

Xingxing HE, Yang XU, Xiaomei ZHONG

Southwest Jiaotong University, Chengdu, Sichuan, China

Jun LIU

University of Ulster, Northern Ireland, UK

Luis MARTINEZ

Department of Computing, University of Jaén, E-23071 Jaén, Spain

Da RUAN

Belgian Nuclear Research Centre (SCK.CEN) and Ghent University, Belgium

- Introduction
- Academic Background and Ideas
- Focused Technical Works
- Ongoing Research and Prospects
- Conclusion

Research View and Orientation

Logic Based Intelligent Systems

Study of logic foundation for uncertainty reasoning: especially incomparability

Key ideas

Intelligent information processing \rightarrow Uncertain Information \rightarrow Uncertainty Reasoning \rightarrow Need for establishing strict logic foundation \rightarrow Non-Classical logic \rightarrow Incomparable information \rightarrow Lattice-valued logic system with truth-valued in a lattice

Lattice + Logic

■ Logical algebraic structure – lattice implication algebras (LIA)

Combining lattice and implication algebra, non-chain structure

Lattice-valued logic systems based on LIA

Incomparable information \rightarrow Relation with fuzzy logic \rightarrow Universal Algebra \rightarrow Truth-valued attached \rightarrow Syntax and semantics extension \rightarrow Complete and Sound lattice-valued logic system

Academic routine since 1993

- Lattice-valued logical algebra Lattice Implication
 Algebra (LIA)
 - Y. Xu, Lattice implication algebra, Journal of Southwest Jiaotong University (in Chinese), 1993, 1, pp. 20-27.

- Structure and properties of LIA
- Lattice-valued algebraic logic lattice-valued logic based on LIA
- Approximate reasoning based on lattice-valued logic
- Automated reasoning based on lattice-valued logic

A lattice-valued logical algebra -- lattice implication algebra (LIA)

Definition (LIA) Let $(L, \vee, \wedge, ')$ be a bounded lattice with an order-reversing involution "'" and the universal bounds O, I, : $L \times L \to L$ be a mapping. $(L, \vee, \wedge, ', \to)$ is called a **lattice implication algebra** (LIA) if the following conditions hold for all $x, y, z \in L$:

$$(I_1) x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$
 (exchange property)

$$(I_2) x \rightarrow x=I \text{ (identity)}$$

$$(I_3) x \rightarrow y = y' \rightarrow x'$$
 (contraposition or contrapositive symmetry)

$$(I_4) x \rightarrow y=y \rightarrow x=I \text{ implies } x=y \text{ (equivalency)}$$

$$(I_5)(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$

$$(I_6) x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z)$$
 (implication \lor -distributivity)

$$(I_7) x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z)$$
 (implication \land -distributivity)

Examples of LIA

Boolean algebra and Lukasiewicz algebra are all LIAs. A class of all LIAs form a proper class, which means many LIAs can be constructed and there are at least countable LIAs which can be constructed in [0, 1]

х	x'		
О	Ι		
а	с		
b	d		
с	а		
d	Ь		
Ι	О		

\rightarrow	О	а	b	С	d	Ι
О	Ι	I	Ι	Ι	Ι	Ι
а	c	I	b	с	b	Ι
b	d	а	Ι	b	а	Ι
c	а	а	Ι	Ι	а	Ι
d	b	Ι	Ι	b	Ι	Ι
Ι	О	а	b	с	d	Ι

Book published (2003)

- Xu, Y., Ruan, D., Qin, K.Y., and Liu, J., Lattice-Valued *Logic – An Alternative* Approach to Treat Fuzziness and Incomparability, Springer-Verlag, Heidelberg, July, 2003, 390 pages.
- ISBN-3-540-40175-X

The main focus of this paper: resolution-based automated reasoning

- Feature and properties of the logical formula which includes <u>constants</u> in LP(X)
- **Simplify** the structure of the generalized literals in LP(X)
- Improve the efficiency of α- resolution in lattice-valued logic, an α-lock resolution method based on LP(X) is proposed and the soundness and weak completeness of this method has been proved

The essence of classical automated reasoning methods

- The kernel problem in classical automated reasoning
 - $\blacksquare A_1, ..., A_n \Rightarrow B ? or if A_1 \land ... \land A_n \rightarrow B is a Theorem?$
- The problem is transformed into validating the unsatisfiability of a logical formula variation of this theorem
 - $A_1 \land ... \land A_n \rightarrow B$ is a theorem iff $A_1 \land ... \land A_n \lor \sim B$ is unsatisfiable
- An algorithm needs to be constructed to prove the unsatisfiability of this logical formula
- The resolution method is of great importance on mechanical theorem proving in classical logic

The α -automated reasoning algorithm in LP(X)

- **Definition** (α -false) Let φ be a generalized logic formula in LP(X). φ is said to be always false at a truth-value level α (α -false in short) if for an arbitrary valuation γ such that $\gamma(\varphi) \le \alpha$.
- An α-Automated reasoning algorithm in LP(X) can be obtained as the similar way in two-valued logic
 - search and delete the α -false pairs

Soundness and completeness) $S \le \alpha$ iff the α -automated reasoning algorithm in LP(X) terminates on α -empty clause.

About a generalized conjunctive normal form in LP(X)

- **Definition 7** (an extremely simple form f, in short ESF) if an L-valued propositional logical formula f^* obtained by deleting any constant or literal or implication term appearing in f is not equivalent to f.
- **Definition 8** (*an indecomposable extremely simple form*, in short IESF) if *f* is an ESF containing no connectives other than implication connectives.
- **Definition 9** All the constants, literals and IESF's are called *generalized literals*.
- **Definition 10** An *L*-valued propositional logical formula *G* is called *a generalized clause*, if *G* is a formula of the form:

$$G=g_1\vee\ldots\vee g_i\vee\ldots\vee g_n$$

where g_i (i=1,...,n) are generalized literals.

