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Pattern recognition task

Sources of misclassification

• Model 

• appropriate assumptions

• imperfect representation

• Limited or inrepresenative 

training set

• Errors in examples 

• features values 

• labels

target function

classifier 3

classifier 2
classifier 1



Pattern recognition task
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Pattern recognition task
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Classifier fusion
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Classifier fusion

• Fuser could be realized as:

– a classifier based on classifiers’ outputs

– a linear or a nonlinear combination of 

classifiers’ outputs

it was considered e.g. by Raudys 

(Trainable fusion rules, Neural 

Networks 19, 2006)

our work deals with weights which 

could be assigned arbitraly or 

during training



Classifier fusion
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Classifier fusion

Fuser based on values of classifiers’ 

discrimination function

– Weights dependent on classifier

– Weights dependent on classifier and feature 

vector 

– Weights dependent on classifier and class 

number

– Weights dependent on classifier, class 

number, and feature vector 



Outline

• Pattern recognition

• Classifiers fusion

• Fuser training

• Experiments

• Conclusions



Fuser training
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An ensemble learning task leads to the problem of how to 

establish the following vector

where

The weights should be established in such a way as to 

maximize the accuracy probability of the fuser:
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Fuzer training

Evolutionary approach
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Fuzer training

• Neural nets
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Oracle 

• an abstract fusion model, 

• if at last one of the classifiers from given 

pool recognizes object correctly, then 

Oracle points at correct class too,

• usually used in comparative experiments 

to show limits of classifier committee 

quality.
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Experiments – set up

• 5 elementary classifiers consisting of slightly 
undertrained neural networks,

• 4 type of fuzers: 
– majority voting, 

– Oracle,

– fuser based on discriminants and trained by evolutionary 
algorithm,

– fuser based on discriminants and trained by neural algorithm.

• 6 datasets from UCI ML Rep. (Glass ident., Letter rec., 
Haberman, Balance scale, Ionosphere, Image seg.)

• Matlab environment using the PRtools toolbox and 
optimizing toolbox,

• Classifiers’ errors were estimated using the ten fold 
cross validation method.



Experiments - results
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Experiments - evaluation

• The results prove that genetic algorithms

and neural networks are very good tools 

for solving optimization problems. 

• Fuser which weights depend on the 

classifier and the class number could 

achieve results that are better than the 

Oracle classifier. 
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Conclusions

• Some methods of classifier fusion were 

discussed.

• The possibility (not certain method) of 

constructing fuser better than Oracle was shown.

• Unfortunately, it is not possible to determine 

weight values in the analytical way therefore 

using heuristic methods of optimization (like 

evolutionary algorithms or neural nets) seem to 

be a promising research direction.
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