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Summary

The Linear Mixing Model (LMM): pixel spectra are affine
combinations of endmembers.
The WM algorithm: endmembers extracted from the rows and
columns of dual Lattice Autoassociative Memories (LAAM)
built on the image spectra.

The number of endmembers is huge.

Additional endmember selection steps
Clustering

Unmixing with linear sparse regression techniques: Conjugate

Gradient Pursuit (CGP)
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Hyperspectral dataa

aD. Landgrebe, «Hyperspectral image data analysis», Signal Processing
Magazine, IEEE, vol. 19, nº. 1, pp. 17–28, 2002.

Ion Marques, Manuel Graña Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing



Introduction
WM algorithm

Endmember selection and sparse unmixing
Experimental design and results

Contents

1 Introduction

2 WM algorithm

3 Endmember selection and sparse unmixing
Endmember selection via k-means
Sparse unmixing using CGP

4 Experimental design and results

Ion Marques, Manuel Graña Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing



Introduction
WM algorithm

Endmember selection and sparse unmixing
Experimental design and results

Contents

1 Introduction

2 WM algorithm

3 Endmember selection and sparse unmixing
Endmember selection via k-means
Sparse unmixing using CGP

4 Experimental design and results

Ion Marques, Manuel Graña Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing



Introduction
WM algorithm

Endmember selection and sparse unmixing
Experimental design and results

Introduction

The Linear Mixing Model (LMM)

x = E↵+ n (1)

set of endmembers, E = {e1, e2, ..., eq}.
↵ is an q ⇥ 1 vector of fractional abundances resulting from
the unmixing process.
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Introduction

The WM algorithm is a Lattice Computing based EIA finding a
collection of affine independent vectors that define a convex
polytope covering the data of the image in high dimensional
spectral space. The algorithm is very fast, using only lattice
operators and the resulting endmember set has a direct relation
with the image data. However, it has the inconvenient of producing
too many endmembers, which are strongly correlated. Therefore,
some endmember selection method is needed to find the relevant
endmembers which produce the most parsimonious explanation of
the data. In this paper we propose a clustering step followed by the
application of greedy sparse methods, based on gradient pursuit .
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Introduction

The aim of the sparse methods is to find the minimal set of
contributions from a dictionary that make up the data with minimal
loss. Formally, if we denote a sparse fractional abundance vector ↵,
the unmixing problem is then

min
↵

k↵k0 subject to kx � E↵k2  �, ↵ � 0, 1

T↵ = 1, (2)

where 1

T is a line vector of 1’s, k↵k0 denotes the number of
nonzero components of ↵, and � � 0 is the error tolerance.
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WM algorithm

1 Compute v = [v1, . . . , vL] and u = [u1, . . . , uL],

vk = min
⇠

x

⇠
k ; uk = max

⇠
x

⇠
k

for all k = 1, . . . , L and ⇠ = 1, . . . ,N,
2 Compute the LAAMs

WXX =
N̂

⇠=1


x

⇠ ⇥
⇣
�x

⇠
⌘0�

;MXX =
N_

⇠=1


x

⇠ ⇥
⇣
�x

⇠
⌘0�

where ⇥ is any of the _2 or 2̂ operators.
3 Build W =

�
w

1, . . . ,wL and M =
�
m

1, . . . ,mL such that

w

k = uk + W

k ;mk = vk + M

k ; k = 1, . . . , L.

4 Return the set V = W [ M [ {v,u}.
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Endmember selection via k-means

To induce a reduced set of endmembers E

? ⇢ E, we perform
k-means
Two “closeness” measurements in the clustering process:

1
Pearson correlation

dist (x , y) = 1 � corr (x , y) = 1 �
P

n

i=1(xi

�µ
x

)(y
i

�µ
y

)
(n�1)�

x

�
y

.

2
Cosine dissimilarity

bdist (x , y) = 1 � cos ✓ = 1 �
P

n

i=1(xi

·y
i

)pP
n

i=1 x

2
i

pP
n

i=1 y

2
i

.

1 Each centroid is the component-wise mean of the points in
that cluster, after centering and normalizing those points to
zero mean and unit standard deviation.

We perform the clustering l times, selecting random initial
cluster points at each iteration.
The set E

? will consist of the endmembers that are closer to
the centroids of said clusters.
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Sparse unmixing

data matrix X .
dictionary matrix � 2 Rq⇥L.

The q columns of � are referred as atoms: induced

endmembers � = E

?

find a mixing matrix M

X = �M + ", (3)

optimizing a sparsity measure. M collection of abundance
images obtained by the unmixing process.

Ion Marques, Manuel Graña Hybrid Sparse Linear and Lattice Method for Hyperspectral Image Unmixing



Introduction
WM algorithm

Endmember selection and sparse unmixing
Experimental design and results

Endmember selection via k-means
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Conjugate Gradient Pursuit

r

0 = X is the initial residual error. �0 = Ø is an index set.
y

0
�0 = 0 is the initial set of output sparse vectors. b0 = 1 is a

term needed to calculate new conjugate gradients.
We denote D�i the matrix containing all conjugate update
directions from iteration i � 1, with an additional row all zeros.
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Conjugate Gradient Pursuit

1 For i = 1, 2, 3, ... until stopping criterion is met:
1

Calculate gradient g for y restricted to �i

:

g�i

= �T

�i

�
X � ��i

y

i�1
�i

�
.

2
Select the best element index: � i = arg

j

max |g�i

| .
3

Update the index set: �i = �i�1 [ � i .
4

Calculate the gram matrix G�i

= �T

�i

��i

.
5

We calculate the update direction d�i

= b0g�i

+ D�i

b where

b =
�
D

T

�i

G�i

D�i

��1 �
G

T

�i

D�i

g�i

�
,

6
Calculate new set of vectors y

i

�i

= y

i�1
�i

+ ai

d�i

. where

c

i = ��i

d�i

, and ai =

D
r
i

,ci

E

kcik2
2
,

7
Calculate new residual errorr

i = r

i�1 � ai

c

i .

2 Output r and y.
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Experimental design

A sub-image of the AVIRIS Cuprite dataset.
512 × 614 pixels.
224 spectral bands between 0.4 µm and 2.5 µm, with spectral
resolution of 10 nm.
preprocessing leaves 187 spectral bands.
The Cuprite site is well understood mineralogically and is
broadly used as a trusted benchmark for hyperspectral
research.
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Cuprite
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WM endmembers
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Clustering of WM endmembers

Endmembers obtained using k = 10 and Pearson correlation
distance
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Clustering of WM endmembers

Endmembers obtained using k = 10 and cosine similarity.
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Sparse linear unmixing abundances
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Conclusions

Ritter’s WM Algorithm basic endmember induction
clustering step to reduce the number of endmember prior to

the unmixing process.

CGP algorithm to calculate sparse abundances.

Experiments on a complex and well documented hyperspectral
image s
The visual assessment of the results disjoint endmembers that
are present in disparate abundances on the pixels of the scene.
Future work

selecting k with some unsupervised criterion,

comparing our unmixing results with those obtained using

USGS Spectral Library as the sparse algorithm’s dictionary.
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