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Abstract. Color constancy and chromatic edge detection are funda-
mental problems in artificial vision. In this paper! we present a way to
provide a visualization of color constancy that works well even in dark
scenes where such humans and computer vision algorithms have hard
problems due to the noise. The method is an hybrid and non linear
transform of the RGB image based on the assignment of the chromatic
angle as the luminosity value in the HSV space. This chromatic angle is
defined on the basis of the dichromatic reflection model, having thus a
physical model supporting it.
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1 Introduction

Color constancy (CC) is fundamental problem in artificial vision [4,9,14], and it
has been the subject of neuropsicological research [1], it can be very influential
in Color Clustering processes [2,10,6,3]. It is the ability of the human observer
to identify the same surface color in spite of changes of environmental light,
shadows and diverse degrees of noise. A related problem is that of Chromatic
Edge detection (CE), meaning the ability to detect the location of surface and
scene color transitions, corresponding to object boundaries. In the artificial vision
framework, works ensuring CC or trying to perform CR, must assume some
color space, often they must perform the estimation of the illumination source
chromaticity [5,13| and proceed by the separation of diffuse and specular image
components [8,11,15]. Usually, CC is associated with the diffuse component of
the image.

Measurements on human subjects lead to the conclusion that retinal process-
ing is not enough to extract chromatic features and chromatic based structural
image information. Some works demonstrate that CC analysis is done in the vi-
sual cortex, in the areas V4 and V4A [1]. Assuming the analogy with the human
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vision biology, artificial vision systems need no trivial processing to ensure CC
results on the processing real images. Dark scenes are critical for CC, because
dark image regions are usually very noisy, that is, the signal to noise ratio is
very high due to the low magnitude of the visual signal. In these regions, the
ubiquitous thermodynamical noise has an amplified effect that distorts region
and edge detection ensuring CC conditions. Our approach obtains remarkable
good results in these critical regions.

In this paper we present a hybrid and non linear transformation of the RGB
image based on the assignment of the chromatic angle of the pixel (computed
in the RGB space) as the luminosity value in the HSV space. The image is
preprocessed to remove the specular component [12]. The chromatic angle was
defined on the basis of the Dichromatic Reflection Model (DRM), having thus
a physical interpretation supporting it. In the HSV color space the intensity
is represented in the V value, changing it does not change the pixel chromatic
information. Thus, to visualize CC we assign constant intensity to the pixels
having common chromatic features, by assigning the chromatic angle as the V'
value in HSV space.

The paper has the following structure: section 2 is a brief overview of the
dichromatic reflection model (DRM). Section 3 presents our approach. Section
4 shows and explains the experimental results. Section 5 gives the conclusions
and directions for further works.

2 Dichromatic Reflection Model (DRM) in the RGB
Space

The Dichromatic Reflection Model (DRM) was introduced by Shafer [7]. It ex-
plains the perceived color intensity I € R? of each pixel in the image as addition
of two components, one diffuse component D € R® and a specular component
S € R3. The diffuse component refers to the chromatic properties of the ob-
served surface, while the specular component refers to the illumination color.
Surface reflections are pixels with a high specular component. The mathemati-
cal expression of the model, when we have only one surface color in the scene,
is as follows:

I(z) = mg(z)D + ms(x)S, (1)

where mg and mg are weighting values for the diffuse and specular components,
taking values in [0, 1]. In figurel the stripped region represents a convex region
of the plane I1;. in RGB that contains all the possible colors expressed by the
DRM equation 1. For an scene with several surface colors, the DRM equation
must assume that the diffuse component may vary spatially, while the specular
component is constant across the image domain:

I(z) = mq(z)D(x) + ms(z)S.

That the specular component is space invariant in both cases, means that the
illumination is constant for all the scene. Finally, assuming several illumination



colors we have the most general DRM
I(z) = ma(z)D(z) + ms(x)S(x),

where the surface and illumination chromaticity are spatially variant.
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Fig. 1. Typical distribution of pixels in the RGB space according to the Dichromatic
Reflection Model

In the HSV color space, chromaticity is identified with the pair (H,S), and
the V variable represents the luminosity or light intensity. Plotting on the RGB
space a collection of color points that have constant (H,S) components and
variable intensity I component, we have observed that chromaticity in the RGB
space is geometrically characterized by a straight line crossing the RGB space’s
origin, determined by the ¢ and 6 angles of the polar coordinates of the points
over this chromaticity line. The plot of the pixels in a chromatically uniform
image region appear as straight line in the RGB space. We denote Ly this diffuse
line. If the image has surface reflection bright spots, the plot of the pixels in these
highly specular regions appear as another line L, intersecting L.

For diffuse pixels (those with a small specular weight mg(z)) the zenith ¢
and azimuthal 6§ angles are almost constant, while they are changing for specu-
lar pixels, and dramatically changing among diffuse pixels belonging to different
color regions. Therefore, the angle between the vectors representing two neigh-
boring pixels I (x,,) and I (z,), denoted £ (I, I,), reflects the chromatic variation
among them. For two pixels in the same chromatic regions, this angle must be
Z(I,,1I;) = 0 because they will be collinear in RGB space.

