A Cooperative Approach to Particle
Swarm Optimization

Authors: Frans van den Bergh, Andries P. Engelbrecht

Journal: Transactions on Evolutionary Computation, vol 8, No. 3,
June 2004

Presentation: Jose Manuel Lopez Guede

Introduction

“Curse of dimensionality”

PSO

CPSO

CPSO-S«
CPSO-Hk

GA comparation

Results 2 of 28

Particle Swarm Optimizers |

e PSO:

— Stochastic optimization technique
— Swarm: a population

— During each iteration each particle accelerates
influenced by:
* |ts own personal best position
e Global best position

3 0of 28

Particle Swarm Optimizers Il

— 5§ denote the swarm size
— Each individual 1 < 7 < s
* space X;
 current velocity v;

* personal best position in the search space y;

4 of 28

Particle Swarm Optimizers Il

— During each iteration, each particle is updated:

i i (t+ 1) = wv; j(t) + crry () i 5 (E) — 2 5(1)]
+eor2,i () [95 () — xi j(0)] (D)

forall j € 1...n, thus, v, ; is the velocity of the jth dimension
of the ¢th particle, and ¢; and cs denote the acceleration coeffi-
cients. The new position of a particle 1s calculated using

}{-gl:.ﬁ -+ 1) = }{-g(.ﬂ) -+ "ﬂ(.ﬂ + 1). (2)

ry~U(0,1).r2 ~ U(0,1)
w 1n (1) 1s called the inertia weight.
Acceleration coefficients ¢; and 5

50f 28

Particle Swarm Optimizers Il

— During each iteration, each particle is updated:

The personal best position of each particle 1s updated using

fyit), i fxtE+1) > fyat)

— The global best position is updated:

S’(f» + 1) = arg min [(}"i(f» +])) . 1<i<s.
Yi

6 of 28

Cooperative Learning |

° PSO: position

1..s] ¢ Best position
~ iR of the particle
JAL L.y P
then Py, = Px; -
if /(Py;) < f(P¥) Bfe:;c] position
then P.§ = Py; of the swarm
endfor

Perform PSO updates on P using eqns. (1-2)
until stopping criterion is met

— Each particle represents an n-dim vector that can be

used as a potential solution.
7 of 28

Cooperative Learning Il

— Drawback:

e Authors show a numerical example where PSO goes to a
worst value in an iteration.

e Cause: error function is computed only after all the

components of the vector have been updated to their new
values.

— Solution:

e Evaluate the error function more frecuently.

e For every time a component in the vector has been updated.
— New problem:
 The evaluation is only possible with a compete vector.

8 of 28

Cooperative Learning Il

e CPSO-S:
— n-dim vectors are partitioned into n swarms of 1-D
— Each swarm represents 1 dimension of the problem

— “Context vector”:
e f requires an n-dim vector

e To calculate the context vector for the particles of swarm j,
the remainig components are the best values of the
remaining swarms.

9 of 28

Cooperative Learning |V

context vector

b(j,2f= (PL3,Poys. . Pio1.§,2. Pt B, PuF)
reate and initialise n one-dimensional PSOs : P;, j € [1..n]
repeat:
for each swarm j € [1..n] :
for each particle i € [1..s] :
if f(b(j,Pj-K;)) < f(b(j}‘pf'yf))
then P;.y; = P;.x;
then PJS’ = Pj.}’;
endfor
Perform PSO updates on P; using equations (1-2)
endfor
until stopping condition is true

f(b(1, P1.y)) is a strictly nonincreasing function

10 of 28

Cooperative Learning V

 Advantage:

— The error function f is evaluated after each component
in the vector is updated.

* However:
— Some components in the vector could be correlated.

— These components should be in the same swarm,
since the independent changes made by the different
swarms have a detrimental effect on correlated
variables.

