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Introduction

Introduction

@ Application of Machine Learning (ML) techniques for the
computer aided diagnosis (CAD) of cocaine adicted subjects.
o Aim:

o To obtain discriminant regions in the brain of structural (T1)
Magnetic Resonance Imaging (MRI) data.

e To train and test classifiers able to discriminate cocaine
dependent patients from healthy subjects.
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Introduction

Cocaine Adiction

@ Cocaine is one of the most illegal consumed drugs.

@ lIts chronic abuse may cause: ischemic, hemorrhagic strokes,
cerebral infarcts, depression and neuropsychological
abnormalities.

@ Selected regions in the brains of cocaine users show functional,
neurochemical and structural abnormalities.

@ These regions can be used to identify the differences between
the brains of cocaine users and nonusers and then, to select an
adecuate pharmacotherapy to treat this disorder.
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Introduction

T1 Magnetic Resonace Imaging

@ MRI is a medical imaging technique used in radiology to
visualize detailed internal structures.

@ It provides good contrast between the different soft tissues of
the body.
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Introduction

Database

@ 70 cocaine-dependent patients (34.41 + 6.62).
e 54 matched controls (33.38 £ 7,87).

@ Exclusion criteria: neurological illness, prior head trauma,
positive HIV status, diabetes, Hepatitis C or other medical
illness and psychiatric disorders.

@ Groups were matched on the basis of age and level of
education.

o Patients were recruited from the Addiction Treatment Service
of San Agustin in Castellén, Spain.
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Methods

Pipeline

PREPROCESSING MODULE

Image registration to
MNI

GM Image segmentation
GM Image modulation

FEATURE EXTRACTION
MODULE

Pearson’s correlation
across volumes

Compute Gradient
Calculate Watershed
segmentation
Select relevant regions.
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Test classifier

Compute classification
Results
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Preprocessing Module

@ Appropriate data preprocessing, ensuring anatomical
correspondence of voxels intersubjects, is of paramount
importance.

@ We perform the preprocessing on Statistical Parametric
Mapping (SPM) software running on Matlab.

@ Several steps:

Reorientation.
Tissue segmentation.

o

(]

e Bias correction

e Spatial normalization to MNI152 template.

o Linear registration step
@ Non-linear shape registration

GM images modulation to restore tissue volume changes.
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Feature Extraction Module

FEATURE EXTRACTION
MODULE

< Pearson's correlation
across volumes
Compute Gradient
Calculate Watershed
segmentation
Select relevant regions
Extract relevant features
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00®000000

Pearson's Correlation across volumes

@ Voxel-wise Pearson’s correlation with the indicator variable
specifying the subject class label (0 healthy control, 1 patient).

@ At the j-th voxel site is computed as follows:
) Y, vViiyi — LiVij Li Vi
a1 2 / 2 :
\/nZivij — (Zivij)*y/nLiyi — (Tivi)?

where v;; is the value of the j-th voxel site in the i-th MRI volume
in the dataset and y; is the class label value of that i-th volume.

(1)

o Computing this correlation coefficient for all voxels, we obtain
the whole brain volume of correlation values (VCV).
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Watershed segmentation

@ Watershed transformation is computed on the gradient
magnitude of the original image.

@ Before the gradient, we apply a Gaussian smoothing step
trying to reduce the number of ROIs given by the watershed.

@ We compute the 3D spatial gradient of the previously
computed VCV as:
dF ., JdF . OF.
VF=—i+—j+—=—% 2
8xl+ 8y]+8z 3 (2)
where each partial derivative is computed by differences along its
corresponding axis direction.
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Watershed segmentation

@ Watershed transformation is a mathematical morphology
technique for image segmentation.

@ It is computed on the VCV volumes corresponding to the GM
segmentation mask.

Figure: Left, the VCV of the GM computed on a training set; middle,
gradient of the VCV; right, ROl watershed segmentation.
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Region Selection Process

o Two different approaches:

© Wrapper approach using ELMs as classifiers to determine
regions relevance.

@ Application of different percentiles of the correlation
coefficients distribution to select most correlated regions.
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1. ELM wrapper ROI selection process

@ We sort the ROl obtained from watershed segmentation in
descending order of ROI's mean correlation values.

e We start training the classifier with the first ROl (most
correlated one) and computing its F — score measure on the
test data.

@ We add the second region to the data, training again the ELM
and computing the new F — score.

@ If the F — score value increases, the ROl is added definitively
to the feature vector, otherwise it is discarded. We repeat this
process with all the regions.
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2. Different percentiles

@ We compute the empirical distribution of VCV's ROl average
absolute values.

e We apply six different percentiles (from 90.00% to 99.95%) on
this distribution to select the most discriminant regions.
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Feature extraction process

@ Three different procedures to extract the feature vector values:

@ Collecting the intensity values of all the voxels that compose
each region (feature vectors size = sum of the sizes of the
ROIs).

