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Motivation

@ Endmember induction using Discrete-PSO.
@ Solution: a subset of the pixels, E = {ej}jm:l C {ri}7_;, where:

e m is the number of endmembers e; in the solution.
e nis the number of pixels r; in the image.

@ Criterium: minimize root-mean-squared-error
n AN i
rmse ({1} {1}, ), where:

e ; is a remixing pixel using E and the abundancies obtained by
FCLSU.
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Discrete PSO

o Feasible solution space:

n
Xn.m = {(xl,xz,...,x,,)x,- €{0,1},) xi= m}
i=1

@ X (t) and v (t) denote respectively the k-th particle’s
position and velocity at time t.

® X best (t) specify the k-th particle’s self-optimum position at
time t.

® Xgpest (t) specify the global optimum position before time ¢.
@ Xk (t) » Xk, best (t) » Xgbest (t) € Xn,m-
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Algorithm
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Updating functions

Xt + 1) =% (t) + vi(t)
T [[xﬁ'.b:.hi[” - X;[I.JI:I
\«";,[l + l} - + I:x:r,u'r:..n.f_[” — X;,[LJI:I:I
R(xi(t))

o v, €{-1,0,1}".
@ T and R are both random selection functions.

e T: directional movement.
e R: random movement.

e Authors say nothing about how to ensure Y7 ; = m.
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Experiments

Real hyperspectral image: Cuprite, Nevada (U.S.A.).
e 400 x 360 pixels and 50 bands.

Compared to:

o VCA and N-FINDR for different m and p values.
o Spectra from the USGS library for m =15 (same as virtual
dimensionality) and p = 0.2 (best result).

20 particles.

A-priori setting the number of endmembers:
m = {5,10,15,20}.
@ Random selection probability: p={0.1,0.2,0.5}.
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Methodological WTF!

-

The PSO is to search inside the feasible solution space. If
the feasible solution space is too large, it will affect the search
rate and reduce the computational efficiency, so the maximum
noise fraction (MNF) algorithm was first used to reduce the
dimensions of the images, and then, the PPl algorithm was
used to obtain the 80 candidate endmembers which constitute
a feasible solution space, but when calculating the value of the
adaptability function. all the images still need to be processed
with FCLS to calculate the rmse. In addition, the N-FINDR
algorithm needs to reduce the dimensions of the images, so

,it extracts endmembers from the images after being converted
by MNE, while VCA and D-PSO directly extract endmembers
from the original images.
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Results (1)

TABLE 1
COMPARISON OF THE RMSE OF D-PSO, N-FINDR, aND VCA
UNDER DIFFERENT PARAMETERS
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Nr"lmh; "] Random | N- VCA | Ti
;c:;m'r probability |~ FINDR ime(sec)
0.1 4373 8.330
5 0.2 Z.060 8800 | 8380 1301
05 7045 56.567
0.1 2,806 10.632
10 0.3 3797 7.101 | 7.043 7958
0.3 271 391430
0.1 2273 13.935
15 0.2 3.366 5648 | 5.537 35530
0.5 3377 651.534
01 1931 18,500
20 0.2 1913 4838 | 5232 [ 21578
05 1884 1464520
(=] = = = = QA
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TABLE II
RESULTS OF ENDMEMBER COMPARISON

No, Position Mineral Similarity
1 {394.48) Jarosite (1.890
2 (134.97) Palygorskite 0.913
3 (82.118) Alunite (.823
4 (85.135) Alunite 0.805
5 (146,164) Ferrihydrite 0.778
] (327.170) Hyalite 0.912
7 (327.182) Chalcedony (.903
8 (231,193) Buddingtonite 0.847
9 (271,230) Chert (.890
10 (286,250) Alunite (.805
11 (39,266) Kaolinite 0772
12 {5,267) Ilite 0.828
13 (84,2900 Montmaorillonite 0.911
14 (35,337) Calcite 0.834
15  (368,348) Niter 0.782

o =] z = z 9ac
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