Lattice computing for Artificial
Intelligence applications

Manuel Grafia Romay
Grupo de Inteligencia Computacional
UPV/EHU

www.ehu.es/ccwintco

December, 2007 NCMCM 2007, Coimbatore, India



Contents

e Introductory ideas and history

* Review of early models
— Fuzzy ART
— Max-min classifiers

e Recent approaches
— Associative Morphological Memories
— Fuzzy Lattice Neurocomputing
— Fuzzy Mathematical Morphology

e Conclusions and the future

December, 2007 NCMCM 2007, Coimbatore, India



Introduction

e Lattice computing assumes that the basic
computing structure 1s a lattice.

* A lattice (L,v,n) is a Poset (L,<) any two of
whose elements have
— a supremum, denoted by xVv y
— an infimum, denoted by XA Y
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Introduction

e Poset

A partially-
ordered set, briefly poset (P, <), 1s a set 7 in which
a binary relation < is defined that is a partial order-
ing, 1.e., satisfies the following three properties for all

XY ZeP:
(P1). X < X (reflexive)

(P2)., X <YandY < X imply X =} (antisymmetric)
(P3), X <Y and ¥ = Z mmply X < Z (transitive)
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Introduction

e Computational paradigm shift (Ritter)

— Traditional Artificial Neural Networks are
defined on the ring (R, +, x)

Ty (X) = Z TiWi5 — 93'

— Lattice ANN work on the'sémi-rings

(R_oe, V, +) or (Roo, A, +)

. TL

(%) = p; \/ (@i +wi) (%) =p; N\ rig(a 4 wig)

1=1 1=1
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Introduction

* Biological justification
(Ritter)

— Dendrites account for 50% :m)@()

of brain mass

— Dendrite computation 1s
more akin to AND, XOR,
NOT logical operations

iagram of a neun

llsh mgdd , dendritic trees, axon

Fi. 2.
bra.nche and terminal bra 1 Ex and nlub n inputs are indicated,

espect; lb\rblk a]ld.lk
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Introduction

e Mathematical morphology for image processing is
also a lattice paradigm shift from linear processing
(Maragos)

— Linear translation-invariant (LTI) operators are

uniquely represented by linear convolution with the
impulse response

— Erosion (Dilation) translation invariant (ETI(DTI))
operators are uniquely represented by inf-(sup)
convolution with the impulse response
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Introduction

Y is LTI © Y (F)(x) = (FxH)(x)
=Y F()WH(x —y)

DTI (F®H)(x)2 \/ F(y)« H(x — y)
velk

ETI (F®'H)x)2 /\ F(y)¥ H'(x — y)
veE
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Introduction

* Kinds of processes in Artificial Intelligence

— Filtering
y:RY — RY
— Dimension reduction
Y:RY = RY:d<<N
— Classification (supervised, unsupervised)
Y RN — Q; Q ={a)1,---,a)c}
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Introduction

e Kinds of lattice computing
— Filtering: Mathematical Morphology

— Classification- recognition
* Fuzzy systems
» Artificial Neural Networks

— Specific processes
e Target Localization in images
 Endmember induction in hyperspectral images
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Introduction

e The learning problem

— Gradient descent schemas need to compute
derivatives of sup, inf functions.

— Heuristic growing produces overfitting
(category explosion) and there 1s no proof of
convergence.

— Random search algorithms are computationally
expensive.
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Some historical landmarks

e 1979 e 1998
— R. Cuninghame-Green: Minimax — Ritter, Sussner: Morphological
Algebra Associative Memories
— Gader: Shared-weight Morphological
« 1982 Neural Networks
— J. Serra: Image Analysis and e 2000
Mathematical Morphology — Kaburlassos, Petridis: Fuzzy Lattice
e 1991 Neurocomputing
—  Carpenter, Grossberg: Fuzzy-ART ~ * 2003 | N '
e 1992 — Ritter: Dendritic Computing
e 2005

— Simpson: Min-max Neural — Kaburlassos: Towards a unified modeling

Networks and knowledge representation based on
— Pedrycz: Relational System Lattice Therory
Learning — Maragos: Lattice image processing: a
e 19905 unification of morphological and Fuzzy
algebraic systems
— Yang, Maragos: Min-max . 2007

Classifiers . .
— Kaburlassos, Ritter: Computational

Intelligence based on Lattice Theory
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Fuzzy ART