@ Computing the mean value of the voxel intensities in the ROI
(feature vectors size = number of selected ROls).

© Computing the median value of the voxel intensities in the ROI
(feature vectors size = number of selected ROlIs).
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Validation Experiments

Avoiding circularity

Compute Average Results
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Validation Experiments

Performance measures

F — score (also called, F} score or F —measure) is a measure of a
test's accuracy. It is defined as the harmonic mean between
precision and recall:

) precision - recall

F —score = i )
precision+ recall
where:
@ precision is defined as the positive predictive value,
precision = %,
o recall is referred as the true positive rate, recall = —-t—
' TP+FN"
LY, TP+TN
@ Two other scoresT,NAccuracy = TPrIN+FpiFN @nd
Specificity = 7y pp

@ where TP,FP,TN,FN are true positives, false positives, true
negatives and false negatives, respectively.
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Validation Experiments

ROI selection

We have used the mean and the median intensity values of the
ROlIs for this process.
1. ELM based region selection process:
e Standard ELM algorithm, with two different number of hidden
nodes (100 and 1000).
@ For each ROI addition step, we split the training set into
training and validation sets, performing a 10 fold cv, repeated
10 times.
@ We compute the mean F — score and that is the value we use
to decide if that region will be included as discriminant region.

’ #Nodes ‘ F-score (%) ‘ #regions ‘
100 58 +1 14 +£3
1000 74+ 5 22 +£ 8

Table: Region selection F-score.
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Validation Experiments

ROI selection

2. Percentile based selection:

@ We have applied 6 different percentiles on the VCV empirical
distribution to select the most correlated regions.

@ The number of selected ROls grows quickly so that tuning of
this approach seems to be more tricky.

Percentil
99.95% | 99.90% | 99.50% | 99.00% | 95.00% | 90.00%

| #regions | 6 +0 | 1241 [ 621 | 124+ 1| 622+ 2 | 1245+ 5 |

Table: Average number of regions depending on the applied percentile.
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Validation Experiments

Classification

e Standard ELM was trained with different number of hidden
layer nodes (100, 1000, 2000, 3000) and sigmoid function
activation function.

@ We repeat each cross-validation process 50 times, so reported
results are the average values of the performance measures.

@ We report comparison results with other classifiers, OP-ELM,

linear kernel SVM and 1-NN under the same cross-validation
framework.
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Classification Results and Features Location

Results without ROI selection

@ As a baseline result, we consider the feature vectors composed
of the mean and median intensity values of all the brain
watershed ROls.

Mean intensity per ROI Median intensity per ROI
#Nodes | Acc ‘ Recall ‘ Spec ‘ F Acc ‘ Recall ‘ Spec ‘ F

100 54+4 | 54+£7 | 5446 | 5345 || 514+5 | 50+7 | 51+6 | 50+6
1000 63+4 | 63+£6 | 64+6 | 63+4 || 64+4 | 63+5 | 66+6 | 63+4
2000 70£3 | 70£5 | 7146 | 70+6 || 69+4 | 68+5 | 705 | 68+4
3000 T74+4 | 7245 | 76+5 | 7314 || 75+3 | 73+4 | 76+5 | 74%3

Table: Standar ELM classification results using mean and median
intensity values of all the watershed ROls.
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Classification Results and Features Location

Results on the ROls selected by wrapper ELM

100 1000
#Nodes Acc ‘ Recall ‘ Spec ‘ F Acc ‘ Recall [ Spec ‘ F

100 49+4 | 49+7 | 4946 | 48+5 54+4 | 5546 | 53+6 | 54+4
1000 47+3 | 4843 | 474 | 4743 62+3 | 68+3 | 5545 | 6442
2000 472 | 4842 | 47£3 | 4842 63+3 | 70£3 | 55+4 | 6542
3000 48+2 | 4942 | 47+£3 | 48+ 2 64+2 | 71+2 | 57+3 | 66+2

Table: Standard ELM Classification results on features extracted from
the wrapper ELM selected ROls.

