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Abstract. Virtual Engineering Applications (VEA) are used through the whole Product Life Cycle (PLC) 

process: Their complexity and pervasiveness make them an ideal scenario for development and testing 

of software engineering innovations. More precisely, VEAs have problems when they need to share their 

specific knowledge. They suffer semantic loss situations, and they hardly use any semantic tools. This 

work proposes a new approach to solve this kind of problems based on semantic technologies, allowing 

the seamless sharing of information and knowledge between VEAs involved in a PLC scenario. This 

approach is validated through a Plant Layout Design application, where several VEA can cooperate and 

share their knowledge, accomplishing the design task. 
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1   Introduction  

Virtual Engineering (VE) is defined as the integration of geometric models and their related engineering 

tools, such as analysis, simulation, optimization and decision making, within a computerized 

environment that facilitates multidisciplinary and collaborative product development (Jian et al. 2006). 

Virtual Engineering Applications (VEA) are the software implementations supporting VE. Each VEA, in its 

turn, contains a set of Virtual Engineering Tools (VET), which is the collection of features that the VEA 

offers, e.g. in a CAD-like VEA the graphical tools to draw lines or circles.  

Current VEAs barely make use of the information about contextual facts, user requirements, user 

experience and, in general, of any useful factor that could be easily modelled and exploited from a 

semantical point of view. For example, we have already studied how a VEA becomes friendlier if the 

Graphic User Interface is adapted to the individual users, showing them only the tools and windows they 

need depending on the role they are playing in the development cycle (Toro et al. 2007). In another case 

study, we developed an application which may suggests actions to be carried out by the users, taking 

into account previous experiences obtained from different experts in similar situations (Vaquero et al. 

2009). 

From a Product Life Cycle (PLC) perspective, the use of different VEAs in each one of the stages is a 

common practice.  Examples are Computer Aided Design (CAD) in the Design stage or Finite Element 

Algorithms (FEA) in the Analysis stage. Nevertheless, some VEA may prove to be valuable at several PLC 

stages. However, in this scenario geometry is the only feature preserved when transferring information 

from one VEA to another. Losing ancillary information corresponding to the geometric features may 

incur in a semantic loss (Zorriassatine et al. 2003), defining semantic loss as the generated knowledge 

lost when transferring from the original VEA to another (or even from the original VEA to itself at a latter 

PLC stage). Such loss is produced because knowledge is implicit to the generating VEA, and minor 
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changes in the domain (for example, FEA and CAM do not understand the geometry generated by CAD 

in the same way) causes the bad translation to the VEA which is trying to obtain the knowledge. Sharing 

information and knowledge between VEAs has grown as an important handicap for system’s 

development due to several reasons, which include commercial interests of the manufacturer, the 

nature of legacy products and language incompatibilities. To achieve a solution to this problem, we 

propose a system’s architecture and implementation where all the knowledge generated by a VEA 

during a PLC by way of its component VETs is stored in a centralized knowledge repository based on 

semantic technologies. This repository is persistently accessible to the VEAs, providing semantic support 

during the whole PLC, causing an information redundancy drops whilst reducing important costs 

associated with format repair and semantic loss. 

In section 2 of this work, we present the background concepts necessary for the understanding of the 

proposed approach. In section 3, we describe the proposed ontology-based software architecture to 

solve the semantic loss problems during the PLC. In section 4, we show a system designed following the 

proposed architecture that is applied to Industrial Plant design layout tasks. Finally, in section 5 we 

present our conclusions and future work lines. 

2   Background Concepts 

In this section we present an overview of concepts relevant to this work. The reader will find in (Toro 

2009), (Obrst 2003), (Gruber 1995) more detailed explanations of the concepts presented. 

2.1   Virtual Engineering Applications (VEA)  

As stated in the introduction, VEAs, as software implementations of VE concepts, are arguably the main 

facilitators of a new product development. In Figure 1, the components of a VEA are presented following 

the categorization introduced in (Toro 2009). 
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Figure 1.  Generic VEA components (Toro 2009). 

In general, a VEA is composed by:  

(i) A Set of Characteristics, which is the expected benefits of the VEA in terms of capabilities, 

features, and accepted formats for input/output interactions. The set of characteristics defines a 

general overview of the affordances of the VEA. 

(ii) A Set of Requirements, which is the minimum requisites that must fulfil the computer system 

where the VEA will be used. These requisites refer to both hardware and software. 