Carpenter, Grossberg
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Starting point

e It1s an extension of binary input Adaptive
Resonance Theory (ART) to continuous
variables 1n [0,1]:

— Logical AND, intersection --> inf operator

e Coding:

— appending the complementary (/-x;) to each
input variable x..

e Category == Cluster
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ART 1 FUZZY ART -
(BINARY) (ANALOG)

CATEGORY CHOICE
Inw, Ianw;
Ti:a-{- Wj( j=a+ Wj
MATCH CRITERION
B2 Il’}“' >
FAST LEARNING
wj(new) —1N wj(old) wj(ncw) = 1A Wj(OId)
N = logical AND A = fuzzy AND
intersection minimum

Fig. 2. Comparison of ART 1 and fuzzy ART.
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Algorithm Elements

* Category selection based on 7
— It 1s a measure of inclusion of the input in the
category

TJ = max {TJ ] =1-.- N} (P A g); = min (p;, g:)

II /\ wJI M
a + |w] ? P EZ}PJ

=]

Ty(I) =
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* Resonance: Vigilance parameter p

— Decision about the creation of a new category

— Measure of category compactness: inclusion of
the weight w, in the input 1

I Awy| o Input accepted in the
| Il < Py winning category
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e [earning

— Enlarging the category enclosing the new data

new 0 old
wE, ) = ﬁ(If\mEf ld)) + (1 —ﬁ]tﬂg ).

1
Yj
After presentation
u; ofa (pf=1)--->
0 1

(@)

1

. aV v]

December, 2007 NCMCM 2007, Coimbatore, India 18



Fuzzy-ART properties

 Forms hyper-rectangular categories
covering the data

 Hyper-rectangles grow monotonically in all
dimensions during training

e The size of a category equals ‘R j‘ =M - ‘w j‘

» Itis bounded by  [R;|<M(1-p)

e If O<p<I1 the number of categories 1s
bounded (but most times grows big!)
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Supervised learning ARTMAP

* Encodes and categorizes both input and
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|
‘hﬂ
AVl

(b) (c)
py = 0.6 pp = 0.75 pp = 0.9

Fig. 12. Incremental approximation of a sinusoidal function for ART, vigilance parameters, with p, equal to (a) 0.6, (b) 0.75, and (c) 0.9. In each
simulation the fuzzy ARTMAP system was trained on [000 randomly chosen points a € (G, 1]. Each graph shows the test set confidence intervals
R%{ selected by the test set points. The maximum lengths of these intervals are (a) 0.4, (b) 0.25, and (c) 0.1. Graph (c), with p; = 0.9, is close to

the asympiotic state of the three graphs in Fig. 11. See Table III.
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Fuzzy-ARTMAP applications

e Control
e (Classification and pattern recognition

e Data mining
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Yang, Maragos 1995

Min-Max classifiers
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Starting point

e Boolean functions in DNF
B(b). b =(by,....b)e{0, 1} p,el0,1)

e Min-max functions are obtained replacing
Boolean literals by real-valued variables

£:0,171* - 10,17 x;€[0,1]
S Xg0nx )=V A, Le{x,1—x;}

Joiely
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* For classification a thresholding step 1s
added

fe[0,1]

L 1t f(X)= 0,

(0 otherwise.

HX)=PLf(X)z0]= {
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Learning

 Minimization of the Mean Square Error
(MSE)
& (t) = E[(z(t) — d(1))*].

e Gradient descent on the function parameters

plit+1)=p(t) — uv;& ).
e Instantaneous error

p(t+1)=p(1)— 2p(z(t) — d(t)) uV32(1)
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e Trick
— Assume no input variable 1s complemented

— Extend the input space to 2d including the
complements ... Fuzzy-ART?

* Problems
— Define parameters to allow differentiability

— Approximate gradient of min, max, threshold
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h:= A x, j=12,...,k clause

J iE@ 1? » A 3
k

y= 1V1 f; expression

J=

I y>0, .

zZ= Decision through threshold
0 y<@.
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 How to model continuosly the conjunctive
expression structure: /;?

— Continuous variables m;; such that

e X;isincluded in [;if m;; >0,

e Xx;1s excluded from 7;if m;; < (.

— The parameters to be learnt

PO =(0(2), my1 (1), ..., mgy (1), ..., Malb))
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a0 0 otherwise.

