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Abstract. This work reports the results obtained with the application of High Order Boltzmann Machines without
hidden units to construct classifiers for some problems that represent different learning paradigms. The Boltzmann
Machine weight updating algorithm remains the same even when some of the units can take values in a discrete set
or in a continuous interval. The absence of hidden units and the restriction to classification problems allows for
the estimation of the connection statistics, without the computational cost involved in the application of simulated
annealing. In this setting, the learning process can be sped up several orders of magnitude with no appreciable loss
of quality of the results obtained.
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0. Introduction

The Boltzmann Machine is a classical neural network
architecture [1, 2] that has been relegated from prac-
tical application due to its computational cost and the
difficulty to tune the several parameters involved in the
estimation of the connection statistics used for weight
updating in the learning process. Weight updating in
the Boltzmann Machine is based on the difference of
the activation probabilities of the connections in the so-
called clamped and free phases. Simulated annealing
is required to compute these statistics in the general
case. Our aim in this paper is to show that Boltzmann
Machines can be of some practical interest and that
their training can be much easier than was previously
thought whenever two restrictions are considered. The
first is the avoidance of hidden units, using high or-
der connections to model the high order correlations of
the input. High order connections have been referred
sometimes as product or sigma-pi units [3–5]. The
second is the restriction of the domain of application
to classification problems. This domain of problems
is very broad including most of the application areas
in which intelligent systems are applied. When these
restrictions apply it is no needed to perform simulated

annealing to estimate the connection statistics. In the
clamped phase there are no degrees of freedom. In the
free phase, the asymptotic state of the output units can
be easily computed as the search for the output unit
with highest gain. Moreover, due to the convexity of
the learning error (Kullback-Leibler pseudo-distance)
for networks without hidden units [1, 6–8], the initial
weights can be arbitrarily set (in our works we always
set the initial weights to zero), and there is no need to
realise several instances of the learning to estimate the
average learning performance or to make a broad search
for the best initial conditions. Despite these simplifica-
tions, the quality of the results is comparable to other
neural architectures, and the number of learning cy-
cles needed is much less than in the classical approach.
There have been some attempts to reduce the compu-
tational burden of learning in Boltzmann Machines.
The most prominent is the application of mean field
approximations [9–13] to the estimation of the station-
ary distribution of the network. Other authors [14] have
studied a particular class of topologies, tree-like topolo-
gies, suitable to the exact computation of the activation
statistics using a decimation technique. However, the
class of topologies appropriate for classification can
not be easily cast into the class of tree-like topologies.
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High order connections are the mean to obtain full
modelling power while preserving the computational
simplifications implied by the absence of hidden units.
Previous to our own work, we only know of sparse
references [15, 16, p. 211] to High Order Boltzmann
Machines. These references only point to their defini-
tion, without further exploration of their capabilities.
In the recent literature there is a growing interest in
the exploitation of high order connections. Some ref-
erences to neural network topologies with high order
connections are of the kind of [17, 18], where connec-
tions of order 3 are defined to obtain classifiers of two
dimensional patterns that are invariant to translation,
scaling and rotation. The weights of these connections
are computed “a priori” based on the geometrical char-
acteristics of the problem. In our work, the weights of
the high order connections are computed through the
same learning algorithm that those of conventional (or-
der 2) connections. The work of Pinkas [4] deserves
special attention. It addresses the modelling of the res-
olution of propositional expressions by the relaxation
of recurrent networks. He gives algorithms to obtain
the conventional topology with hidden units equivalent
to a high order topology, and vice versa. Taylor and
Coombes [19] present an extension of Oja’s rule that
is capable of adapting the weights of higher order neu-
rons to pick up higher order correlations from a given
data set. They show this generalised Oja neuron as an
optimal hypersurface fitting analyser with applications
to Pattern Classification. Mendel and Wang [20] show
the use of high-order statistics (cumulants) in the iden-
tification of Moving Average Systems. Although they
don’t use high-order connections, the cumulants are
used as complementary characterisations of the system
identified via neural networks. Other works (i.e., [21])
propose mixed topologies that include hidden units and
high order connections trained with Backpropagation.
This kind of topologies are of no interest for us, because
they imply the loss of the computational advantages
gained by the absence of hidden units. Karlholm [22]
presents a study of recurrent associative memories with
exclusively short-range connections, using high order
couplings (up to order 3) to increase the capacity. The
main aim of his study is to asses the effect of short
coupling ranges in the capacity and pattern completion
ability of the networks, and little attention is paid to the
effect of using high-order connections.

To our knowledge, the work on learning with
Boltzmann Machines has been restricted up to now
to binary units. In this paper we have considered also

machines that include non binary units. We have dis-
tinguished between generalised discrete units, that can
take states in arbitrary integer intervals, and continuous
units that can take states in arbitrary real intervals. In
both cases, the learning algorithm is a straightforward
generalisation of the binary case. It suffices to consider
the mean activation level of the connections, instead of
the activation probabilities. Up to now, the only neu-
ral network architectures that allowed unnormalised
state spaces were the competitive architectures [23–25]
based upon the nearest Euclidean neighbour. The use of
generalised discrete units and continuous units allows
for big reductions on the number of units used to cod-
ify the learning problem, and, therefore, of the network
complexity. Our approach to the generalisation of the
Boltzmann Machine learning paradigm is not directly
related to previous attempts to introduce recurrent net-
works with discrete or continuous units. One of the first
attempts is found in [26]. There, Gutzmann describes
a continuous state Boltzmann Machine to solve combi-
natorial optimisation problems. The states of the units
are restricted to the [0, 1] interval. Also, some authors
[9–12, 27–30] use the interpretation of the probability
of the unit being in state 1 as a kind of continuous state.
Although, this interpretation can be of use in some
cases, it still imposes a normalisation to the [0, 1] inter-
val. Networks with multivalued units generalising the
dynamics of the Hopfield network, based on the Potts
theory, have been also proposed in the setting of com-
binatorial optimisation [31, 32]. In a similar vein, Lin
and Lee [33] propose a generalisation of Boltzmann
dynamics for the case of multivalued spin like units
whose states are orientations in the plane. They use
this generalisation of the Boltzmann dynamics to solve
the navigation problem based on the definition of an
artificial magnetic field. The navigation problem is
posed as an optimisation problem. Obstacle avoidance
and the search for the goal position are performed as a
stochastic relaxation based on the repulsive/attractive
labelling of the cells that tessellate the space through
which the robot navigates. Recently, Parra and Deco
[34] deal with the training of the so-called rotor neu-
rons. The states of rotor neurons are continuous mul-
tidimensional vectors of norm 1. The authors propose
an expression of the Boltzmann Machine learning al-
gorithm for this continuous multidimensional case. A
Directional-Unit Boltzmann Machine (DUBM) with
complex valued units is proposed in [35]. The weights
of the DUBM are also complex values. The authors
define a quadratic energy function on the network
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configurations and a generalisation of the Boltzmann
learning algorithm for the DUBM. Kohring [36] dis-
cusses the most prominent attempts to define autoasso-
ciative networks, Hopfield-like, with multivalued units.
His conclusions are negative in the sense that multival-
ued units (Q-state neurons) show a big decrease in the
capacity of the network and in the quality of the recalled
states. In fact, Kohring proposes to break down any
Q-state problem into log2Q non-interacting networks,
processing independently the non-interacting bits, and
gathering afterwards the results of the networks to give
the recalled pattern.