(iii) A Set of Interaction paradigms, which are the places where the user executes the input and 

output interface actions, including the different GUIs, input/output device characteristics (e.g. 

mouse, screen), etc. Some examples are the use of multiple views in the same display, or the 

capability to accept voice commands. 

(iv) A Set of VETs, which is the collection of computational tools which allow the fulfilment of the 

VEA’s affordances. The Set of VET can be composed of elementary tools that can be used in 

conjunction with other tools or in isolation when necessary. 
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(v) A Mechanism for the Extension of the VEA’s Capabilities, which allow the extension of the 

functionality of the VEA. The extension capability is generally provided via an API or scripting 

languages. As general rule, it is easier to enhance the VEA when this API is more open. 

In most of the cases, the main reason for acquiring or using a VEA is the comparison of the affordances 

defined by its set of characteristics against the set of user requirements. Besides, in many cases it is very 

important to have the possibility to extend VEA functionalities, and extension mechanisms must be 

taken into account in the VEA evaluation. 

2.2   Conventional Approaches in Interoperability between Virtual Engineering Applications 

Interoperability is defined by the IEEE Standard Computer Dictionary as the “ability of two or more 

systems or components to exchange information and to use the information that has been exchanged” 

(IEEE 1991). From such definition, interoperability can be decomposed in two distinct components: the 

ability to exchange information, denoted as syntactic interoperability, and the ability to use the 

information when received, denoted as semantic interoperability. 

The syntactic interoperability between VEAs is a fundamental issue of the development of VE 

approaches to PLC. As each VEA supports its own native format for the serial storage of its internal data, 

it is often necessary to use a translator between native formats. Translators are often specific to certain 

needs and no additional knowledge is transferred from VEA to VEA, resulting in semantic loss when a 

new functionality is available (a new VET for example), thus producing reduction in operation efficiency 

until an updated version of the translator is presented to the user (Mencke et al. 2008). In other words, 

generated ancillary information which could be used by another VEA is lost because it is not 

contemplated by an outdated translator. 
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There is a variety of reasons why commercial format translators do not offer a complete solution to this 

semantic loss. In most cases, VEA suppliers can only provide compatibility for a small set of features. It 

could be expected that using VEAs from the same company guarantees full compatibility. However, it is 

a common business practice for those companies buying the VEA development from smaller companies, 

adding them to their product catalogue. This fact implies that actually, even though they come from the 

same provider, some VEAs may have only partial compatibility between them. Moreover, even when the 

supplier guarantees compatibility, we may find out that the translation is not correct and part of the VEA 

generated knowledge is lost in translation. As an example, it is not unusual situation to export correctly 

the geometry of a model losing its kinematics. In some cases, the VEA supplier provides APIs for the 

development of new custom-made translators (Autodesk 2010, Solidworks 2010), but this is not a 

common practice due to marketing reasons or legacy systems.  

Another solution to the semantic loss problem reported in the literature is founded in the use of open 

standards for data exchange. Examples of these are the use of IGES (Kemmerer 2001) for graphics 

information transference, or EDI (Kantor and Prabhakar 1996) for ERPs. These open standards provide a 

way to share information, but such information is far from the concept of knowledge as long as 

specialised relationships are lost in the translation, resulting in semantics loss as described in 

(Zorriasatine et al. 2003).  

Semantic interoperability is one of the newest approaches in the state of the art of VE for the PLC. It 

specifically aims to the development of supporting applications with the ability to automatically, 

meaningfully and accurately interpret the information exchanged, producing useful results. Ontologies 

allow information exchange approaching this kind of interoperability (Obrst 2003): the cases of e-

Learning (Busse 2005), Electronic Commerce (Obrst et al. 2002) or Geographic Information Systems 

(Fonseca el al. 2006) are well documented examples of the success of this kind of interoperability.  
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2.3   Semantics and Ontologies 

Semantics is a concept derived from the Greek term semantikos that means ‘significant’, and it is the 

discipline that studies the meaning of things. The first appearance in its modern form was in Michel 

Bréal’s book ‘Essai de sémantique’ in 1897 (Bréal 2005). In our work in this paper, Semantic technologies 

are used to improve interoperation among VEAs. Interoperability issues are formulated as a problem of 

semantic and information loss. There is a semantic loss when the ancillary information containing the 

meaning of the information objects is lost during the transference among VEAs. Semantic loss implies 

that some functionality of the VEA could not be applied to the data.  