 Where f( 1s the width of a pulse
approximating the derivative of the step
function
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e Derivative with respect to the structure
parameters

dz 0z Oy Oh;

oy

3y oh;ém,,

e Implies the derivative of maximum and
minimum functions.
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©

@.

Derivative of maximum

e Implicit formulation of maximum

K
G,
Gy, Ay, ) = Z {U3(y—h_,-)—1}+3=0
F=1

1 if x>0,
Us(x)={ 3 if x=0,
0 if x<0.
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* Leads to the following expression

-1
—— if O<y—h;<f
3y A Npas !

P
e

——

oh;

j

LO otherwise.

A
N pax = number of ks such that y — h; <

= ¥ UsB=(r=hy),
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Results on handwritten digit
recognition

Table 1. Results for 0-1 classification problem employing both shape-size histograms and Fourier descriptors

Distinguishing Os and 1's
Normalized radial size histograms and Fourier descriptors

Min—-max Meural network
No. of % €rror S ETTOT O, error g eTTOr
minima {train) (test) Network (train) (test)
1 0.083 0.25 1.1 0.083 0
3 0.083 0.25 31 0.083 0
5 0.1 0.25 5.1 0.083 0
7 0.083 0.25 7.1 0.083 0
Mormalized shape-size histograms with 2 x 2 square and Fouriler descriptors

1 3.867 26 1,1 0.633 1.2
3 1.9 28 31 (1.633 0.85
5 1.083 3 5.1 (1567 0.8
7 1.733 3 7.1 0.533 (.55

The top two tables are generated using normalized radial histograms and Fourier descriptors, while the lower two using
normalized shape-size histogram with 2 x 2 square and Fourier descriptors.
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Fig. 4. Sample data from the handwritten database. (a) A collection of 0's. (b) A collection of 1. (c) A
collection of 6's. (d) A collection of 8's.
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Associative Morphological
Memories

Ritter, Sussner
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Starting point

e [.inear neuron

i

’,’r-lle! F1) E H-J'H\} F g r_._'_l;lh!'I -+ l): — J|[ Ilm’j-"l;:kf_ — ]#I — I':JII;JI

J=1

e Matrix notation

T(t+1)=W.aft)
alt) = (ay(t).---.an(t)).

Tt + 1) = (7.(t +1),--- 1. (t+ 1)),
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 Morphological dilative neuron:

F

(t+1) = \/ a;(t) + w;;

J=1

e Matrix notation: max product 7’(t+1) =W M a(t)
C=AMDB

H
Cij = \/ i + brj = (@i + b1y) V(@ + b)) V ooV (a'f'p + f-”ﬁj)'

k=1
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 Morphological erosive neuron:

T

Ti(t4+1) = /\ a,;(t) +w;,

=1
e Matrix notation: min-product 7(t+1) =W [ a(t)

C=AAD08

JJ
Cij = /\ aip + bry = (ain 4+ biy) A (aiz +b2) Ao Aag, +by;).
k=1
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Morphological associative @
MEemories

* Hopfield associative memory: given an
input X recalls response y as

y =W .x
e To store k vector pairs
(xt. y1), -, (x¥, y%), where x* € R" and y* € R™

=

W = Vol (XE ).
1

an
|
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 The Hopfield associative memory provides
perfect recall if the input patterns are
orthogonal

e If they are not orthogonal, the recall 1s
corrupted by crosstalk noise.
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 Morphological Associative Memories

* Construction with a single pair:

W=y M(-x)

e Recall (perfect):

WhMx=y
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e Given a set of input-output patterns
{xy*) +&=1,.k)

e Define: (X,Y),

J'{ — (lelf_ka) }_,f _ (ylj*":}rk}-
 Two natural morphological memories
K h _ L h
Wxy = AIy* x (=% and  Mxy = \/[y* x (=x%)'].
£=1 £=1
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* Basic recall property:

— the erosive and dilative memory recalls bound
the exact response

Wy S y* % (=x%)" < Mxy

[ Wiy MxE < y¢ < Myy @x* }

Wyy X <Y < Myy @ X.
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* Conditions for perfect recall

Theorem 2: Wy 1s [d-perfect for (X, YY) if and only if for
each& = 1,---, k, each row of the matrix [y* x(—x*)/|—=Wxy
contains a zero entry. Similarly My 1s [A-perfect for (X, Y")
if and only if for each £ = 1, k. each row of the matrix
My — [v® x (=x%)'] contains a zero entry.
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Autoassociative memories

e When X=Y, memories W, and M, are
called autoassociative.