Section 1 gives a quick revision of Boltzmann Ma-
chines, and introduces our notation for High Order
Boltzmann Machines, and the learning algorithms ap-
plied in this paper. Section 2 introduces the test prob-
lems, the definitions of the machines applied to each
problem, and the results obtained trying several high
order topologies. Section 3 gives some conclusions and
directions for further research. The software used for
the experiments reported in this paper has been written
in ADA, and can be accessed via anonymous ftp at the
node ftp.sc.ehu.es/pub/unix/hobm.

1. Boltzmann Machines and High Order
Boltzmann Machines

Boltzmann Machines are recurrent networks [1, 2] with
binary units and symmetric weights. Each configura-
tion of units in the network represents a state with a
global energy or consensus. We follow the notation
and definitions of Aarts [1], where the Boltzmann Ma-
chine is defined as a maximiser of the consensus func-
tion (versus energy minimisation in other references).
The binary units considered take{0, 1} values (versus
{−1, +1} in other references). The network operation
is a stochastic process in which states of higher consen-
sus are favoured. Once the network has equilibrated,
the probability of finding it in a particular global state
(configuration) obeys the Boltzmann distribution.

More formally the structure of a Boltzmann Machine
can be describe by a triplet(U, L , W) whereU is a set
of binary {0, 1} units. In the conventional Boltzmann
Machine the set of connections that defines the topol-
ogy of the network is a set of pairs of unitsL ⊆ U ×U
that includes the bias connections of units with them-
selves. The set of weights associated with the con-
nections is denoted byW = {wi j | (ui , u j ) ∈ L}. We
denotek ∈ {0, 1}|U | a global configuration of the ma-
chine, andk(ui ) the state of the unitui in the global

configurationk. The consensus function

C(k) =
∑

(ui ,u j ) ∈ L

wi, j k(ui )k(u j )

gives a measure of the desirability of the global con-
figurationk. We assume that Boltzmann Machines are
global maximiser of the consensus function [1]. The
dynamics of the Boltzmann Machine are given by a
stochastic mechanism, known as simulated annealing,
governing the transition between different states of the
units. Simulated annealing basically simulates a set
of one parameter Markov chains with state transition
probabilities leading to stationary distributions of the
probability of the configurations which are Boltzmann
distributions on the values of its corresponding con-
sensus. The process is defined in such a way that as
the parameter descends towards zero, the associated
stationary distribution assigns an increasingly higher
probability to the configurations with the highest val-
ues of the consensus function. In the theoretical limit
the probability for the process to be on a global state
of maximum consensus is one. This is the appeal of
Boltzmann Machines for the statement and solution
of combinatorial optimisation problems. In practice,
if the process is in statek the simulation proceeds
through the generation of a neighbour configurationk′

and its acceptance with probability

Akk ′(c) =
(

1 + exp
C(k) − C(k′)

c

)−1

leading to the stationary Boltzmann distribution of the
global configurations:

qk(c) ∝ 1

Z
exp

−C(k)

c
with Z =

∑
k

exp
−C(k)

c

wherec is a parameter, called temperature, andqk(c)
denotes the stationary probability for the configuration
k at temperaturec. The partition functionZ is needed
to normalise the Boltzmann distribution. After each
equilibrium, the parameterc is decreased by a small
step.

For the purpose of learning the set of units is divided
into three disjoint subsets: input, output and hidden
units. The learning process consists of a series of cy-
cles each of them with two different phases. In the first
phase the examples to be learnt are clamped into the
input and output units and the machine is driven to
equilibrium reaching a stationary distribution proba-
bility of states denoted byq+(c). In the second phase,
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free situation, all units are free to adjust their state.
Now the stationary distribution is denoted byq−(c). It
is a common practice to clamp the input units in the
free phase, leaving the hidden and output units free to
adjust their state. This practice is specially meaning-
ful in classification problems, so we will adhere to it.
The objective of the learning algorithm is to adjust the
connection weights so that the free stationary distribu-
tion is as close as possible to the clamped distribution.
The difference between both probability distributions
is measured by the Kullback-Leibler pseudo-distance

D(q+(c)/q−(c)) =
∑

k

q+
k (c) ln

q+
k (c)

q−
k (c)

whereq+
k (c) andq−

k (c) are the desired (clamped) and
actual (free) probabilities of the visible units being in
statek. Consequently the objective of the learning al-
gorithm can be expressed as finding the weights that
minimiseD. The probabilistic interpretation of learn-
ing in Boltzmann Machines is the search for the log-
linear model that best fits the distribution of the data
[37–40]. The asymptotic Boltzmann distribution to
which the Boltzmann Machine converges can be taken
as a very general log-linear model in which the inter-
actions are defined by the set of weighted connections.
Learning in Boltzmann Machines can be easily proven
[7, 41] to be a Maximum Likelihood procedure for the
estimation of the parameters of the log-linear model
embodied by the Boltzmann Machine. In the conven-
tional Boltzmann Machine hidden units are introduced
to capture high order interactions. In spite of the obvi-
ous appeal of this probabilistic interpretation very few
attempts [7, 40–42] have been made in the way to em-
bed connectionist probabilistic models (i.e., Hopfield
networks and Boltzmann Machines) into the classical
statistical modelling paradigms. The minimisation of
the Kullback Leibler pseudo distance is performed ap-
plying gradient descent on the weights. This gradient
is of the form

∂ D(q+(c)/q−(c))

∂ωi, j
= −1

c
(p+

i, j − p−
i, j )

wherep+
i, j andp−

i, j are the probabilities of the connec-
tion(ui , u j ) being activated under the clamped and free
stationary distributions respectively:

p+
i, j =

∑
k

q+
k (c)k(ui )k(u j )

p−
i, j =

∑
k

q−
k (c)k(ui )k(u j )