M. Termenén, M. Grafia, A. Barrés-Losce 28 / 37



Classification Results and Features Location

Results on the ROls selected as percentiles

o Feature vectors given by the intensity values of each voxel of
each relevant region:

99.95% 99.90%

Nodes | Acc | Recall | Spec | F || Acc | Recall | Spec | F

100 | 5434 | 5426 | 5446 | 54%4 || 56+4 | 5526 | 565 | 5545

1000 | 5742 | 6043 | 5443 | 5842 || 6042 | 53+3 | 6643 | 5643

2000 | 5742 | 60+2 | 552 | 58+2 || 60+2 | 53+3 | 673 | 5743

3000 | 58+1 | 61+2 | 552 | 50+1 || 602 6843 | 5743

99.50% 99.00%

Nodes | Acc | Recall | Spec | F | Acc | Recall | Spec [ F

100 | 6445 | 6557 | 6326 | 645 || 615 | 6246 | 6047 | 615

1000 | 7942 | 784 | 7943 | 7842 || 80+3 | 8043 | 8144 | 8043

2000 | 80+2 | 8143 | 7042 | 8042 || 8222 | s243 | 8243 | 822

8000 | 8042 | 8143 | 8042 | 8042 || 8342 | 833 | 8343 | 8342

95.00% 90.00%

Nodes | Acc | Recall | Spec | F Acc | Recall | Spec | F

100 | 574 | 5946 | 5646 | 574 | 5744 | 5847 | 5746 | 5745

1000 | 84+3 | Sa+4 | 84k | S4+3 || 8343 | s24 | sa+5 | S243

2000 | 8042 | 8044 | 8043 | 8942 || 8742 | 8543 | 8043 | 8742

3000 | 91+2 | 90+3 | 912 | 9042 || so+2 | 8843 | 9143 | so+2

M. Grafia, A. Barrés-Losce 29 / 37



Classification Results and Features Location

Results on the ROls selected as percentiles

o Feature vectors given by the mean or median intensity values
of each ROI. (we only show results for the last 2 percentiles).

95.00% Mean Median

Nodes | Acc | Recall Spec‘ F Acc | Recall | Spec | F

100 60+4 61+6 595 | 604 || 614 6216 606 | 615

1000 8443 8444 84+4 | 8443 8543 85+4 86+4 | 8543

2000 8842 8743 8942 | BT+2 8942 88413 9043 8942

3000 8042 8843 8043 | 8042 || 90+2 8042 9243 | 90+2

90.00% Mean Median

Nodes Acc | Recall | Spec F Acc | Recall | Spec F

100 5945 5816 597 | 5845 58+4 597 58+6 | 5845

1000 8543 8445 8543 [ 8443 8543 85+4 86+4 | 85+£3

2000 8942 88+2 90+3 | 89+2 20+2 88+3 92+2 | 90+2

3000 9242 9143 | 9243 | 9242 || 9242 | 9042 | 9444 | 9242
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Classification Results and Features Location

Comparison of ELM with other classifiers

@ Best results are achieved by the ELM, comparing well with the
much more costly SVM classifiers.

F-score (regions voxel values)

Prc(%) ELM OP-ELM SVM INN F-score (regions mean value)
90.00 | 89+ 2 6815 87+3 | 77+4 | Pre(%) | ELM | OP-ELM ‘ SVM | 1NN
95.00 902 7145 86+3 | 83+4 90.00 92+ 2 59+5 91+2 | 8046
99.00 83+2 74+6 83+2 78+4 95.00 89+2 70+6 90+2 76+5
99.50 80+2 74+6 76+2 79+3 99.00 77£1 7516 78+4 78+4
99.90 56+3 73+4 73+2 67+3 99.50 75+1 77+6 7243 72+4
99.95 59+1 74+3 73+3 61+7
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Classification Results and Features Location

Location in the brain of selected ROIls

@ Location of selected ROls for feature extraction for percentile
90.00% of the VCV empirical distribution.
@ Selected ROlIs are located in several regions in the brain as

striatum, thalamus, parahippocampal gyrus, cingulate gyrus,
superior frontal gyrus and orbitofrontal cortex, among them.

£
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Summary

@ We present a procedure to discriminate patients with cocaine
addiction and healthy subjects using structural MRI brain
images.

o Computational pipeline involves:

e Volume spatial normalization,

o Computation of Pearson’s correlation across volumes giving
the VCV,

o Watershed segmentation of the VCV,
o ROI selection for feature extraction. Two methods:

@ a wrapper approach based on ELM.

@ applying different percentiles on the empirical distribution of
the VCV.
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Summary

@ Using the intensity values of the voxels of all the relevant
regions, we reached an accuracy and F-score measures higher
than 90%.

@ Using mean and median values, we achieve even betters results
around 92%.

@ When the number of regions is small ( percentiles 99.90% and
99.95%), basic ELM results are not good enough, but
OP-ELM obtains similar results than linear SVM.

@ As the number of regions increases, ELM improves its
performance even outperforming the rest of algorithms we are
comparing with.

@ Features location are related to findings in the literature about
cocaine addiction, validating this approach.
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Further work

o We would like to focus on:

e regions selection process using ELMs.
o different ways to compute the gradient before applying
watershed segmentation.

@ It would be also interesting to test this procedure with
different neurodegenerative diseases and also with other type
of MRI images as diffusion tensor MRI or functional MRI.
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