* They have perfect recall and unlimited
capacity
l""':?g X M X = X and ﬂ'fdx; v LA X = X.
e Recalling converges in one step
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Noise

e Memory W,y 1s robust to erosive noise and
sensitive to dilative noise

e Memory M, 1s robust to dilative noise and
sensitive to erosive noise

December, 2007

S

e

X ¥

<

>

'

X

=

Erosive noise

Dilative noise
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Fig. 4. The top row shows the corrupted input patterns and the bottom roy
the corresponding output patterns of the morphological memory W x x-.
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¢ X
X X

Fig. 5. The top row shows the corrupted input patterns and the bottom row
the corresponding output patterns of the morphological memory M x x .
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Approaches to solve the noise @
problem

e Definition of kernels

Definition 2: let £ = (zl._ ARREER z;‘“') be an n X k matrix.
We say that Z is a kernel for (X,Y') if and only if the
following two conditions are satisfied:

1. My, A X = Z;

It follows that it 7 is a kernel for (X, Y ), then

W7y M (ﬂ-fzz (A )f) = Wgzy MZ =Y.
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Fig. 6. An example of kemel images. The kernel image corresponding toa
particular letter image 1s the image directly below the letter image.
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Fig. 7. An example of the behavior of the memory {input —
Myzw — Wy — output}. The memory was trained using the ten
exemplars shown in Fig. 2. Presenting the memorvy with the cormupted
patterns of the letters A, B, and X resulted in perfect recall (lower row). Each
letter was corrupted by randomly reversing each bit with a probability of 0.15.
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Lattice Image Processing: A Unification of
Morphological and Fuzzy Algebraic Systems

P. Maragos
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Starting point

* Design of new filters: generalized opening
and closing

e Works on the lattice of functions
S — VE F:E—>YV

F<G& Fx)<Gkx) Vx e E Inherited partial order

(VE)w 2\ Ew, xekE

ieJ ieJ Inherited supremum
(/\ F,;)(,r) = /\ Fi(x). xeE and infimum
ieJ ied
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Increasing operators

§ is dilation iff 5(\/,_, X)) = /., 6(X))
¢ is erosion iff &(/\._; Xi) = A, £X))

¢ 1s opening iff & 1s increasing, idempotent &
anti-extensive
P is closing iff B is increasing, idempotent
& extensive
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Adjunction

e The operator pair (&, 0) is an adjunction if
(X)<Y & X<e¥) VX,.Yel

e An adjunction defines a pair of
morphological filters

0& is an opening, and &9 is a closing.
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Signal processing

* Algebraic structure of the scalars:

(V, V, A, %, )
e Complete lattice-ordered double monoid
_ Addition
— Dual addition /\
— Multiplication %
— Dual multiplication *’

December, 2007 NCMCM 2007, Coimbatore, India
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Signal processing

* The space of signals 1s a function lattice
S = Fun(E.,V)

It inherits the clodum structure of the
scalars, with appropriate natural definitions
of addition and multiplication
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i©

Parallelism to linear processing

e Representation of a signal as a supremum
(infimum) of translated impulses

Fx)=\/ FO) *qyx) = /\ F(3)+ ¢, (x)

yek yek
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e Linear superposition principle

T/f(Z(?;‘ - Fj) = ZC?;‘ - (Fp)

iedJ ieJ

* Nonlinear superposition principle

(S(\/{“f * ﬂ) — \/{?; x0(F)),

ieJ ieJ

December, 2007 NCMCM 2007, Coimbatore, India
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e Translation invariant operator: commutes
with all translations

TeT,ie VT =T.

e Nonlinear convolutions define the effect of
Erosion and Dilation translation invariant
systems
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Y is LTI © Y (F)(x) = (FxH)(x)
=Y F()WH(x —y)

DTI (F®H)(x)2 \/ F(y)« H(x — y)
velk

ETI (F®'H)x)2 /\ F(y)¥ H'(x — y)
veE
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Generalized convolution @
adjunctions

. . . n .
e using scalar adjunctions (A, _,,. AHx-y)

 It1s possible to obtain the adjoint operator

Ap(F)x) = \/ FO)« Hx = y) = \/ Ay (F()
velE velk

e Which looks like a correlation

En(G)) = \ GO+ [H(y —x)I"
yek
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Lattice operators using fuzzy
norms

* Fuzzy intersection norm --> scalar dilation

T:10. 1 — [0. 1]
Fl. T(a,1) = a and T(a,0) = 0
F2. T(a.T(b,c)) =T(T(a.b).c) (associativity).
F3. T(a,.b) = T(b, a) (commutativity).