— Swarms of 1-D, and swarms of c-D, taken blindly.
11 of 28

Cooperative Learning VI

e CPSO-Sk:

— Swarms of 1-D, and swarms of c-D, taken blindly,
hoping that some correlated variables end up in the
same swarm.

— Split factor: The vector is split in K parts (swarms)
— It is a particular CPSO-S case, where n=K.

12 of 28

Cooperative Learning VII

define
b(j,z)=(P.¥,.. Py, 2, Py, S Px.¥)
K] —n mod K
K =K—(n mod K)
Initialise K; [n/K|-dimensional PSOs:
P, j€ 1..K4]
Initialise K> |n/K |-dimensional PSOs:
Py, jE[(Ki+1).K]
repeat:
for each swarm j € [1..K] :
for each particle i € [1..s] :
if f(b(/,P;.x:)) < f(b(/,P}-y:))
then Py, = P;.x;
if f(b(/,P;.y:)) < f(b(j,P;.§))
then Pjy == Pjyz
endfor
Perform PSO updates on P; using (1-2)
endfor
until stopping condition is true

CPSO-S

13 of 28

Cooperative Learning VII

— Drawback:

* |tis possible that the algorithm become trapped in a state
where all the swarms are unable to discover better
solutions: stagnation.

e Authors show an example.

14 of 28

Hybrid CPSOs — CPSO-Hk |

 Motivation:
— CPSO-Sk can become trapped.
— PSO has the hability to scape from pseudominimizers.
— CPSO-Sk has faster convergence.

e Solution:

— Interleave the two algorithms.

e Execute CPSO-Sk for one iteration, followeb by one iteration
of PSO.

e Information interchange is a form of cooperation.

15 of 28

define
b(j.2) = (P §..... Pt §. 2Pt 5, .. Pi)
Ky =nmod K
E; = K—(n mod K}
CPSO-Sk | Initialise K| [n/K|-dimensional PSOs:
Pi. J € [1--K|:
Initialise K> |[n/K |-dimensional PSOs:
Pr. j€[(Ki+1).K]
Initialise an n-dimensional PSO : O
repeat:
for each swarm j < [1..K] :
for each particle i € [1..5] :
if £(b(j.P;-x) < f(b(/.P.y7))
CPSO-Sk > then F;.yi = F;.x;
if £(b(j.P1.y) < f(b(j.P;9))
then P.§ = P,.y,
endfor
Perform PSO updates on P; using (1-2)
endfor

Overwite 1 particle k Select random k ~ U(1,5/2) | Q.y # O.§
‘ of the swarm Q O.x; =b(1,P.¥)

for each particle j < [1..5] :
if f10.x;) < f{Q.y))
then Q.}’j = Q.I_j

PSO S| iff(0y)) < £(0)
then O.§ = Q.y;
endfor

Perform PSO updates on O using (1-2)
for swarm j ¢ [1..K] :

Swarms of the > Select random k~U(1,5/2) | Py, # Pi.¥
CPSO-Sk Pixp = OF;
endfor

until stopping condition is true 16 of 28

Experimental Setup |

e Compare the PSO, CSPO-Sk, CSPO-Hk algorithms.
e Measure: #function evaluations.

e Several popular functions in the PSO comunity
were selected for testing.

17 of 28

Experimental Setup Il

The Rosenbrock (or banana-valley) function (unimodal)

I
2

folx) = Z (IUU (2 — .'1.'%;_1)2 +(1 - -'“2&—1)2) _

i=1
The Quadric function (unimodal)
2

filx) = E E Tyl . N
i=l \J=l &I
fa 5| — | +1
%)= muz! gw’(%)

Ackley’s function (multimodal)

The generalized Griewank function (multimodal)

1 i
e | 2 2
fa(x)=—20exp | -0, w - Z T

“all the functions where
— exp (Z(m(_ﬂ)) + 20+ ¢ tested under coordinate
=1

rotation using Salomon’s
The generalized Rastrigin function (multimodal) algorithm”

T

f3(x) = Z (27 — 10 cos(2ma;) + 10) .

i=1 18 of 28

Experimental Setup Il

 PSO configuration:

— All experiments were run 50 times

— 10, 15, 20 particles per swarm.