Formal derivation and convergence results can be found
in [1]. It has been shown in [1, 28] that the Kullback-
Leibler distance is convex when there are no hidden
units. That means that there are no local minima
where the learning could get stuck giving a less than
optimal approximation. The trouble is that conven-
tional Boltzmann Machines without hidden units can
not model high order interactions. As said before, hid-
den units are introduced to model high order interac-
tions. However, when hidden units are considered, the
Kullback Leibler distance is no longer convex, and the
learning process can fall in local minima that give sub-
optimal models. In any case, the usual approach to
minimiseD is to change the weights according to:

1ωi, j = α( p̂+
i, j − p̂−

i, j )

where p̂+
i, j and p̂−

i, j are estimations ofp+
i, j and p−

i, j re-
spectively. In the general case, in which hidden units
are used and the distribution to be learnt does not have
any feature that allows for simplifications, the estima-
tion of the activation probabilities of the connections is
a very delicate step. This estimation involves a number
of numerical settings such as the appropriate temper-
ature, the appropriate annealing schedule to reach the
stationary distribution, and the length of the simula-
tion of the stochastic behaviour for the gathering of
statistics over this stationary distribution. Mean Field
Annealing [9–11] has been proposed as a determinis-
tic approximation to the estimation of the connection
statistics. In the Mean Field approximation the con-
nection statistics are estimated asp̂+

i, j ≈ p̂+
i p̂+

j and
p̂−

i, j ≈ p̂−
i p̂−

j , where p̂+
i and p̂−

i are estimations of
the probabilities of the units being in state 1 under
the clamped and free distribution respectively. These
probabilities are computed by solving a set of non-
linear equations that arise from the application of the
Mean Field Theory (from statistical physics) to the es-
timation of the stationary distribution of the network.
Another deterministic approach to the estimation of the
connection statistics based on a decimation technique
(borrowed again from statistical physics) has been ap-
plied to Boltzmann Machines with tree-like topologies
[14]. Boltzmann Machines for multi-class classifica-
tion tasks, whose output is given by a set of mutually
inhibitory binary units, do not fall in the class of tree-
like topologies.

Taking into account that high order correlations
can not be modelled by conventional Boltzmann Ma-
chines without hidden units, we can discuss at this
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point the computational simplifications implied by the
application of topologies without hidden units to clas-
sification problems. Much of the numerical intricacies
can be overlooked, and the estimation of the connection
statistics becomes very simple and robust. First, we
will discuss the computational implications of working
with topologies without hidden units. In the clamped
phase there are no degrees of freedom. The computa-
tion of p̂+

i, j can be done clamping the patterns in order
and accumulating statistics. Moreover, this computa-
tion can be made once for all at the beginning of the
learning process. The absence of hidden units also
means that in the free phase the output units are the
only degrees of freedom. A last key point related to
the absence of hidden units is the convexity of the
Kullback-Leibler pseudo-distance. This convexity al-
lows for arbitrary setting of the initial weights and to
assume that we do not need to perform several instances
of the learning process to estimate the average learning
response of the machine. Second, we will deal with
the computational consequences of restricting the do-
main of application to classification problems. We as-
sume the common convention of codifying the classes
with orthogonal binary vectors. Classification of an
input pattern is given by an output vector of zeroes,
with only one unit set to one: the unit that repre-
sents the most likely class for the pattern. The topol-
ogy and dynamics of the Boltzmann Machine must be
able to give this kind of answer. That implies that
the output layer will be a kind of “winner-take-all”
structure. Once an input pattern is fixed, the asymp-
totic behaviour of the Boltzmann Machine driven by
the simulated annealing algorithm will be to set to
one the output unit with the maximum gain. There-
fore, the computation of̂p−

i, j can consist of clamping
each input pattern, searching for the maximum gain
output unit (the most likely class) and accumulating
the statistics of the activation of the connections. Ob-
serve that the mutually inhibitory connections of the
output layer are needed to ensure that the configura-
tion with the maximum gain output unit set to one
corresponds to the global maximum of the consen-
sus function. A further simplification on the effective
number of connections that the Boltzmann Machine
needs to model a classification problem is due to the
use of the direct search for the maximum gain out-
put unit. We will not need to explicitly build up the
“winner-take-all” structure of the connections of the
output layer.

1.1. High Order Boltzmann Machines
with Binary Units

A High Order Boltzmann Machine with binary units is
also described by a triplet(U, L , W), whereU is the
set of binary units,L the set of connections between
the units (the network topology) andW are weights
associated with the connections. The main departure
from the conventional Boltzmann Machine is that a
connectionλ ∈ L can connect more than two units.
Connections are no longer pairs of units but arbitrary
subsets ofU :

λ = {
ui1, ui2, . . . , ui |λ|

} ⊆ U

That isL ⊆ P(U ). The set of connections is a subset
of the power set ofU . The order of a connection is the
number of units connected by it:order(λ) = |λ|. We
say that the order of the High Order Boltzmann Ma-
chine is that of the connection with maximum order:
order(U, L , W) = max{|λ| | λ ∈ L}. The topology of
a conventional Boltzmann Machine can be visualised
as a graph, whereas the topology of the High Order
Boltzmann Machine is visualised as an hypergraph
[43]. The weightsW can be formulated as a mapping
that associates each connection with a real number
W : L → IR. The consensus function of the High
Order Boltzmann Machine is a straightforward gener-
alisation of the consensus function of the conventional
Boltzmann Machine:

C(k) =
∑
λ ∈ L

ωλ

∏
u ∈ λ

k(u)

wherek(u) is the state of unitu in the global con-
figurationk ∈ {0, 1}|U |. We continue to assume that
the High Order Boltzmann Machine mechanics is the
search for (one of) the global maximum (maxima)
[1]. The asymptotic distribution of the configurations
qk(c) follows the Boltzmann distribution based on the
consensus function. Learning is the minimisation of
the Kullback-Leibler pseudo distance between the dis-
tribution of the data and the one of the High Order
Boltzmann Machine. The gradient takes the form:

∂ D(q+(c)/q−(c))

∂ωλ

= −1

c
(p+

λ − p−
λ )

wherep+
λ andp−

λ are the probabilities of the connection
λ being activated under the clamped and free stationary
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distributions respectively:

p+
λ =

∑
k

q+
k (c)

∏
u ∈ λ

k(u)

p−
λ =

∑
k

q−
k (c)

∏
u ∈ λ

k(u)

Formal derivation and convergence results for the High
Order Boltzmann Machine with binary units (and with-
out hidden units) can be found in [6–8]. An alternative
and more general geometrical proof of the convexity of
the learning error for high order neural networks with-
out hidden units can be found in [27]. Again the proba-
bilistic interpretation of the learning is the search for the
log-linear model that best fits the data. Now high order
connections model the high order interactions. From
the point of view of the probabilistic model, the ad-
vantage of high order connections over hidden units is
twofold. First, high order connections can be clearly in-
terpreted as modelling high order interactions, whereas
in the case of hidden units this interpretation is more
obscure. Second, hidden units can introduce spurious
interactions difficult to identify, whereas in the case of
high order connections all the interactions introduced
in the model are easily identifiable. The use of high
order connections allows, for example, the topologi-
cal design [7] of High Order Boltzmann Machines for
a given problem based in the knowledge of graphical
models formulated as Bayesian Networks [44]. This
probabilistic interpretation of High Order Boltzmann
Machines opens an interesting line of research: that of
applying results from the theory of log-linear models to
the development of topological design algorithms for
High Order Boltzmann Machines.