Modelling the application domain with ontologies, we can use their associated inference capabilities 

allow the efficient design of the information transference channels, reducing the information and 

semantic loss.  

Ontologies play a fundamental role in the Semantic Web paradigm (Berners-Lee et al. 2001). In the 

Computer Science domain, the widely accepted definition (given by Gruber) states that “an ontology is 

the explicit specification of a conceptualization” (Gruber 1995). In computer and information sciences, 

an ontology is a formal representation of knowledge as the set of concepts identified within a domain, 

and their relationships. It is used to reason about the entities within that domain, and may be used to 

describe the domain, providing a shared, agreed upon, vocabulary.  

Fikes (Fikes 1998) distinguishes four top-level application areas where ontologies are useful: (i) 

collaboration, (ii) interoperation, (iii) education and (iv) modelling. More specifically, within the VE 

domain, Mencke (Mencke et al. 2008) considers three major areas where ontologies can be used: (i) 

Virtual Design, referred to the construction of virtual prototypes and their use with applications for 

controlling, monitoring and management, (ii) Test & Verification, referred to the simulation for checking 
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the correctness and applicability of the Virtual Prototypes, and (iii) Visualization & Interaction, referred 

to the presentation of virtual objects and the user interaction.  

The use of ontologies is motivated in our proposal by the fact that during a PLC, each one of the involved 

VEA comprises a different level of specificity; a fact that leads to the need of a strong knowledge based 

paradigm to avoid semantic loss. In our approach, we propose the use of a Supporting Knowledge Base 

whose design language should be strong enough to contain the particularities of every VEA involved. 

This Supporting Knowledge Base should provide mechanisms to reason and answer queries about its 

contents, and at the same time it should be flexible enough to accept the inclusion of new relationships 

on the fly (i.e. in order to support the addition of new VET).   

Ontologies, opposite to other modelling techniques, allow checking data properties after on-the-fly 

changes, i.e. data integrity: a reasoner can verify the ontology structure automatically when new 

elements are added. Data integrity allows scalability, which is an important property for translation 

processes (for example, when a new version of the software is released, in many cases the translator 

needs to be updated). Therefore ontologies are ideally suited for the representation of the proposed 

Supporting Knowledge Base. 

3   Proposed Architecture  

In the introduction section we presented some of the VEA interoperation problems which may derive in 

semantic loss. In the knowledge/information flow of a traditional PLC scenario, depicted in Figure 2.a, 

semantic loss sometimes arises when VEAs used in the same product development stage share their 

knowledge, but more often it happens when knowledge generated in one of the PLC stages flows to 

VEAs used in the next PLC stage.  We propose a semantic-based centralized Supporting Knowledge Base 

that will store and handle the gathered knowledge as shown in Figure 2.b.  Any VEA used during the PLC 

will be able to contribute with its specific knowledge to the conceptual representation in our proposed 
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Knowledge Base (for example, CAD provides the geometry, CAM provides manufacturing tool paths and 

FEA provides failure analysis). 

 

Figure 2.  Representation of knowledge/information flow along the PLC: (a) conventional approximation, (b) using a Supporting 

Knowledge Base. 

More precisely, the Supporting Knowledge Base is implemented through the architecture depicted in 

Figure 3. 

 

Figure 3. Proposed architecture for the implementation of the Supporting Knowledge Base. 
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In our architecture, the first layer is the Software layer; it contains the collection of the different VEA 

available in the different PLC stages. User interacts with these VEA in a classical way, i.e. using the 

interfaces provided from each VEA, generating the diverse knowledge necessary in the PLC process.  In 

general, VEA in this layer possess extension capabilities that allow the possibility to access their 

embedded knowledge. This fact allows feeding the Supporting Knowledge Base with the knowledge 

generated by the VEA, or, conversely, increasing the VEA’s knowledge with information coming from the 

Supporting Knowledge Base when necessary. 

The next layer is Translation layer; in this part of the architecture takes place the alignment between 

VEA generated knowledge and the Domain ontology located in the next layer. This translator provides 

the means of matching the VEA knowledge with the Supporting Knowledge structure, for such reason, 

the importance of choosing a good Domain’s model is critical as problems like information 

incompleteness and multiple sources leading to redundancy should be considered.  