— Results reported are averages os the best value in the

SWarm.

PARAMETERS USED FOR EXPERIMENTS

Function | n domain | threshold
fo 30 | 2.048 100
1 30 | 100 0.01
12 30 | 30 5.00
13 30| 5.12 100
T4 30 | 600 0.1

Domain: “magnitude to
which the initial random
particles are scaled”

19 of 28

Experimental Setup IV

PSO: “plain™ swarm using ¢; = 1.49,. ¢ = 1.49. w =
0.72. and vy 18 clamped to the domain, following Eber-
hart and Shi [17].

CPSO-S: A maximally “split” swarm using ¢; = 1.49,
cs = 1.49. w decreases linearly over time, and vy 18
clamped to the domain (refer to Table I).

CPSO-Sg: A “split” swarm using ¢; = 1,49, ¢z = 1.49,
w decreases linearly over time. and vy 18 clamped to
the domain (refer to Table I). The difference between this
swarm type and the split CPSO (above) is that the search-
space vector for CPSO-Sg is split into only six parts (of
five components each), instead of 30 parts.

CPSO-H: A hybrid swarm, consisting of a maximally
split swarm. coupled with a plain swarm, described 1n
Section I1I-A. Both components use the values ¢; = 1.49,
¢ = 1.49, w decreasing linearly over time. and ¥y«
clamped to the domain (refer to Table I).

CPSO-Hg: A hybrid swarm, consisting of a CPSO-Sg
swarm, coupled with a plain swarm. described in
Section IV. Both components use the values ¢; = 1.49,
¢z = 1.49. w decreasing linearly over time. and ¥y

Alamaad ta the dasmriati G rofor to Tablas T3

20 of 28

Experimental Setup V

* GA configuration:

* GA: A standard genetic algorithm, with parameters spec-
ified below.

* CCGA: A cooperative genetic algorithm [4], where the
search-space vector 1s maximally split so that each com-
ponent belongs to its own swarm. For the functions tested
here, this implies that 30 populations were employed in a
cooperative fashion.

21 of 28

Experimental Setup VI

The parameters for both types of GA are as follows.

Chromosome type: binary coded.

Chromosome length: 48 bits per function variable.
Crossover probability: 0.6.

Crossover strategy: Two-point.

Mutation probability: 1 /(48 x 30), assuming 30 variables
per function.

Fitness scaling: Scaling window of length 5.
Reproduction strategy: Fitness-proportionate with a [-el-
ement elitist strategy.

Population size: 100.

22 of 28

Results |

 Fixed-lteration Results |

— 2.1075 function evaluations.

ROSENBROCK [fg) AFTER 2 10® FUNCTION EVALUATIONS

Algorithm

5

Mean(Unrotated)

Mean(Rotated)

PSO

CPSO-5

CPSO-H

CPSO-Sg

CPSO-H;

10
15
2(0)
10
15
20
10
15
20
10
15
20
10
15
20

1.30e—01 + 1.45e-01
5.33e—03 £ 6.19¢—-03
0.65e—03 = 7.28e—-03
7.58e—01 + 1.16e—01
7.306e—01 £ 3.04e-02
9.06e 01 + 3.56e 02
2.92e—01 + 2.19e—02
3. lde—01 = 1.74e—02
4.35¢—01 + 2.48¢—02
| 41e+00 + 4.73¢—01
2.47e+00 + 7.00e—01
|.59¢+00 + 5.03¢—01
| .94e—01 + 2.63e—-01
2.59¢—01 + 2.47¢—01
4 21e—01 = 3.21e—01