F4. b <c = T(a,b) < T(a, c) (increasing).
F5. T 1s a continuous function.
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 Fuzzy union norm --> scalar erosion

U:[0, 11> — [0, 1]

F1'.U(a,0) =aand U(a, 1) = 1.
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e Translations under the fuzzy framework

S = Fun(E, [0, 1])

Tho(F)X) = T(f(x —y),v)
T, (X)) =U(f(x =), v)
(h,v) e Ex]0, 1]
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* Signal representation with fuzzy translations

fe)y=\/Tlgx —y). fF(]

= AUl (x =), f()]

I, x=0 0. x=0
A ! ’ fay ’
61(-1){ o, q(x)= -
0, x#0 I, x#0
December, 2007 NCMCM 2007, Coimbatore, India
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e Translation invariant signal fuzzy dilations
and erosions with sup-7 and inf-U
convolutions

(f Or ) = \/ Tlglx = y). FO)],

(f Oy 9)x) 2 N\ Ulgx —y). fF(»)]
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e Fuzzy dilation adjoint Apr(F)x) £ (F Or H)(x)

Ena(G)V)E \ QUHX = y). G(1)]

xelk

where Q[ H(x — v), G(x)] is actually the adjoint
of the fuzzy T -norm:

I(a,v) <w v <Qa,w)
Q(a, w) =supfv € [0, 1]: T(a,v) < w}
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Example norms

Fuzzy intersection norm Adjoint norm
W, w<da
Min : Ti(a, v) = min(a, v) Qi(a, w) = 1 wsa
Product : 7T3(a,v) =a-v Dl w) = ! rlnm(w/a. D, a= g
) i =
Yager : T3(a,v) = 1 — (1 A[(1 —v)P (1 [(1— w) — (1 —a)P]VP,
_I_(l — {I)p]l/f-’)‘ p > 0. 93((1_ w) = w < a
I, w>a
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Results

Ed
s 2 n.Er 5'1“' gum
4 30 : g oo
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Figure 1. Comparison of 1D basic morphological and lattice-fuzzy signal operators. Rows 1 and 2, left to right: flat, minimum, product, Yager.
Row 1: original signal (solid line), dilation (dashed line), erosion (dotted line). Row 2: closing (dashed line), opening (dotted line). Courtesy of
[27].
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Modelling and Knowledge
representation based in Lattice

Theory
V. G. Kaburlasos
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Starting point

* Generalizes the Fuzzy-ART and Fuzzy-
ARTMAP architectures

 The Fuzzy Lattice Neurocomputing

— Proposes an abstract representation (FIN) based
on generalized interval (GI).

— Is defined based on inclusion measures and
distances on the FINs
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1

|The first input Aj=1(L) is memorized.
¥

) T
‘Set” all the learned classes ¢1....om

Recerve the next input (interval) A=t(L).
¥

4

3 g
Calculate  the fuzzy  membership  value
m, (A) for all “set” classes cx.

¥

Competition: Select the winner class ¢;=|_|w;; such that

m. (A)= m}::'r.\' Mg (A). Let L=argmax {o(AZwyj)}.
' i

1

6

Replace wr by Avwy.
Calculate the new
quotient Q({wy:}).

‘reset’ o

All classes are Memorize A:

L

‘reset”

o1 = A

N

0 l

Assign labels to classes by majority voting.

Fig.7-1 Flowchart of algorithm o-FLIV for leaming (training).
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Inclusion measure

G(A=wy;)
Vigilance parameter

D crit-

learning

Avwi .
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Advantages of o-FLN

e Deals with data uncertainty
» Different positive valuation functions
* Deals with disparate (lattice) data types

e Missing and don’t care values are treated
naturally: least and greatest lattice elements.

