

Xiaodong PAN and Yang XU

Southwest Jiaotong University, Chengdu, Sichuan, China

Luis MARTINEZ

Department of Computing, University of Jaén, E-23071 Jaén, Spain

Da RUAN

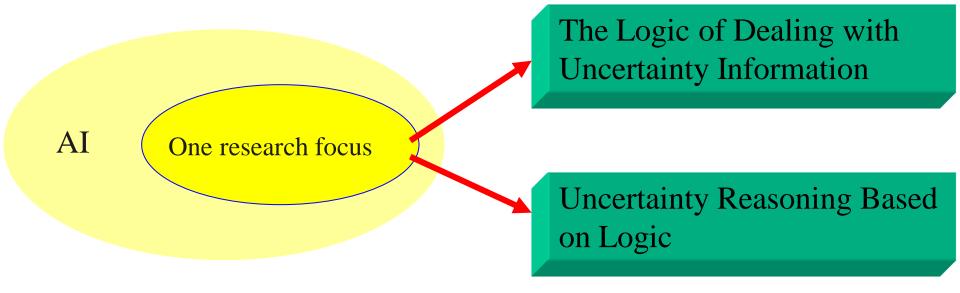
Belgian Nuclear Research Centre (SCK.CEN) and Ghent University, Belgium

Jun LIU

University of Ulster, Northern Ireland, UK

- Introduction
- Academic Background and Ideas
- Focused Technical Works
- Ongoing Research and Prospects
- Conclusion

Research View and Orientation



Logic Based Intelligent Systems

Study of logic foundation for uncertainty reasoning: especially incomparability

Key ideas

Intelligent information processing \rightarrow Uncertain Information \rightarrow Uncertainty Reasoning \rightarrow Need for establishing strict logic foundation \rightarrow Non-Classical logic \rightarrow Incomparable information \rightarrow Lattice-valued logic system with truth-valued in a lattice

Lattice + Logic

■ Logical algebraic structure – lattice implication algebras (LIA)

Combining lattice and implication algebra, non-chain structure

Lattice-valued logic systems based on LIA

Incomparable information \rightarrow Relation with fuzzy logic \rightarrow Universal Algebra \rightarrow Truth-valued attached \rightarrow Syntax and semantics extension \rightarrow Complete and Sound lattice-valued logic system

Academic routine since 1993

- Lattice-valued logical algebra Lattice Implication
 Algebra (LIA)
 - Y. Xu, Lattice implication algebra, Journal of Southwest Jiaotong University (in Chinese), 1993, 1, pp. 20-27.

- Structure and properties of LIA
- Lattice-valued algebraic logic lattice-valued logic based on LIA
- Approximate reasoning based on lattice-valued logic
- Automated reasoning based on lattice-valued logic

A lattice-valued logical algebra -- lattice implication algebra (LIA)

Definition (LIA) Let $(L, \vee, \wedge, ')$ be a bounded lattice with an order-reversing involution "'" and the universal bounds O, I, : $L \times L \to L$ be a mapping. $(L, \vee, \wedge, ', \to)$ is called a **lattice implication algebra** (LIA) if the following conditions hold for all $x, y, z \in L$:

$$(I_1) x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$
 (exchange property)

$$(I_2) x \rightarrow x=I \text{ (identity)}$$

$$(I_3) x \rightarrow y = y' \rightarrow x'$$
 (contraposition or contrapositive symmetry)

$$(I_4) x \rightarrow y=y \rightarrow x=I \text{ implies } x=y \text{ (equivalency)}$$

$$(I_5)(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$

$$(I_6) x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z)$$
 (implication \lor -distributivity)

$$(I_7) x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z)$$
 (implication \land -distributivity)

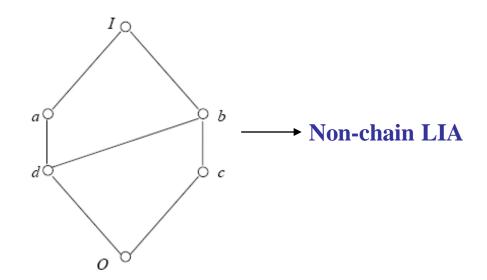


Examples of LIA

Boolean algebra and Lukasiewicz algebra are all LIAs. A class of all LIAs form a proper class, which means many LIAs can be constructed and there are at least countable LIAs which can be constructed in [0, 1]

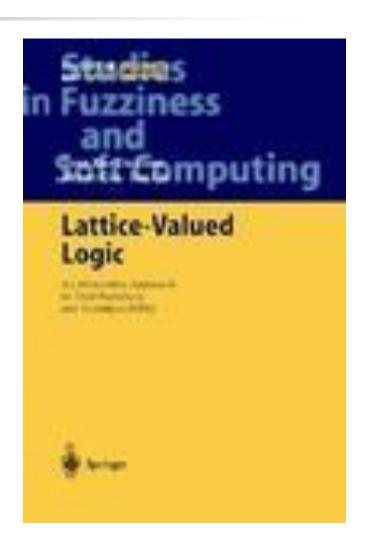
х	x'		
О	Ι		
а	с		
b	d		
с	а		
d	Ь		
Ι	О		