The angle between I, I, is calculated with the equation:

£(I,,1,) = arccos I (xp)TI (z4) . (2)
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3 An Approach for Regular Region Intensity

The basic idea of our approach is to assign a constant luminosity to the pixels
inside an homogeneous chromatic region. To do that we must combine manipu-
lations over the two color space representations of the pixels, the HSV and RGB.
The process is highly non linear and it is composed of the following steps:

1. Isolate the diffuse component removing specular components (ms = 0): we

are interested only in the diffuse component because it is the representation

of the true surface color. We use the method presented in [11] to perform
the diffuse and specular component separation.

Transform the diffuse RGB image into the HSV color space.

3. Compute for each pixel in the image the chromaticity angle as the angle
between the gray diagonal line in the RGB space, going from the black
space origin to the pure white corner, and the chromaticity line of the pixel.

4. Assume the normalized chromaticity angle as the new luminosity value in
the HSV space pixel representation.

o

In an homogeneous chromatic region, all pixels fall on the same diffuse line
Lg: (r,g,b) = O + so;Vs € RT where O = [0,0,0] and o = [0,, 04,03 is the
region chromaticity. The chromatic reference is the pure white line L, which is
defined as Ly, : (r,9,b) = ¢+ su; Vs € RT where O = [0,0,0] and u = [1,1,1].
Therefore, if all pixels is a region belong to the same chromatic line, the angle
between each pixel and the line L,, must be the same, and the result of this
angular measurement is a constant for whole region. Our strategy is to normalize
this measure in his domain of definition (the RGB cube) and assume it as the
constant luminosity value V. This method is expressed with the equation:

Z(I(x),u)

new _
vrei(e) = arccos(1)

(3)
where the denominator arccos(1}) is the normalization constant corresponding to
the maximum angle between the extreme chromatic lines of the RGB space (red,
green or blue axes) and the pure white line. Algorithm 1, shows a Matlab/Scilab
implementation of the method, where 9 takes the value 1 and arccos(d) =

3
0.9553166.

Algorithm 1 Regular Region Intensity

function IR = SF3(I)
Idiff = imDiffuse(I); // look for the diffuse component
new _intensity = angle(Idiff, [1 1 1]); // return a matrix of chromatic angles
Thsv = rgb2hsv(1diff);
Thsv(:,:,3) = new_intensity; // assign the normalized angles as image intensity
IR = hsv2rgb(Thsv);

endfunction




4 Experimental Results

We present the results from three computational experiments. The first one using
a synthetic image and the remaining using natural images. The figure 2 displays
the first experimental results. The figure 2a is the original image. The figure
2b is the diffuse image obtained applying the method in [12]. The image 2c is
the result applying our proposed method in the image 2a. The figure 2d display
the result applying the method in the image 2b. It can be appreciated that our
method is able to identify the main chromatic regions even without component
separation (figure 2c), with some artifact due to the bright reflections. After
removal of these reflections, the method has a very clean identification of the
chromatic regions.

Fig. 2. Synthetic image results (a) original image, (b) diffuse component of the image,
(¢) our method on image (a), our method on image (b).

For the next experiments we use natural images that have been used by
other researchers previously. The figures 3 and 4 show the experimental results.
In both cases the subfigure (a) has the original image, subfigure (b) shows the
diffuse image, subfigure (c) displays the results applying our proposed method
to the original image (a), subfigure (d) show the results applying our method in
the diffuse image (b). In both experiments we can see a similar effect of applying
specular correction. The images (c) obtained without component separation,
show a better chromatic preservation, although with some degradation in the
regions corresponding to the specular brights. The images obtained after diffuse
component identification [12] are less sensitive to specular effects, however they



show some chromatic region oversegmentation. It is important to note that no
clustering process has been performed to obtain these images.

(a) (b)

(c) (d)
Fig. 3. Natural image results, (a) original image, (b) diffuse component of the image,
(c) our method on image (a), our method on image (b).

(a) (b)

(c) (d)
Fig. 4. Natural images, (a) original image, (b) diffuse component of the image, (c) our
method on image (a), our method on image (b).



5 Conclusions and Further works

In this work we present a color transformation that enables good visualization
of Color Constancies in the image, changing only the image luminosity and pre-
serving its chromaticity. The result is a new image with strong contrast between
chromatic homogeneous regions, and good visualization of these regions as uni-
form regions in the image. This method performs very well in dark regions, which
are critical for most CC methods and image segmentation based on color clus-
tering processes. The method could be the basis for such a process, applying the
clustering process to the chromaticity angle.

We have found that specular correction of the image improves the results on
highly specular regions of the image, however our approach performs well also
on images that have not been preprocessed. Future works will be addressed to
the computation of color edge detection and color image segmentation based on
this approach.
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