Each VEA in the Software layer is associated to its own translation module. Translators allow the 

bidirectional traffic of the knowledge: they are able to convert the knowledge generated in the VEA into 

the Knowledge Base’s Domain ontology, and vice versa, from the Domain ontology into the VEA format. 

Translator construction can be made in several ways, being the most usual using an API, using a scripting 

language or the parsing of the generated output files. 

The following layer is the Knowledge Base layer; this part of the architecture contains the Domain 

ontology and the reasoner. All the knowledge generated by each VEA is stored and managed at this 

stage. To achieve these goals it is important to have a deep knowledge of the specific problem domain 

as well as good ontology model building tools and methodology. For such reason, it is recommended the 

combined work of an ontology engineer and an expert on the specific domain of work and the use of 

engineering standards as presented in (Toro et al. 2009).   
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The reasoner is responsible for three tasks: 

(i) Control of the ontology integrity, i.e. check if classes, attributes and relationships fulfil the logic 

of the model. For example, for OWL-DL models the used logic is Description Logics (DL). 

(ii) Providing a query system, allowing the extraction of explicit knowledge stored in the ontology. 

The query system can be implemented with one of the existing query languages (e.g. SPARQL) or 

use Reflexive Ontologies allowing the analysis of the queries and speed up of the query process 

as presented in (Toro et al. 2008). 

(iii) Reasoning over the ontology, i.e. the exploitation of implicit knowledge (Sattler 2010) contained 

in the ontology through a reasoning API (Protégé 2007) which is commonly a handler (Baader et 

al. 2007) who processes the Domain ontology, e.g. Pellet or RACER. 

The last layer of the architecture is the Application layer; it is reserved for custom applications capable 

of interaction with the Supporting Knowledge Base in a direct way. Such interaction is bidirectional; 

applications have to be able to compose queries which are remitted to the reasoner of the Knowledge 

Base layer, and they also have to be capable to understand the answer obtained by the reasoner to the 

given query. Bidirectional communication allows applications to get the stored knowledge, but also to 

contribute feeding the Knowledge Base with their new generated knowledge. Applications located in 

this layer take advantage of all the stored knowledge. Nevertheless, this interaction is not necessarily 

visible to the user, who interacts with the application trough its own interfaces in a transparent way.  

4   Case Study 

Following the architecture presented in the previous section, we developed a solution to a case study 

posed within the framework of an applied industrial research project: the (re)design of industrial plant 

layouts. In such scenario, many teams of engineers cooperate in the design of the plant using different 

VEAs at different stages of the PLC, hence many situations prone to semantic loss arise.  
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The goal is to produce a plant layout that will allow the manufacture of a new product. One or several of 

the production lines already in existence will need adaptation according to the manufacturing process 

needs of the new product.  

The visualization tool developed to assist in the solution of the industrial plant layout design makes use 

of the architecture proposed in section 3 to prevent the semantic loss during interoperation between 

the different VEA utilized. Figure 4 shows the instantiation of the general architecture of section 3 to the 

details of our case study. In order to simplify the example, we will consider only three VEA in the 

Software layer, as can be seen in Figure 4: AutoCAD, used for the static geometric design (located in the 

design stage of the PLC mainly), RobCAD, used for the kinematics calculation and simulation of moving 

objects (located in the analysis and operation stages of the PLC), and a XML serialized file which contains 

diverse database gathered information in the form of stored facts about the actual plant (located in the 

operation and maintenance stages of the PLC).  

 

Figure 4. Localization of case study’s VEAs in the PLC general process. 
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We make a differentiation between static elements (e.g. walls, floor, fixed objects), and non-static 

elements (e.g. a robotic arm) in order to recognize easily the knowledge that must be involved in the re-

calculation duties during the simulation of the plant layout operation. Non-static elements’ geometry is 

modelled using AutoCAD in the Design stage, adding their kinematics later in the Analysis stage using 

RobCAD. In this scenario, geometry is correctly exported, but additional knowledge generated in 

AutoCAD (for example, line thickness is related to the material) is lost, thus producing a semantic loss.  

Each VEA used possesses a translator in order to match the generated knowledge to the Domain 

ontology structure (Translation layer). AutoCAD provides an API called ObjectARX (Kramer 1999), which 

allows programming the parsing of the different 3D models contained.  

In the case of RobCAD, the vendor does not provide any public API, but instead a plug-in that allows 

exporting generated animated models into the VRML format. These files have some non-standardized 

labels, but we developed a VRML parser in order to extract and match the knowledge contained in those 

files into the ontology (for the extraction of the movements themselves).  

