Enhancing Active Learning Computed Tomography Image Segmentation with Domain Knowledge

#### Borja Ayerdi, Josu Maiora, Manuel Graña UPV/EHU

September 12, 2013 HAIS 2013

Borja Ayerdi, Josu Maiora, Manuel Graña HAIS 2013

Enhancing Active Learning Computed Tomography Image Segment

# Enhancing Active Learning Computed Tomography Image Segmentation with Domain Knowledge

- Introduction
- Methods
  - Random Forest
  - Active learning
  - Domain Knowlegde
- Experimental setup
- Experimental Results
- Conclusion and future works

## Introduction

• Several segmentation methods for vascular structures have been developed but segmentation of abdominal images, specially the AAA thrombus, is still a challenging task.



Figure : Slice example

### Introduction

- Abdominal Aortic Aneurysms (AAA) is a focal dilation of the aorta in the abdominal region.
- Endovascular prosthesis for aneurysm repair (EVAR): effective technique to reduce the pressure and rupture risk of aneurysm.

## Introduction



æ

Borja Ayerdi, Josu Maiora, Manuel Graña HAIS 2013

### Introduction: Our approach

- Initially a multiclass classification of voxel samples
  - Lumen.
  - Thrombus.
  - Bones .
  - Background.

#### • Simplify to binary classification.

- Aortic thrombus. (Lumen + Thrombus)
- Background. (Bones + Background)
- We perform the classification with a supervised method: **Random Forest**.
- We build the training data in an iterative **active learning** process .
- Expert knowlegde based post-processing.

Enhancing Active Learning Computed Tomography Image Segment

#### Introduction: Our approach



Borja Ayerdi, Josu Maiora, Manuel Graña HAIS 2013

### Methods: Active learning

#### So, how are we building the training set?

- Small.
- Focused on those pixels effectively improving the performance of the model .
  - The model returns to the user the pixels whose classification outcome is the most **uncertain**.
  - Accurate labeling by the user.
  - Pixels are included into the training set.

#### Methods: Decision tree

• The **decision trees** are constructed by recursively partitioning the data space. We define a separation based on a single attribute recursively for each node of the tree, from the root to the leaves with some discretion.

#### Methods: Random Forest

- The **Random Forest** are ensembles of decision trees where each decision tree is constructed from a subset of the data set to train and a random subset of input variables.
- Try to get better classification results combining weak classifiers and diversified.

## Methods: Domain Knowlegde

- Allows to post-processing the results of the classification in order to remove spurious detections.
  - At each axial slice, the thrombus is composed of only one **connected component**. We can remove all connected components disconnected from the one that is more likely to be the thrombus, which is identified by the following rules.
  - Thrombus has a roughly **circular shape** in any axial cut of the volume.
  - In succesive slices moving away from the thrombus middle slice the **radius** of the thrombus region **decreases**.
  - In successive axial slices, the thrombus **region overlap** is large (between 80% and 90% of the area).
  - The 2D coordinates of the **centroid of the thrombus region** have a small (smooth) **variation** between successive slices.

### Experimental setup

- 6 real human contrast-enhanced datasets of the abdominal area.
- Two-class segmentation problem.
- We get the optimal parameters and feature set for the RF. The increase in performance stabilizes around number of trees=80 and depth=20.
- The performance measure results of the experiments are the post-processing average **True Positive Rate** (TPR).

### Experimental results

• Red curves corresponds to RF results trained with Active Learning, and blue curves to the Domain Knowledge post-processing.



## Experimental results



æ

∍⊳

## Experimental results



æ

## Volume rendering

 Volume rendering of aortic lumen (green) and thrombus (red) obtained from the segmentation of one CT volume. (a) manual segmentation of the ground truth, (b) result of post-processing rules.



## Conclusions

- With **active learning** we build quickly and efficiently specific classifiers trained on the volume to be segmented with a minimum number of training samples requiring labeling.
- This results can be improved by using specific **Domain Knowledge** of the structure being segmented.
- We have transformed such rules in **heuristic post-processing rules**.
- The results show that in some cases, the application of such heuristics can provide dramatic increase in performance, maintaining all the advantages of the Active Learning approach.

### Conclusions

• Thank you for your attention!