In this paper we have used two weight updating rules.
The first is the straightforward application of the gra-
dient descent:

1ωλ = α( p̂+
λ − p̂−

λ )

where p̂+
λ and p̂−

λ are estimations ofp+
λ and p−

λ re-
spectively. The learning rate parameter is trivially set
to α = 1. The second involves a momentum term:

1tωλ = α( p̂+
λ − p̂−

λ ) + µ1t−1ωλ

With the learning rate as above, and the momentum
coefficient set toµ = 0.9.

The estimation of activation probabilities is per-
formed without recourse to the simulated annealing.

In the clamped phase, each of the training patterns is
set at the input/output units. The activation state of each
connection is recorded. (In the binary{0, 1} case a con-
nection is active if and only if all the extreme units are
set to 1). The activation probability of the connections
in the clamped phase is computed as the mean activa-
tion state of the connections. These clamped probabil-
ities are computed only once at the beginning of the
learning process. The free phase is a series of learning
cycles. In each cycle, the input components of each
pattern are set on the input units. The response of the
network is computed searching for the maximum gain
output unit, which is set to 1, while the other output
units are set to 0. (Remember we deal only with or-
thogonal binary output vectors). The activation state of
each connection is recorded, and the mean activation
state after the presentation of all the training patterns
is taken as the activation probability in the free phase.
This weight updating schedule is often called batch or
off-line adaptation. The weights are updated according
to the rule employed and then a new learning cycle is
started. The initial weights are always set to zero.

1.2. High Order Boltzmann Machines
with Generalised Discrete Units

The introduction of generalised discrete units involves
an extension of the notation employed in the binary
case, adding the specification of the state spaces of
each unit. So, the High Order Boltzmann Machine with
generalised discrete units is described by a quadruple
(U, R, L , W) whereU, L , W preserve their meaning,
andR = {Ri ⊂ Z | i = 1 . . . |U |} whereRi is the state
space of unitui . The configuration space is now the
product of the unit state spaces, so thatk ∈ ×i Ri . The
product interpretation of the connections is maintained,
so the consensus function preserves its form

C(k) =
∑
λ ∈ L

ωλ

∏
u ∈ λ

k(u),

taking into account thatk(ui ) ∈ Ri . The basic behaviour
of the High Order Boltzmann Machine remains the
search for the global consensus maxima. This gen-
eralisation of the consensus function to arbitrary dis-
crete state units leads to an immediate generalisation
of the learning algorithm. Also, it is much simpler
than other attempts to formulate recurrent networks
with multistate neurones. The intended application for
models such as the Potts model [31, 32], the circular
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representation [36], the non-interacting bit [36] or the
XY spin glass model [33] is either the search for so-
lutions for combinatorial optimisation problems or the
design of associative memory systems. In both cases,
particular states must be distinguished and, therefore
the energy functions proposed involve non-linearities
and/or discontinuities to ensure the desired mapping
of the energy extrema with the states that represent
optimal solutions or stored memories. Our monotone
consensus function allows to map maxima with ex-
treme values of the variables. If individual states of a
variable must be identified, this variable must be rep-
resented in terms of binary units. Our focus is in clas-
sification problems. In this case, the most reasonable
assumption is that neighbouring input patterns will be-
long to the same class. Therefore, input features can
be codified with general discrete units. However, in a
multiclass classification problem the use of a multival-
ued output unit to represent the ouput of the network
would lead to identify only the classes with the extreme
labels. The conventional representation of the output of
the network as a set of mutually exclusive binary units
ensures that it can be defined a consensus function that
performs multiclass discrimination.

The learning is defined as the minimisation of the
Kullback-Leibler pseudo-distance, whose gradient has
now the following form:

∂ D(q+(c)/q−(c))

∂ωλ

= −1

c
(a+

λ − a−
λ )

wherea+
λ anda−

λ are the mean activation level of con-
nectionλ under the clamped and free stationary distri-
butions respectively:

a+
λ =

∑
k

q+
k (c)

∏
u ∈ λ

k(u)

a−
λ =

∑
k

q−
k (c)

∏
u ∈ λ

k(u)

A formal derivation of the expression of the gradient
and convergence conditions can be found in [45]. The
convexity of the Kullback-Leibler for the High Order
Boltzmann Machine with discrete state units without
hidden units can be proved following the same rea-
soning employed in [8] for the binary state units. The
learning rules used in the experiments reported in this
paper are similar to the ones used in the binary case.

1ωλ = α(â+
λ − â−

λ )

1tωλ = α(â+
λ − â−

λ ) + µ1t−1ωλ

whereâ+
λ andâ−

λ are estimations ofa+
λ anda−

λ respec-
tively. As in the binary case, the values of the learning
parameters areα = 1 andµ = 0.9. The estimation of
the mean activation levels is performed in a way similar
to the described above for the binary case. The adap-
tation of the weights is also performed in batch mode.
The initial weights were always set to zero.

1.3. High Order Boltzmann Machines
with Continuous Units

The introduction of continuous units does not change
the notation and definitions, but the state spaces of the
units are nowRi ⊂ IR andk ∈ IR|U |. The consensus
function, that defines the underlying log-linear proba-
bilistic model, remains the same.

C(k) =
∑
λ ∈ L

ωλ

∏
u ∈ λ

k(u)

This definition of the state spaces of the units is dif-
ferent from other attempts to define Boltzmann Ma-
chines with continuous units. We neither impose any
normalisation restriction on the states, nor any proba-
bilistic or geometric interpretation of the states. This is
in contrast to the attempts to define as the continuous
unit state the estimations of the firing probabilities (the
probability of the unit being in state 1) [9, 10, 26, 27],
and with the so-called rotor neurons [34]. Also the The
Kullbak-Leibler pseudo distance that drives the learn-
ing process is of the form

D(q+(c)/q−(c)) =
∫

k
q+

k (c) ln
q+

k (c)

q−
k (c)

.