\rightarrow	О	а	b	С	d	Ι
О	Ι	I	Ι	Ι	Ι	Ι
а	c	I	b	с	b	Ι
b	d	а	Ι	b	а	Ι
c	а	а	Ι	Ι	а	Ι
d	b	Ι	Ι	b	Ι	Ι
Ι	О	а	b	с	d	Ι



Book published (2003)

- Xu, Y., Ruan, D., Qin, K.Y., and Liu, J., Lattice-Valued *Logic – An Alternative* Approach to Treat Fuzziness and Incomparability, Springer-Verlag, Heidelberg, July, 2003, 390 pages.
- ISBN-3-540-40175-X



The main focus of this paper: consistency and compactness in LP(X)

- Semantical theory of finite lattice-valued propositional logic LP(X) based on finite lattice implication algebras
- Semantical consequence operations in LP(X)
- Consistency and compactness in LP(X)

LP(X), valuation and semantic consequence operation

By LP we denote the lattice-valued propositional logic based on finite lattice implication algebras L. In LP, the formula set \mathscr{F} is a $(\neg, \&, \Rightarrow)$ -type free algebra generated by set $S \cup \overline{L}$, where S is the set of propositional variables, $\overline{L} \triangleq \{\overline{a} | a \in L\}$, $\overline{a} \in \overline{L}$ is a nullary operation.

Definition 2. The mapping $v : \mathscr{F} \to L$ is called a valuation if $v(\neg A) = v(A)'$, $v(A \& B) = v(A) \otimes v(B) = (v(A) \to v(B)')'$, $v(A \Rightarrow B) = v(A) \to v(B)$, and $v(\bar{a}) = a$ for any $a \in L$.

The set \mathcal{T} of all valuations is called the semantics of LP.

Definition 3. [14] Let $X \in L^{\mathscr{F}}, A \in \mathscr{F}, a \in L$. The mapping $\mathscr{C}_{\mathscr{T}} : L^{\mathscr{F}} \to L^{\mathscr{F}}, X \mapsto \bigwedge \{v \in \mathscr{T} | v \geqslant X\}$ is called the L-semantic consequence operation on \mathscr{F} .

Remark 2. Let $X \in L^{\mathscr{F}}$, X is called an fuzzy theory on \mathscr{F} , for any $A \in \mathscr{F}$, $X(A) \in L$ denote the initial truth value of the formula A, it has been given in advance, so X can also be viewed as an information qua premiss.

True-valued level and satisfiability

In this section, we generalize the classical set of formulae to L-set in the level of D, discuss the properties of L-semantic consequence operation, and study the problem of the consistency. In what follows, we always admit that Γ is a subset of \mathscr{F} and D be a subset of L satisfying (i). $I \in D$, $O \notin D$; (ii). for any $x, y \in L$ such that $x \leqslant y$, $x \in D$ implies $y \in D$.

Definition 4. Let $\Gamma \subset \mathscr{F}$, define $\Gamma_D \triangleq \{X \in L^{\mathscr{F}} | \forall A \in \mathscr{F}, if A \in \Gamma \text{ and } A \notin \overline{L}, then <math>X(A) \in D$; if $A \in \Gamma$ and $A = \overline{\beta} \in \overline{L}$, then $X(A) = \beta$; otherwise, X(A) = O.

Remark 3. In definition above, Γ is a finite subset of \mathscr{F} as usual. Let $X \in \Gamma_D$, for every $A \in \mathscr{F}$, by X(A) we mean a truth value for A in X in the level of D, it have been given in advance. In fact, this can be viewed as a generalization of a premise formulas set in the classical semantic deduction.

Definition 5. Let $\Gamma \subset \mathcal{F}$, $v \in \mathcal{T}$. v is called as a model of Γ in the level of D, or v satisfies Γ in the level of D if $v(A) \in D$ for every $A \in \Gamma$ and $A \notin \overline{L}$. Γ is called satisfiable in the level of D if there exists a valuation v, which satisfies Γ in the level of D.

Consistency and propositions

Proposition 1. Γ is satisfiable in the level of D if and only if there exist $X \in \Gamma_D$ and $v \in \mathcal{T}$ such that $v \geqslant X$.

Definition 6. Let $X \in L^{\mathscr{F}}$, if $\{v \in \mathscr{T} | v \geqslant X\} = \emptyset$, then we assign $I_{\mathscr{F}}$ to X, i.e. $\mathscr{C}_{\mathscr{T}}X = I_{\mathscr{F}}$, where $I_{\mathscr{F}}$ is the greatest element of $L^{\mathscr{F}}$ which is the constant map equal to I on the whole of \mathscr{F} . In this case, X is said to be inconsistent with regard to \mathscr{T} ; otherwise, X is said to be consistent. If for all $X \in \Gamma_D$, X is consistent, then Γ is said to be consistent with regard to \mathscr{T} in the level of D.