e Learning in one step, presentation order
dependent
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Intervals 1n the unit hypercube

e Lattice interval corresponds to a hyperbox
A= [a,b]z [(Gl_,. . .jal\'),(b],. . ._.,bN)]: [aljblj. . .,GN,bN]_.,

e Positive valuation function N
)= vO@)+v(g= N+2 (q; = p;)

i=1
e Lattice join

Avw= :G]_.,bl_., - _.,G'N_,b};]\f’[p],(]h- . -apl\':QN]:

a1/AP1, bingy,. . ..axVpN, bxvgn].
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* Degree of inclusion

N
N+ i(q;) —vi(p;i))
v(O6(p)) +v(q) 2.0i@) = vi(p

v(B(av p)+v(bv q) N

G(ASw)= v :
N+2 [vi(b; vq;)—vi(a; A p;)]
i=1
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MAP fieldF*

.ab
'% X (_ l
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Fig.7-4 The 6-FLNMAP neural network for inducing a function f: t(L)—1(K),
where both L and K are mathematical lattices.

December, 2007 NCMCM 2007, Coimbatore, India 78



Generalization

e Positive Valuation function on a lattice (L,<)
satisfies

v(x)+v(y)=v(xay)+v(xvy)
x<y=v(x)<v(y)

* A positive valuation in a lattice (L,<)
induces a metric (distance) d:LxL—R;

d(x,y) = v(x Vv y) — v(x A y)
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e An inclusion measure is a functiono :Lx L —[0,1]

satistying - o(x.x)=1VxEL
(IM2) xAy<x =>G(x,y) <1
(IM3) usw= G(x,u) < G(x,w)
e If vis a positive valuation in lattice (L,<) then
both expressions are inclusion measures
v(x)
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i©

Fuzzy Interval Numbers (FIN)

* AFINisafunction F:(0,1]—= M such that
(1) F(h)eM”
(2) either F(h)EMil or F(h)EMf‘
(3) hy<hy={x:F(h)=0} 2{x:F(h,)=0}

e where M" denotes the set of generalized
intervals of heigh A. It is a lattice ordered
linear space.
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e FINs can be models of

— Real numbers
— Intervals

— Fuzzy numbers

— Probability distributions

e FINSs inherit valuation, inclusion, metric
functions from the set of generalized

intervals

December, 2007

NCMCM 2007, Coimbatore, India

82



Probability distribution FIN

: | his togram | |
] BRI  E S S
| | |
i L
10F-- - |
i L
| |
0 0 ' : ' :
3.3 3.43.484 3.7 38 39 33 34 3559 37 38 39
(a) (b)

: 0.5¢(x), x=<3.559
1(x) =
1-0.5¢(x), x>3.559

|
|
|
1
1
|
1
|
|
|
|
|

(c)

December, 2007 NCMCM 2007, Coimbatore, India

83



Applications

e (Classification and clustering
— Benchmark problems
— Epidural surgery planification
— Orthopedics bone drilling
— Ambient ozone estimation

— Prediction of industrial sugar production

December, 2007 NCMCM 2007, Coimbatore, India 84



Table 8-8 Recognition results for the Sonar benchmark data set.

Method

g-FLINMAP for classification

G-FLN for clustering
Fuzzy ARAM

K-Nearest Neighbor
BackProp: Angle-Dep. ¥
Nearest Neighbor
BackProp: Angle-Ind. @

% Right on Testing

96.15
94.25
94.20
91.60
90.40
82.70
77.10

(1) Angle Dependent data ordering. (2) Angle Independent data ordering.
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Table 9-3 Performance of various methods on the Forest Covertype bench-
mark data set. The last column shows the number of induced rules.

Method % Correct no. of rules
Backpropagation 70 (6600)
FLNff 68.25 654
FLNmtf 66.27 1566
FLNotf 66.13 516
FLNst 66.10 503
FLNtf 62.58 3684
Linear discriminant analysis 58 -
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Conclusions

e Lattice computing defined as computing on
the lattice algebra (R,A,v,+) has been
maintaining its appeal in the last fifteen
years.
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Conclusions

e Application of lattice theory leads to new
computational paradigms arising from
— Fusion of established paradigms

* Mathematical morphology and fuzzy systems

e Neural networks and fuzzy systems

— Generalization of approaches

e Fuzzy Lattice Neurocomputing
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o

Future

e Lattice theory may be the formal framework
for the development of new approaches:

— Feature extraction based on linear unmixing
based on the identification of endmembers in
the data set.

— Fusion of stochastic models (Random Markov
Fields, Hidden Markov Models) and Fuzzy
Systems.
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Thank you for your attention
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