Although much more difficult to compute, the gradient
on the weights has the same form as in the case of
generalised discrete units. Now the mean activation
levels of the connections have the form:

a+
λ =

∫
k

q+
k (c)

∏
u ∈ λ

k(u)

a−
λ =

∫
k

q−
k (c)

∏
u ∈ λ

k(u)

The study of the convexity of the Kullback-Leibler
measure, and of the convergence conditions of the
learning algorithm, have not been rigorously done. The
experimental work reported in this paper serves as an
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empirical confirmation of the validity of this generali-
sation to continuous units. The estimation of the mean
connection activation benefits from our restriction to
classification problems (the output units remain{0, 1}
units) and the absence of hidden units. We do not need
to tackle with the very difficult problem of realising
a simulated annealing in a continuous space, because
the input units are always clamped. The estimation of
mean activity levels and weight adaptation can be done
following the same procedure used in the binary and
generalised discrete case. The learning rules are also
the same.

2. Experimental Results

In this section we give a detailed account of the ap-
plication of High Order Boltzmann Machines to the
problems introduced in Section 2.1. We have applied
both binary and generalised discrete unit machines to
the Monk’s problems. Machines with continuous input
units have been applied to the Sonar and Vowel recogni-
tion problems. In each case we have tested several high
order topologies (without hidden units) to explore the
behaviour of the learning algorithm. From a method-
ological point of view, we have follow the standard
methodology of using the training and test data sets as
defined in the databases. Training has been performed
until either oscillation or saturation in the training were
detected. Oscillation in the training error means that
the topology lacks parameters to fit the problem. Sat-
uration means that the tested topology has enough (or
too many) parameters to fit the data. The tables of re-
sults show the percentage of correct classification on
both the train and test sets. The results on the train set
indicate the kind of stopping of the learning process.
The table entries with a percentage of correct classi-
fication on the training set well bellow 100% indicate
that the tested topology has not enough parameters to
exactly fit the data. In such cases, learning was stopped
when oscillations were detected. It must be noted, how-
ever, that this does not imply bad generalisation. On the
contrary in some cases, the best results on the test set
(generalisation) were obtained with topologies that did
not saturate on the training set.

2.1. The Test Problems

The learning problems, that we have used in this pa-
per to test learning power of High Order Boltzmann

Machines, have the following common characteristics:

1. The data are in the public domain, and can be ac-
cessed by anonymous FTP.

2. Other techniques have been applied to the data, and
the results are public. These results play the role of
objective references to assert the quality of our own
results.

3. The experimental method is clearly defined by the
existence of separate train and test data sets.

4. They are classification problems. The output of the
network is a binary vector. The class assignment is
a vector of zeros with only one 1 component. This
characteristic reduces the complexity of the search
for the output to a given input.

2.1.1. The Monk’s Problems. The Monk’s problems
were defined in [46] over an artificial robot domain,
where each robot is described by six discrete variables:

x1 : headshape∈ {round, square, octagon}
x2 : body shape∈ {round, square, octagon}
x3 : is smiling∈ {yes, no}
x4 : holding∈ {sword, balloon, flag}
x5 : jacket color∈ {red, yellow, green, blue}
x6 : hastie∈ {yes, no}

The problem statements, previous results and data
were taken from “archive.cis.ohio-state.edu”, under
“pub/neuroprose” via anonymous ftp. Each learning
problem is defined by a logical expression involving
those variables, that defines the class of robots that
must be discovered by the learning algorithms. (Monk’s
problems are two class problems). Training and test
data are produced following the logical definitions.
The test data for each problem are the class assignment
to the whole space (432 feature vectors). The train data
are random subsets of the test data. The methodology
used in [46] consists of the elaboration of the model
using the train data and testing it against the test data.
The result reported for each learning algorithm is the
percentage of correct answers to the test set. The logi-
cal definition of each problem follows:

M1 is defined by the relation:

(head shape= body shape) or
( jacketcolor = red)

M2 is defined by the relation:

Exactly two of the six attributes have
their first value
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M3 is defined by the relation:

( jacketcolor is green and holding a sword) or
( jacketcolor is not blue and
body shape is not octagon).

M1 is a simple Disjunctive Normal Form expression,
and it is supposed to be easily learned by any symbolic
algorithm. M2 is close to a parity problem, difficult to
state either as a Disjunctive Normal Form or Conjuctive
Normal Form. Finally, the training set for M3 contains
a 5% of erroneous (noisy) patterns, and is intended to
evaluate the robustness in the presence of noise.

In [47] we reported some early results on the Monk’s
problems, still using simulated annealing to estimate
the connection statistics. These results vary from the
ones reported here due to the absence of the simu-
lated annealing (the results in this paper improve in
many cases those in [47]). In the case of the Monk’s
problems we have used the knowledge of the logical
statement of the problems and the logical interpretation
of high order connections as generalised AND opera-
tors [48, 49] to obtain “a priori” topologies that serve
to verify the applicability of Boltzmann Machines to
these problems. The “a priori” topologies also show
the ideal performance that the learning algorithms may
achieve if they are able to discover these “a priori”
topologies.

2.1.2. Classification of Sonar Targets.We have
used the data used by Gorman and Sejnowski [50]
in their study of sonar signal recognition using net-
works trained with backpropagation. The data has
been obtained from the public database at the CMU
(node ftp.cs.cmu.edu, directory/afs/cs/project/connect/
bench). The goal of the experiment is the discrimina-
tion between the sonar signals reflected by rock and
metal cylinders. Both the train and test data consist of
104 patterns. The partition between train and test data
has been done taking care that the same distribution of
incidence angles appears in both sets. Each pattern has
60 input features and a binary output. Input features
are real numbers falling in the [0, 1] interval.

x = (x1, . . . , x60, x0) ∈ [0, 1]60 × {metal, rock}

In [50] a set of experiments was performed with a vary-
ing number of hidden units, to explore the power of
the learning algorithm depending on the topology. Re-
sults were averaged over 10 replications of the learning
process with varying random initial weights. The best

result reported was an average 90.4 per cent of success
on the test data, with a standard deviation of 1.8, for
a topology with 12 hidden units. Besides the topolog-
ical exploration, in this paper the problem serves to
introduce continuous units with [0, 1] state space. Ob-
viously, there is no known “a priori” topology for this
problem.