In a similar way, we developed an XML parser to recover the information stored in the XML Generator 

output files, matching this information in the ontology.  

Following the methodology to create Domain ontologies based on Engineering Standards presented in 

(Toro et al. 2009), we have found in the domain of Plant Design reported successful approaches based 

on the standard ISO-STEP (10303ap227) (SCRA 2006). Our Domain Model in the Knowledge Based layer 

was hence serialized using Toro’s approach adding also a second ontology for the extension of the STEP 

protocol to particularities of the problem at hand (again following the methodology presented in (Toro 

et al. 2009)). 
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Figure 5. Case study matched in the proposed architecture. 

As the Knowledge Base’s reasoning component, we created a simple interface that uses Pellet (Sirin et 

al. 2005) via the Protégé OWL API (Protégé 2010).  

At this point, we have developed our desired Industrial Plant Layout Design application in the 

Application layer. The developed application allows the user to inspect different layouts of the same 

Industrial Plant in a 3D environment by navigating through the plant and modifying the layout in order 

to obtain the best possible configuration with the aid of the semantic engine that will not permit 

configurations that contradict design principles (using for that purpose the reasoner capabilities). The 

User can also obtain additional information from the elements contained in the active layout, for 

example the security area needed for the robot KUKA KR 150-2 or the costs associated to the 

breakdown of painting process manufacture call. 
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Figure 6. Industrial Plant Layout Design application screenshot: 3D representation of the layout. 

As can be seen in the Figure 5, the Industrial Plant Layout Design application interface shows the three-

dimensional representation of the active layout, and the different layouts (with their corresponding 

elements) are accessible from a tree-mode representation, as represented in Figure 6. When the pointer 

is over a tree element, the system asks the Knowledge Base for the position, translation and scale of the 

concrete instance of the 3D model and displays the information to user. If the user needs additional 

information about any specific element or layout, he/she has possibility to launch a query to the 

knowledge base from the query menu. Such query is handled by the reasoner over the instances of the 

ontology. 
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Figure 7. Industrial Plant Layout Design application screenshot: Multiple layouts. 

5   Conclusions and Future Work 

In this work, we faced the interoperability problem between VEAs through the Product Life Cycle 

Process, proposing a semantic based architecture that uses a Supporting Knowledge Base to collect, 

store, and manage all the knowledge generated in such VEAs allowing a seamless information and 

knowledge sharing between the VEAs involved in a PLC scenario. 

In order to validate our approach, we presented a test case where the Knowledge Base is modelled for 

an Industrial Plant Layout Design task. Three different VEAs feed the Knowledge Base, and each one of 

them has its own implemented translator. A developed Industrial Plant Layout Design application which 

launches queries to the Knowledge base completes the test case. 
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 Our implementation is effective in collecting knowledge provided by different VEA available proving 

that our approach could be applicable within the industry. At this time, the presented system is being 

tested in order to offer a deep statistical analysis in subsequent works.  

As future work, our efforts are directed in several different research lines. At architectural level, we aim 

to enhance the Supporting Knowledge Base of the presented architecture with Decisional DNA as 

defined in (Sanin et al. 2009). Current VEAs do not take into account the user experience. From our 

point of view, experience could be a very useful information source for VEAs, not for taking automatic 

decisions but to generate suggestions that the system can provide to users. According to Sanin (Sanin et 

al. 2009), Decisional DNA allows the storage of the day-to-day explicit experience in a single structure, 

and predicting capabilities based on the collected experience (among other advantages like 

transportability and share ability of the knowledge, or versatility and dynamicity of the knowledge 

structure). 

On the other hand, we plan to extend the presented case study system with other VEAs and replace the 

Pellet reasoner by Reflexive Ontologies, a technology that presents several advantages like the speed-up 

of the query process or the addition of extra knowledge about the domain provided by previously 

computed queries and answers (Toro et al 2008). With this change, we expect to improve the 

Knowledge Base efficiency, as reported in (Cobos et al. 2008). After this change, we will study the 

economical impact that this Plant Layout Design system could have in an Engineering small-to-medium 

enterprise (SME). 

Finally, we are also working on the use of the centralized Knowledge gathered within a Semantic Web 

application running as a service in a company web page in order to provide means for remote 

monitoring of an Industrial Plant. 
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