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Introduction

• “Curse of dimensionality”

• PSO

• CPSO

• CPSO-Sk

• CPSO-Hk

• GA comparation

• Results
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Particle Swarm Optimizers I

• PSO:
– Stochastic optimization technique

– Swarm: a population

– During each iteration each particle accelerates 
influenced by:

• Its own personal best position

• Global best position
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Particle Swarm Optimizers II

–
–

•
•
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Particle Swarm Optimizers III

– During each iteration, each particle is updated:   



6 of 28

Particle Swarm Optimizers III

– During each iteration, each particle is updated:   

– The global best position is updated:
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Cooperative Learning I

• PSO:

– Each particle represents an n-dim vector that can be 
used as a potential solution.

position

Best position 
of the particle

Best position 
of the swarm
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Cooperative Learning II

– Drawback:
• Authors show a numerical example where PSO goes to a 

worst value in an iteration.

• Cause: error function is computed only after all the 
components of the vector have been updated to their new 
values.

– Solution:
• Evaluate the error function more frecuently.

• For every time a component in the vector has been updated.

– New problem:
• The evaluation is only possible with a compete vector. 
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Cooperative Learning III

• CPSO-S:
– n-dim vectors are partitioned into n swarms of 1-D

– Each swarm represents 1 dimension of the problem

– “Context vector”:
• f requires an n-dim vector

• To calculate the context vector for the particles of swarm j, 
the remainig components are the best values of the 
remaining swarms.
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Cooperative Learning IV
context vector
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Cooperative Learning V

• Advantage:
– The error function f is evaluated after each component 

in the vector is updated.

• However:
– Some components in the vector could be correlated.

– These components should be in the same swarm, 
since the independent changes made by the different 
swarms have a detrimental effect on correlated 
variables.

– Swarms of 1-D, and swarms of c-D, taken blindly.
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Cooperative Learning VI

• CPSO-Sk:
– Swarms of 1-D, and swarms of c-D, taken blindly, 

hoping that some correlated variables end up in the 
same swarm.

– Split factor: The vector is split in K parts (swarms)

– It is a particular CPSO-S case, where n=K.
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Cooperative Learning VII

CPSO-S
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Cooperative Learning VII

– Drawback:
• It is possible that the algorithm become trapped in a state 

where all the swarms are unable to discover better 
solutions: stagnation.

• Authors  show an example.



15 of 28

Hybrid CPSOs – CPSO-Hk I

• Motivation:
– CPSO-Sk can become trapped.

– PSO has the hability to scape from pseudominimizers.

– CPSO-Sk has faster convergence.

• Solution:
– Interleave the two algorithms.

• Execute CPSO-Sk  for one iteration, followeb by one iteration 
of PSO.

• Information interchange is a form of cooperation.
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CPSO-Sk

CPSO-Sk

Overwite 1 particle k 
of the swarm Q

PSO

Swarms of the
CPSO-Sk
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Experimental Setup I

• Compare the PSO, CSPO-Sk, CSPO-Hk algorithms.

• Measure: #function evaluations.

• Several popular functions in the PSO comunity 
were selected for testing.
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Experimental Setup II

“all the functions where
tested under coordinate
rotation using Salomon’s

algorithm”
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Experimental Setup III

• PSO configuration:
– All experiments were run 50 times

– 10, 15, 20 particles per swarm.

– Results reported are averages os the best value in the 
swarm.

Domain: “magnitude to
which the initial random

particles are scaled”
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Experimental Setup IV
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Experimental Setup V

• GA configuration:
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Experimental Setup VI
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Results I

• Fixed-Iteration Results I
– 2.10^5 function evaluations.
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Results II

• Fixed-Iteration Results II
– 2.10^5 function evaluations.
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Results III

• Fixed-Iteration Results III
– PSO-based algs. performed better that GA algs. in 

general.

– Cooperative algorithms collectivelly performed better
than the standard PSO in 80% of the cases.
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Results IV

• Robustness and speed Results I
– “Robustness”: the algorithm succeed in reducing the

the f below a specified threshold using fewer that than
a number of evaluations.

– “A robust algorithm”: one that manages to reach the
threshold consistentle (during all runs).
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Results V

• Robustness and speed Results II
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Results VI

• Robustness and speed Results III
– CPSO-H6 appears to be the winner because it achieved

a perfect score in 7 of 10 cases.

– There is a tradeoff between the convergence speed
and the robustness of the algorithm.
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