2.1.3. Vowel Recognition. The data for this problem
has also been obtained from the CMU public database.
They have been used, at least, to realise two Ph.D.
Thesis [51–53]. The Thesis of Robinson included the
application of several neural architectures to the prob-
lem. The best results reported by Robinson were ob-
tained with a Euclidean nearest neighbour classifier. It
attains a 56% success on the test data. Other source of
results for this database is [54] where a best result of
58% success on the test was reported. Each pattern is
composed of 10 input features. Input features are real
numbers. The class (vowel) assignment is given by a
discrete variable.

x = (x1, . . . , x10, x0) ∈ IR10 × Vowels

Vowels = {hid, hId, hEd, dAd, hYd, had, hOd, hod,

hUd, hed}
The details of the data gathering and pre-processing

can be found in [18, 19]. The training data contains 528
patterns, and the test data contains 462 patterns. From
our point of view, there are three specific chasracter-
istics that make this problem worthy of study. First,
it is a multicategorical classification problem, whereas
the Monk’s and Sonar problems involve only two cat-
egories. Second, the input features are not normalised
in the [0, 1] interval. Roughly, they take values in the
[−5, 5] interval. Finally, the convexity of the Kullback-
Leibler distance in this case is doubtful. We wish to
test the robustness of the approach taken (especially
the initialisation of the weights to zero) in this clearly
unfavourable case.

2.2. Formulation of the Machines
and Experimental Results

In what follows we give a detailed account of the appli-
cation of High Order Boltzamnn Machines to the test
problems. For each problem we start by defining the
set of units that the networks will employ to model the
problem. We define the mapping of the data patterns
into the states of the units. We give the definition of the
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topologies that are tested experimentally. Finally the
tables with the experimental results are presented and
discussed.

2.2.1. High Order Boltzmann Machines with Binary
Units for the Monk’s Problems. The set of binary
units, used to codify the Monk’s problems, is defined
as follows:

U16 = U1 ∪ U2 ∪ U3 ∪ {u0}
U1 = {ui j | i ∈ {1, 2, 4}, j ∈ {1 . . . 3}}
U2 = {ui j | i ∈ {3, 6}, j = 1}
U3 = {ui j | i = 5, j ∈ {1 . . . 4}

There are 16 units. Non binary components of the prob-
lem patterns are modelled by a set of binary units. Bi-
nary components are modelled by a single unit. The
unit uo models the classification output. The mapping
of the x patterns into the states of the machine is as
follows:

k(ui j ) =
{

1 xi takes itsj th value
0 otherwise

A priori topologies are deduced from the logical defini-
tion of the problems and the logical interpretation of the
connections as extended AND operators. (The reader
must note that this logical interpretation is only valid
if the states of the binary units are{0, 1}, it is not valid
for binary units with states{−1, 1}). Figure 1 shows
a graphical representation of the a priori topology for
the M1 problem. It consists of three connections of
order 3 (with positive weights), one of order 2 (with

Figure 1. A priori topology of the binary Boltzmann Machine for
the M1 problem.

positive weight) and a bias (with negative weight) for
the output unit. The formal definition of the a priori
topologies for the three problems, together with the
a priori weights that guarantee their solution, can be
found in [45]. The existence of a priori topologies tells
us two things. First, the High Order Boltzmann Ma-
chine is able to model the problem. Second, they give
some hints about the complexity of the network topolo-
gies that can be used for each problem. The order of
the a priori topology tells us that topologies of lesser
order probably will be unable to fit the data. The orders
of the a priori topologies are 3 for M1, 4 for M2 and 3
for M3 respectively.

The experimental work done on the Monk’s prob-
lems with binary unit High Order Boltzmann Machines
is an exploration of the sensitivity of the learning al-
gorithm to various topologies. The first experiment
was the training of the a priori topologies. Subsequent
experiments were the training of rather general topolo-
gies of increasing order. We calldensely connected
topology of orderr to a topology in which the set of
connections contains all the significative connections
up to orderr . Significative connections are those that
include the output unit, and that do not connect units
representing alternative values of the same pattern com-
ponent. More formally, the set of connections of the
densely connected topology of orderr is given by:

Lr = {λ ⊂ U16 | (|λ| ≤ r ) ∧ (u0 ∈ λ)

∧ (ui j ∈ λ ⇒ uik 6∈ λ)}

Tables 1 and 2 summarise the results of the applica-
tion of the binary Boltzmann Machines to the Monk’s
problems using the simple gradient rule (Table 1) and
the momentum rule (Table 2). In each case, we give
the success on the train and test data, and the num-
ber of learning cycles performed. In successive rows
we give the best result in the reference report [46],
the results obtained with the a priori topology and the
results with densely connected topologies of increas-
ing order. Peering through the tables reveals that the
number of learning cycles needed is small: learning
is fast. In general, the training set was always fitted.
That means that all the tried topologies had enough
parameters to model the problem. The topologies of
order greater than that of the “a priori” topology show
clear symptoms of overfitting. The M2 problem ap-
pears as the most difficult, with really poor results on
the test data. The cause of this poor behaviour seems
to be that all pairs of patterns with Hamilton distance 1
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Table 1. Results with binary Boltzmann Machines for the a priori topologies and densely connected topologies.
Weight updating by the simple gradient rule.

M1 M2 M3

% Train % Test Cycles % Train % Test Cycles % Train % Test Cycles

Best result [46] 100 100 100 —

A priori topology 100 100 2 100 97 186 95 100 200

L3 100 90 12 100 80 128 100 91 30

L4 100 94 6 100 73 31 100 93 24

L5 100 88 5 100 71 22 100 91 23

L6 100 88 5 100 72 22 100 94 17

L7 100 88 5 100 73 23 100 94 17

Table 2. Results with binary Boltzmann Machines for the a priori topologies and densely connected topologies.
Weight updating by the momentum rule.

M1 M2 M3

% Train % Test Cycles % Train % Test Cycles % Train % Test Cycles

Best result [46] 100 100 100 —

A priori topology 100 100 3 100 87 66 54 53 200

L3 100 99 20 100 83 52 100 92 32

L4 100 92 15 100 73 33 100 90 24

L5 100 88 15 100 73 24 100 90 23

L6 100 88 15 100 73 25 100 94 17

L7 100 87 15 100 73 34 100 94 17

belong to different classes, which makes very difficult
the generalisation of the learned distribution when gen-
eral topologies are used. However, there is an a priori
topology for this problem that gives very good results.
Finally, it is difficult to ascertain the superiority of one
of the weight updating rules. For M1 the momentum
rule gives excellent results, whereas for M3 it is fairly
outperformed by the simple gradient rule. (For the a
priori topology the momentum rule gets stuck because
of the noise in the training set).