Proposition 2. Γ is satisfiable in the level of D if and only if there exists $X \in \Gamma_D$ such that X is consistent with regard to \mathcal{T} .

Proposition 3. For any $X \in L^{\mathscr{F}}$, if there exist $A \in \mathscr{F}$ and $A \notin \overline{L}$ such that

$$\Big(\mathcal{C}_{\mathcal{T}}X\Big)(A)\wedge\Big(\mathcal{C}_{\mathcal{T}}X\Big)(\neg A)\nleq\bigvee_{\alpha\in L}\Big(\alpha\wedge\alpha'\Big),$$

then X is inconsistent with regard to \mathcal{T} .

Additional properties

Corollary 1. For any $X \in L^{\mathscr{F}}$, X is inconsistent with regard to \mathscr{T} if and only if there exists $A \in \mathscr{F}$ such that

$$(\mathscr{C}_{\mathscr{T}}X)(A) = (\mathscr{C}_{\mathscr{T}}X)(\neg A) = I.$$

In classical logic, by $M \models A$ we mean that v(A) = 1 for any $v \in \mathscr{T}$ satisfying $v(M) = \{1\}$. That is to say, $A \in \bigcap \{D_v | M \subset D_v, v \in \mathscr{T}\}$, where $D_v = \{p \in \mathscr{F} | v(p) = 1\}$. In the following, by the semantical consequence operation, we extend the above concept to lattice-valued logic, we can obtain the following conclusion:

Theorem 1. Let $A \in \mathscr{F}$, if $(\mathscr{C}_{\mathscr{T}}X)(A) \in D$ for any $X \in \Gamma_D$, then $v(A) \in D$ for any $v \in \mathscr{T}$ satisfying $v(\Gamma) \subseteq D$.

Compactness of semantical consequence operation

- Compactness is an important property of classical logic, which establishes a link between infinity and finity
- A set of formula has a model if and only if every finite subset of it has a model
- It provides a useful method for constructing models of any set of sentences that is finitely consistent
- **Proposition 4.** Let $\mathscr{B}_{\mathscr{C}_{\mathscr{T}}} = \{Y \in L^{\mathscr{F}} \mid \mathscr{C}_{\mathscr{T}}Z \subseteq Y \text{ for any } Z \subseteq Y\}$, then for any $\mathscr{N} \subset \mathscr{B}_{\mathscr{C}_{\mathscr{T}}}$, $\wedge \mathscr{N} \in \mathscr{B}_{\mathscr{C}_{\mathscr{T}}}$; that is to say, $\mathscr{B}_{\mathscr{C}_{\mathscr{T}}}$ is a closure system.
- **Corollary 2.** $\mathscr{B}_{\mathscr{C}_{\mathscr{T}}} = \{Y \in L^{\mathscr{F}} \mid \mathscr{C}_{\mathscr{T}}Y = Y\}$, that is to say, $\mathscr{B}_{\mathscr{C}_{\mathscr{T}}}$ consists of all fixed points of $\mathscr{C}_{\mathscr{T}}$.
- Corollary 3. For any $Y \in L^{\mathscr{F}}$, $\mathscr{C}_{\mathscr{T}}Y = \bigwedge \{Z \mid Y \subseteq Z, Z \in \mathscr{B}_{\mathscr{C}_{\mathscr{T}}}\}.$

4

Compactness relevant theorems

Definition 7. The mapping $\mathscr{C}_{\mathscr{T}}$ is said to be compact if

$$\mathscr{C}_{\mathscr{T}}X = \bigvee \{\mathscr{C}_{\mathscr{T}}Y \mid Y \in L^{\mathscr{F}}, Y \subseteq X \text{ and } Y \text{ is a finite fuzzy set}\}$$

for any $X \in L^{\mathscr{F}}$.

 $\mathscr{C}_{\mathscr{T}}$ is said to have the property of preserving directed joins if $\mathscr{C}_{\mathscr{T}}(\bigvee_{i\in I}Y_i)=\bigvee_{i\in I}\mathscr{C}_{\mathscr{T}}Y_i$ for any directed family $\mathscr{U}=\{Y_i\mid i\in I\}$ of subsets of $L^{\mathscr{F}}$, where \mathscr{U} is said to be a directed family if for any $Y_i,Y_j\in\mathscr{U}$, there exists $Y_k\in\mathscr{U}$ such that $Y_i\subseteq Y_k$ and $Y_j\subseteq Y_k$.

Theorem 2. $C_{\mathcal{T}}$ is compact if and only if it have the property of preserving directed joins.

Lattice-valued linguistic based automated reasoning and decision making

Representing linguistic terms

- Linguistic truth-value lattice-implication algebra
- Linguistic atom term, logically composed terms, modified terms with a set of linguistic modifiers (hedges)
- Their ordering relationship
- Structure and characteristic

Lattice-valued linguistic resolution-based automated reasoning

- Structure and transformation, resolution principle, structure of resolution field, algorithm and programming
- Application in decision making

A sketch map on research views, activities and directions

