max product of A and B: cij =
∨n

k=1(aik + bkj).

D = A ∧� B - min product of A and B: dij =
∧n

k=1(aik + bkj).

We have an (algebraic)
erosion

εA : R
n
±∞ −→ R

m
±∞

x 7−→ A ∧� x

We have an (algebraic)
dilation

δA : R
n
±∞ −→ R

m
±∞

x 7−→ A ∨� x
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Morfological Associative Memories (MAMs)

Original Models

Let X = [x1, . . . , xk ] ∈ R
n×k and Y = [y1, . . . , yk ] ∈ R

m×k .
Define the synaptic weight matrices WXY and MXY as follows:

1 WXY = Y ∧� X ∗ =
∧k

ξ=1 yξ ∧� (xξ)∗

2 MXY = Y ∨� X ∗ =
∨k

ξ=1 yξ ∨� (xξ)∗

Upon presentation of x ∈ R
n
±∞ the the MAM WXY and the dual

MAM MXY yield the following outputs:

1 y = WXY ∨� x;
2 z = MXY ∧� x.
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Properties of Autoassociative MAMs

Advantages:

1 Infinite absolute storage capacity;
2 One-step convergence if empoyed with feedback.
3 Tolerance of WXX w.r.t. erosive noise;
4 Tolerance of MXX w.r.t. dilative noise;

Disadvantages:

1 Both WXX and MXX are not able to deal with arbitrary
noise;

2 Large number of spurious memories.
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Kosko’s Subsethood Measure

Let X be a finite set and let a,b : X → [0, 1] be fuzzy sets.
Suppose that

∑

x∈X a(x) > 0:

S(a,b) = 1 −

∑

x∈X 0 ∨ (a(x)− b(x))
∑

x∈X a(x)
=

∑

x∈X a(x) ∧ b(x)
∑

x∈X a(x)

Kosko’s subsethood measures the degree of inclusion of a in b.
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Fuzzy Min Product

Let M ∈ [0, 1]m×n and x ∈ [0, 1]n. Let mi denote the i-th row of
M. The fuzzy min product y = M ∧̃� x is given by

yi = S(m̄i , x), i = 1, . . . ,m .

Let X ∈ {0, 1}n×k and x ∈ [0, 1]n. Consider the binary model
∧̃� − T MAM given by

input x → MXX ∧̃� x → Defuzzification T → output y

Main advantage:

Inexistence of spurious memories.

Main disadvantage:

Requires an additional defuzzification phase (T ).
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Example of a Fuzzy Min Product MXX ∧̃� x

Figure: Original Patterns Stored in MXX .

(a) Input x (b) MXX ∧̃� x
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FAM based on Kosko’s Subsethood Measure

Let h : [0, 1]p → {0, 1}p with h (x) = (h (x1) , . . . , h (xp))
t be

such that

h (xi) =

{

1 if xi ≥
∨p

j=1 xj

0 else
, for i = 1, . . . , p.

Definition of KS-FAM:

Let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k ;

Choose Z =
[

z1, . . . , zk
]

∈ {0, 1}p×k such that ∨k
ξ=1zξ = 1,

zξ 6≤ zγ and zξ ∧ zγ = 0 for γ 6= ξ;

For an input pattern x ∈ [0, 1]n the output pattern
y ∈ [0, 1]m is given by:

y = WZY ∨� w , where w = h(MXZ ∧̃� x)

M h W
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Models Used in the Experiments
KS-FAM with Z = I4 (4 × 4 identity matrix);

Hamming Net;

MAM WXX ;

MAM WXX + ν;

Kosko’s Max-Min FAM;

KAM with Gaussian Kernel Function;

OLAM;
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Variations in Brightness
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Variations in Orientation
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NRMSEs- Variations in Brightness and Orientation

Tree Lena Church Cameraman
KS-FAM 0 0 0 0

Hamming Net 0.6347 0.8414 0 0
WXX 0.4771 0.7354 1.6015 0.9509

WXX + ν 0.6032 0.4615 0.6168 0.4765
Kosko’s FAM 0.4302 0.8937 1.1586 0.7300

KAM 0.1945 0.1499 0.0566 0.0784
OLAM 0.4986 0.6810 0.2892 0.1937
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Gaussian Noise
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NRMSEs - Noisy Patterns

Gaussian Noise (σ2 = 0.03)
KS-FAM 0

Hamming 0
WXX 0.9005

WXX + ν 0.2770
Kosko’s FAM 0.8185

KAM 0.0137
OLAM 0.0365
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Concluding Remarks

We presented the Kosko subsethood FAM (KS-FAM) on
the basis of ideas from MM.

The KS-FAM outperformed other AM models in preliminary
experiments on gray-scale image recognition.

Experiments indicate potential utility for applications in
pattern recognition.

Thank you!
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