2.2.2. High Order Boltzmann Machines with Gen-
eralised Discrete Units for the Monk’s Problems.
The set of units employed to model the patterns is
U = {ui i = 1 . . . 6, u0}. The unit state spaces are:
R1 = R2 = R4 = {0 . . . 2}, R3 = R6 = R0 = {0 . . . 1}
and R5 = {0 . . . 3}. The mapping of the patterns into
the unit states is of the form

k(ui ) = j − 1 if xi = ( j th value in its range)

The reader must note the decrease of network com-
plexity produced by this new codification. Obviously,

in the case of generalised discrete units, the AND in-
terpretation of the connections does not hold any more.
A priori topologies could be designed searching for the
weights that give the consensus maxima for the desired
configurations, which could be derived from the logical
statement of the problem. We have not found any a pri-
ori topologies for M1 and M3. However, we have found
one for M2. In this topology, the positive weight con-
nections are all the connections of order 5 that include
the output unit. The negative weight connections are all
the connections of order 6 that include the output unit,
and the bias connection of the output unit. The formal
definition appears in [45]. Figure 2 shows a sketched
graphical representation of the a priori topology for the
M2 problem using discrete units. In this figure black
dots represent high order connections and small circles
represent units. For clarity, of the whole set of con-
nections of order 5 and 6 only two of each order are
shown. Appropriate weights of the connections are 2
for the order 5 connections(wi, j,k,l ,o = 2 in the figure),
−30 for the order 6 connections(wi, j,k,l ,m,o = −30 in
the figure) and−1 for the output bias.
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Figure 2. Sketch of the a priori topology and weights of a machine with generalised discrete units for the M2 problem.

As in the case of the binary unit High Order
Boltzmann Machine, the experimental work is an ex-
ploration of the sensitivity of the learning algorithm to
various topologies. For M2 the first experiment was the
training of the a priori topology. In the experiments we
have testeddensely connected topologies of orderr .
The set of connections in these topologies contains all
the connections of orderr or less that include the out-
put unit. A formal definition of the set of connections
of the densely connected topology of orderr is:

Lr = {λ ⊂ U | (|λ| ≤ r ) ∧ (u0 ∈ λ)}

Tables 3 and 4 shows the results for the Monk’s
problems with High Order Boltzmann Machines that
include generalised discrete units using the simple
gradient and momentum rules for weight updating.
Again it can be seen that the number of learning cycles

Table 3. Results with Boltzmann Machines that include generalised discrete units for the a priori topologies and
densely connected topologies. Weight updating by the simple gradient rule.

M1 M2 M3

% Train % Test Cycles % Train % Test Cycles % Train % Test Cycles

Best result [46] 100 100 100 —

A priori topology 100 97 20

L3 70 67 200 62 66 500 68 71 145

L4 87 76 163 74 69 500 93 82 133

L5 91 83 200 98 90 500 98 88 491

L6 91 84 200 100 91 80 98 85 206

L7 90 76 200 100 91 80 98 83 238

is relatively small. Focusing on the M2 problem, the
a priori topology gives very good results. Relatively
good results are obtained with a topology of order 5.
Given that the a priori topology is of order 6, we did
not be expect to obtain good results with topologies of
lesser order. In fact, the results on the training set of
topologies of order less than 6 (for the M2 data) show
that the topologies are unable to fit the data. It is impor-
tant to note that for this problem the results of the gen-
eralised discrete units improve greatly upon the binary
units. This goes against the intuition that generalised
discrete units are a more parsimonious representation
with less modelling power. The results obtained for the
M1 and M3 problems are bad, but better than expected,
given the lack of a known a priori topology. We re-
mind the reader that known a priori topologies give us
the certainty that the desired distribution can be mod-
elled by the machine. For the M1 and M3 problems it
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Table 4. Results with Boltzmann Machines that include generalised discrete units for the a priori topologies and
densely connected topologies. Weight updating by the momentum rule.

M1 M2 M3

% Train % Test Cycles % Train % Test Cycles % Train % Test Cycles

Best result [46] 100 100 100 —

A priori topology 100 98 40

L3 74 73 112 68 67 500 84 81 161

L4 90 75 134 84 77 500 97 92 233

L5 95 77 129 100 90 186 98 91 78

L6 95 77 200 100 91 49 96 84 200

L7 96 80 106 100 91 49 96 85 200

is quite doubtful that High Order Boltzmann Machines
with generalised discrete units can fit the desired distri-
bution. This inability to fit the distribution is reflected
also in the fact that the results on the training set fall
below the 100% for both M1 and M3. However, the
learning algorithm does its best searching for relatively
good approximations.

Taking together the results of this and the previous
sections make it difficult to give definitive assertions
on the relative modelling power of machines based on
binary and generalised discrete units. The appropri-
ateness of applying High Order Boltzmann Machines
with binary or discrete units seems to be a matter of
opportunity. The suggestion for applications would
be to try first the simplest model (generalised discrete
units) and, in case of failure, modelling critical input
features with binary units. The reader must note that
the learning algorithm remains the same in any case.

2.2.3. High Order Boltzmann Machines with Con-
tinuous [0, 1] Units for the Sonar Problem. The
set of units employed to model the patterns isU =
{ui i = 1 . . . 60, u0}. The unit state spaces are:
R1 = · · · = R60 = [0 . . . 1]. and R0 = {0 . . . 1}. The
mapping of the patterns into the unit states is

k(ui ) = xi · i = 1 . . . 60
k(u0) = 1 if x0 = metal

Again the experimental work is an exploration of
the sensitivity of the learning to various topologies.
Obviously, we don’t know any a priori topology for this
problem. Two kinds of general topologies were tested:
Thedensely connected topologies of orderr , in which
the set of connections contains all the connections of

orderr or less that include the output unit. Formally:

Lr = {λ ⊂ U | (|λ| ≤ r ) ∧ (u0 ∈ λ)}

and the “in line” topologies, which are densely con-
nected topologies with the additional restriction that
the input units in the connection are consecutive. For-
mally:

Lr
` = {λ ⊂ Lr | (r > 2 ⇒ (ui ∈ λ

⇒ (ui −1 ∈ λ ∨ ui +1 ∈ λ)))}

Tables 5 and 6 show the results obtained for this prob-
lem with the simple gradient and momentum rules for

Table 5. Results on the sonar signal
recognition using the simple gradient rule.