• A conjunction of finite generalized clauses is called *a generalized conjunctive normal form*.

α-Resolution Principle

Definition 12. [6] (α -Resolution). Let $\alpha \in L$, and G_1 and G_2 be two generalized clauses of the forms:

$$G_1 = g_1 \lor \ldots \lor g_i \lor \ldots \lor g_m$$
$$G_2 = h_1 \lor \ldots \lor h_i \lor \ldots \lor h_n$$

If $g_i \wedge h_j \leq \alpha$

$$G = g_1 \vee \ldots \vee g_{i-1} \vee \ldots \vee g_{i+1} \vee \ldots \vee h_1 \vee \ldots \vee h_{j-1} \vee \ldots \vee h_{j+1} \vee \ldots \vee h_n$$

is called an α -resolvent of G_1 and G_2 , denoted by $G = R_{\alpha}(G_1, G_2)$, and g_i and h_j form an α -resolution pair, denoted by $(g_i, h_j) - \alpha$. Generation of an α -resolvent from two clauses, called α -resolution, is the sole rule of inference of the α -resolution principle.

Simplify the structure of the generalized literals in LP(X)

- α -Valid Rule
- Unit generalized literal rule
- Pure generalized literal rule
- Splitting rule

α -Lock resolution method in LP(X)

Definition 16. Let G be a generalized clause in $L_nP(X)$, each occurrence of a generalized literal in G is assigned a positive integer in the lower left corner (the same generalized literals can be labeled different positive integer), this specific generalized clause G is called a lock generalized clause, and the positive integer in the generalized literal is called a lock index.

Definition 17. Let G be a lock generalized clause in $L_nP(X)$. Suppose that G contains generalized literals which have the same name with different indices, then delete the generalized literals with larger indices. This process is called amalgamation.

Definition 18. Let G_1 and G_2 be two generalized clauses in $L_nP(X)$, $\alpha \in L_n$. $G = R_{\alpha L}(G_1, G_2)$ is called an α -lock resolvent of G_1 and G_2 if it satisfies the following conditions.

- (1) G is the α -resolvent of G_1 and G_2 .
- (2) The α -resolvent generalized literals in G_1 and G_2 have the minimal indices respectively.

α -Lock resolution method in LP(X)

Definition 19. Let S be a finite generalized clause set in $L_nP(X)$, and all generalized literals in S are assigned lock indices. An α -resolution deduction from S is called an α -lock deduction if each α -resolution in the deduction process is an α -lock resolution. An α -lock deduction of from S to α -empty clause is called an α -lock proof of S.

Theorem 5. (Soundness Theorem). Let S be a finite generalized clause set in $L_nP(X)$, and all generalized literals in S are assigned lock indices. $\{D_1, D_2, \ldots, D_m\}$ is an α -lock resolution deduction from S to a generalized clause D_m . If $D_m \leq \alpha$, then $S \leq \alpha$.

Theorem 6. (weak completeness theorem). Let S be a finite generalized clause set in $L_nP(X)$, and all generalized literals in S are assigned lock indices. Let $\alpha \in L_n$ and $\forall_{a \in L_n}(a \land a') \leq \alpha < I$. If $S \leq \alpha$, then there exists an α -lock deduction of from S to α -empty clause.

Potential applications

- Machine intelligence needs the investigation of linguistic valued uncertainty reasoning
 - Human beings bound to express ourselves in a natural language that uses words
 - A nice feature of linguistic term set
 - Their values are structured, makes it possible to compute the representations of composed linguistic values from those of their composing parts
- Lattice-based linguistic truth-valued algebra
- Symbolic approach direct computation on linguistic values
- Computing with Words ⇒ Reasoning with words

Linguistic-valued logic scheme

- In general, we conjecture that the domain of a linguistic-valued algebra (LA) can be represented as a lattice. Thus, a linguistic-valued logic is a logic in which the truth degree of an assertion is a linguistic value in LA.
- Use natural language to express a logic in which the truth values of propositions are expressed as linguistic values in natural language terms such as *true*, *very true*, *less true*, *very false*, *false*, etc., instead of a numerical scale.

Reasoning with words

Some values of linguistic variable cannot be strictly linearly ordered

- Linguistic variables take natural language words or labels as values
- Some words seem difficult to distinguish their boundary
- There are some vague "overlap district" among some words

Fig. 1 The ordering relationships in linguistic terms:

 $a=very\ True,\ b=more\ True,\ c=True,\ d=Approximately\ True$ $e=possibly\ True,\ f=more\ or\ less\ True,\ g=little\ True$

Lattice-valued logic algebra can be used to construct linguistic value algebra

- It should be suitable to represent the linguistic values by a partially ordered set or lattice.
- LIA is an extension of Boolean algebra by combining a lattice and the implication operator
- The axiomatic definition of implication operator
- The operations can be decided upon the elements and their orders are given.
- LIA used to construct linguistic value algebra with lattice order

Lattice-valued linguistic based automated reasoning and decision making

Representing linguistic terms

- Linguistic truth-value lattice-implication algebra
- Linguistic atom term, logically composed terms, modified terms with a set of linguistic modifiers (hedges)
- Their ordering relationship
- Structure and characteristic

Lattice-valued linguistic resolution-based automated reasoning

- Structure and transformation, resolution principle, structure of resolution field, algorithm and programming
- Application in decision making

A sketch map on research views, activities and directions