3.32e—01 £+ 9.50e 02
2.84e—01 = 5.17e—02
3.16e—-01 =3 4le-02
3.23e+00 £ 7.78e—01
2.58e400 + 5.36e—-01
437e+00 £ 851e-01
4.26e—01 £ 3.83e—02
4.96e—01 = 4.53e-02
1.06e+00 4+ 2.96e—0)1
2.65¢+00 + 6.609c—01
3.84e+00 £ 9.81e—01
4.27e+00 £ 7.73¢—01
1.77e—01 + 3.62e-02
3.73¢—01 £+ 2.07e—01
4.73e—01 + 1.35e—-01

GA
CCGA

100
100

6.32e+01 = 1.19e¢+01
3.80e+00 + 1.93e—-01

6.15e+01 = 1.42e+401
1.32e+01 + 2.19e+0()

23 of 28

Results |

e Fixed-Iteration Results Il

— 2.1075 function evaluations.

: .—a— et
. - COGA
N B + CPS0-5
A ». CPS0-56
:h___ -~ CPS0O-H
: T - CPSO-HE
o d —— = PS5O
)]
i
LL‘m
E ™ — I:F.H."'- ;
= ﬁ"‘2;3-___ - Bieemm PSS A o o . -
b 'ﬂi—h-.._z_. —_— "
S, B = -
o — x_"-\-\.\%- - "$,_ *
e - * + - +
R Temim ———
T e &
~ 2
— -g.______h
e
'HH__
P
1 "'B-___
o -\"‘\-___L__-
1 1 I 1
[y 50000 100000 150000 200000

Function Evaluations 2 4 Of 2 8

Results ||

Fixed-lteration Results Il

— PSO-based algs. performed better that GA algs. in
general.

— Cooperative algorithms collectivelly performed better
than the standard PSO in 80% of the cases.

25 of 28

Results IV

 Robustness and speed Results |

— “Robustness”: the algorithm succeed in reducing the

the f below a specified threshold using fewer that than
a number of evaluations.

— “A robust algorithm”: one that manages to reach the
threshold consistentle (during all runs).

26 of 28

Results V

 Robustness and speed Results Il

QUADRIC { f7) ROBUSTNESS ANALYSIS

Unrotated Rotated
Algorithm s | Succeeded | Fn Evals. | Sueceeded | Fn Evals.
PSO 10 38 34838 () N/A
15 50 16735 1 26101
20 50 14574 2 175788
CPSO-5 10 50 TOZ15 0 N/A
15 50 77265 0 N/A
20 50 83168 0 N/A
CPSO-H 10 50 40056 0 N/A
15 50 53341 (0 N/A
20 30 61430 0 N/A
CPS0-5¢ 10 50 77818 0 N/A
135 50 101565 0 N/A
20 50 115687 0 N/A
CPSO-Hg 10 50 22200 1 126271
15 50 31503 0 N/A
20 50 43918 0 N/A
GA 100 0 N/A 0 N/A
CCGA 100 0 N/A 0 N/A 27 of 28

Results VI

Robustness and speed Results |l

— CPSO-Hs appears to be the winner because it achieved
a perfect score in 7 of 10 cases.

— There is a tradeoff between the convergence speed
and the robustness of the algorithm.

28 of 28

	A Cooperative Approach to Particle Swarm Optimization
	Introduction
	Particle Swarm Optimizers I
	Particle Swarm Optimizers II
	Particle Swarm Optimizers III
	Particle Swarm Optimizers III
	Cooperative Learning I
	Cooperative Learning II
	Cooperative Learning III
	Cooperative Learning IV
	Cooperative Learning V
	Cooperative Learning VI
	Cooperative Learning VII
	Cooperative Learning VII
	Hybrid CPSOs – CPSO-Hk I
	Número de diapositiva 16
	Experimental Setup I
	Experimental Setup II
	Experimental Setup III
	Experimental Setup IV
	Experimental Setup V
	Experimental Setup VI
	Results I
	Results II
	Results III
	Results IV
	Results V
	Results VI