Topology Cycles % Train % Test

L2 500 73 69

L3 447 100 87

L4 202 100 87

L3
` 500 86 86

L4
` 500 89 84

L5
` 500 88 83

L6
` 500 91 82

L7
` 430 93 88

500 76 71

L8
` 500 93 86

L9
` 470 94 89

500 67 64

L10
` 500 93 87

L11
` 470 93 88

500 77 73
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Table 6. Results on the sonar signal
recognition using the rule with momentum.

Topology Cycles % Train % Test

L2 500 94 76

L3 77 95 89

L4 48 99 89

L3
` 205 97 83

L4
` 97 100 88

L5
` 97 100 88

L6
` 180 98 85

L7
` 103 100 87

L8
` 110 97 86

L9
` 101 99 85

L10
` 136 99 88

L11
` 95 91 82

weight updating. The results are comparable to those
obtained by Gorman and Sejnowski. Sometimes a peak
result is followed by a decay of the learning results.
When this occurs we have given the peak and the re-
sult. The momentum rule shows better convergence
(is faster) and better results than the simple gradient
rule. The “in line” topologies appear to be well fitted
to this problem, probably due to the sequential nature
of the data. The correlation between inputs near in
time and the situation of the peaks of the signal seem
to be the relevant characteristics for the classification
of the signals, and they are well captured by the “in
line” topologies. It can be concluded that the learn-
ing algorithm works well with input continuous units.
However, the unit state spaces are normalised to the
interval [0, 1], so the interest of the next experiment is
to verify that our approach works well even in the case
of non-normalised input features.

2.2.4. High Order Boltzmann Machines with Con-
tinuous Units for the Vowel Recognition Problem.
The set of units for this problem isU = {ui i =
1 . . . 10, u0 j j = 1 . . . 11}, the input unitsui have state
spacesRi included in the interval [−5, 5], the output
unitsu0 j have rangeR0 j = {0, 1}. The input units take
the value of the input componentk(ui ) = xi . The map-
ping of values to the output units makesk(u0 j ) = 1 if x0

takes itsj th value. Again, the experimental work con-
sists of the exploration of the sensitivity of the learning
to the topology. The topologies used for the experi-
ments are thedensely connected topologies of orderr
whose set of connections contain all the connections

of order r or less with only one output unit in each
connection. Formally:

Lr = {λ ⊂ U | (|λ| ≤ r ) ∧ (u0 j ∈ λ)

∧ (∀k 6= j (u0k /∈ λ))}

And the “in line” topologiesthat are densely connected
topologies with the additional restriction of the input
units being consecutive. Formally:

Lr
` = {λ ∈ Lr | (r > 2 ⇒ (ui ∈ λ

⇒ (ui −1 ∈ λ ∨ ui +1 ∈ λ)))}

Tables 7 and 8 show the results of the experiments
using the simple gradient and momentum rules. In
Table 7 we have tested only densely connected topolo-
gies, whereas in Table 8 we have tested also “in line”
topologies. The results are comparable to those given
by Robinson. In particular we have even found a better
result with the “in line” topology of order 3 and the

Table 7. Results on the vowel recogni-
tion problem. Simple gradient rule.

Topology Cycles % Train % Test

L2 400 48 37

L3 230 78 52

L4 100 88 46

L5 30 89 46

L6 30 90 41

Table 8. Results on the vowel recogni-
tion problem. Momentum rule.

Topology Cycles % Train % Test

L2 100 62 43

L3 80 98 54

L4 40 96 46

L5 60 100 45

L6 50 100 45

L3
` 120 87 58

L4
` 120 87 57

L5
` 120 84 51

L6
` 250 97 55

L7
` 250 90 53

L8
` 250 95 53

L9
` 150 96 52
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momentum rule. This result is also comparable to the
best reported in [54].

The results in Tables 7 and 8 show that the pro-
posed learning algorithm for High Order Boltzmann
Machines with continuous input units is robust. It per-
forms well even in the case that the convexity of the
Kullback-Leiber distance is far from clear. We remind
the reader that we always start from zero weights, as-
suming the convexity of this distance. Bad generalisa-
tion (poor results on the test set) seems to be inherent
to the data, as the reference works give also poor re-
sults. The overfitting effect can be clearly appreciated
as the order of the topologies grows. Excellent results
are obtained with low order topologies. This encour-
ages further application to bigger and more realistic
problems. From the sonar experiment and this one,
the momentum rule seems to be more appropriate for
continuous inputs.

3. Conclusions and Further Work

High Order Boltzmann Machines without hidden units
applied to classification problems allow for simplifica-
tions of the learning process that speed it up by several
orders of magnitude, making of practical interest this
kind of neural networks. The results obtained are com-
parable to those found in the reference works, obtained
with other techniques or other neural network archi-
tectures. We have also found that a small number of
learning cycles are needed if the order of topology is
high enough (there are enough parameters to model
the problem). We have also found that in many cases
excellent results are obtained with relatively low order
topologies. That means that in most cases of practical
interest High Order Boltzmann Machines of moderate
size may be of use.

High Order Boltzmann Machines without hidden
units allow the easy generalisation of the learning
algorithm to networks with generalised discrete and
continuous units. The learning algorithm remains es-
sentially the same, regardless of the kind of units used.
The main benefit of the use of generalised discrete
units is the reduction of the network complexity, and
further speedup of the learning and application pro-
cesses. The experiments reported in this paper show
that the effect of the change of codification, from bi-
nary to the generalised discrete units, can have quite
different effects depending on the problem at hand. In
fact, the results can be contrary to the intuition that
the use of generalised discrete units implies a loss of

modelling power. The results obtained for the M2 prob-
lem show that problems difficult to model with binary
units can be appropriately modelled with discrete units.
Therefore, the formal characterisation of the probabil-
ity distributions that can be modelled by these gener-
alisations of the binary machines is a theoretical work
needed to give more light on their potential for practical
application.

One of the key problems in any modelling approach
is that of the correct selection of the parameters that are
needed to model the data at hand. In the Neural Net-
works field this problem is attacked by the application
of connection pruning or growing strategies [55–62].
This problem can be specially acute in the case of high
order neural networks due to the combinatorial growth
of the number of connections with the order of the
topology. In this paper we have not tried any pruning,
weight decay or topological design scheme. Early at-
tempts to apply them have been reported in [47] with
poor results. However, we believe that the probabilis-
tic interpretation of high order connections can lead
to efficient pruning/growing algorithms, profiting of
the large body of theory on log-linear models. Fol-
lowing the current trend [63, 64], we have started to
consider evolutionary (or genetic) operators for topo-
logical search. The approach seems promising. Our
starting idea is to equate connections to individuals, so
that the binary codification is trivial (the crossover and
mutation operators are also trivial) and the fitness can
be taken as a function of the connection weight. We
are currently working out the details.
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