'''''''''

Dendritic Computing in the Lattice
Domain

Gerhard X Ritter

CISE Department, University of Florida, USA



IIIIIIIIIIIII

Overvi
Part |:

Part |1:

ew

Background

Rationale For Lattice Based Dendritic
Computing

Lattice Neural Networks (LNNSs)
Problems Associated With Current LNNs

A Novel Two Metric Model

The Basic Idea Behind The Two Metric
Model

Lattice Metrics and Hyperplanes
The Two Metric Model and Examples
Concluding Remarks and Questions

Dendritic Combputinag — p. 2/42



LIIVERSITY OF
@& F1 ORIDA

Rationale for Dendritic Computing

Basic Goal: A return of ANNS to its Roots In
Neurobiology and Neurophysics

Radial Basis Function NNs, SVM, Boltzmann
Machines, etc., bear little resemblance to
biological neural networks

Dendrites make up more than’ of a neuron’s
membrane

Dendrites make up the largest component in both
surface area and volume of the brain

A neuron in the cortex typically sends messages
to approximatelyl0* other neurons.
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Rationale for Dendritic Computing
Dendrites and dendritic spines are major
postsynaptic targets of presynaptic inputs

The number of synapses on a single neuron
ranges between 500 and 200,000

The number of synapses in the human brain
ranges between 60 trillion and 240 trillion

(240 x 10'2)
These synapses reside on 10 to 20 billion neurons
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Rationale for Dendritic Computing

Recent research results demonstrate that the
dynamic interaction of inputs in dendrites
containing voltage-sensitive ion channels make
them capable of realizing nonlinear interactions,
logical operations, and possibly other local
domain computation (Poggio, Koch, Shepherd,
Rall, Segev, Perkel, et.al.)

Based on their experimentations, these
researchers make the case that it isdé&arites
and not the neural cell bodies trat the basic
computational units of the brain.

Thus, when attempting to model artificial brain
networks, one cannot ignore dendrites
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Rationale for Lattice Computing

Neurons with dendrites can function as many
Independent subunits with each unit being able to
Implement a rich repertoire dbgical operations

Logical functions such aXOR, AND, OR,
andNOT, Koch, Riesenhuber, Poggio, Setiono,
Segev and others

Lattce operations involve onlyax, min, and
addition; I.e., Vv, A, and+

Thus, lattice operations provide for extremely fast
neural computation and fast learning methods
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Biological Neurons
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Figure 1. Simplified sketch of the processes of a bio-
logical neuron.
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Dendritic Computation: Assumptions
The postsynaptic neuraly; receives input from
n presynaptic neurondy, ..., N,.

Each input neurowv; has axonal branches that
terminate at various synaptic regionsidf.

The synaptic regions are distributed along a finite
number of dendritesg, . . . , di ;).

Incoming information from axonal branches is
transformed in the synaptic interaction

The transformed data will result in either an
excitatory postsynaptic response or anmibitory
postsynaptic response in the dendrites membrane
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Postsynaptic neuron with dendritic structures

Terminal branches of axonal fibers originating from
the presynaptic neurons make contact with synaptic
sites on dendritic branches 6f;
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Dendritic Computation: Mathematical M odel

The computation performed by tlia¢h dendrite for
inputx = (x1,...,x,) € R"is given by

— Pjk /\ /\ m2+wf]k) )

i€l (k) beL(i
where
x; — value of neuronV;;
I(k) €A{1,...,n} —setof all input neurons with

terminal fibers that synapse on dendriig;

L(z) C {0,1} — set of terminal fibers aN; that
synapse on dendrii€;

pir € {—1,1} — EPSP/IPSP of ;.
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Dendritic Computation: Mathematical M odel

The valuer/ (x) is passed to the cell body and the
state of)/; is a function of the input received

from all its dendritic postsynaptic results. The
total value received by/; Is given by

| K(j)
T (x) =p; \ T(x).
k=1
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The Capabilitiesof an SLLP

An SLLP can distiguish between any given
number of pattern classes to within any desired
degree ot > 0.

More precisely, suppos¥;, Xo, ..., X,, denotes
a collection of disjoint compact subsetskf.

For eaclp € {1,...,m}, define
Y;? — U;’nzl,jyép Xj
&p = d(va Y;?) >0

o = s min{ey, ..., en}.

As the following theorem shows, a given pattern
x € R™ will be recognised correctly as belonging
to classC, wheneverx € X,

Dendritic Combputina — n. 12/42



LIIVERSITY OF
@& F1 ORIDA

The Capabilitiesof an SLLP

Theorem. If { X, X,,..., X,,} is a collection of
disjoint compact subsets Bf* ands a positive
number withe < ¢, then there exists a single
layer lattice based perceptron that assigns each
pointx € R" to classC; whenevex € X; and
j€{l,...,m}, andtoclas€y = - J;_, C;
wheneverd(x, X;) > ¢, Vi =1,...,m.
Furthermore, no point € R" |s assigned to more
than one class.
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Graphical Interpretation of Theorem

Any point in the setX Is identified with clasg’;;
points within thes-band may or may not be classified

as belonging t@’;, points outside the-bands will not
be associated with a clag§ V.

Dendritic Combputina — n. 14/42



LPJIVERSITY OF

FLORIDA

Learning in LNNs

Early training methods were based on the proofs
of the preceding Theorems.

All training algorithms involve the growth of
axonal branches, computation of branch weights,
creation of dendrites, and synapses.

The first training algorithm developed was based
on elimination of foreign patterns from a given
training set (min or intersection).

The second training algorithm was based on
small region merging (max or union).
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(a) SLLP: 3 dendrites, 9 axonal branches) MLP 13
hidden neorons and 2000 epochs.
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SLLP Using Merging
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During training, the SLLP grows 20 dendrites, 19
excitatory and 1 inhibitorydashed).
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Another M erging Example
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Learning in LNNs

Classifier Recognition
SLLP (elimination) 98.0%
Backpropagation 96%
Resilient Backpropagation 96.2%
Bayesian Classifier 96.8%
Fuzzy LNN 100%

UC Irvine lonosphere data set (2-class problem in
R3* with training set = 65% of data set)
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Learning in LNNs

Classifier Recognition
Fuzzy SLLP (merge/elimination) 98.7%
Backpropagation 95.2%
Fuzzy Min-Max NN 97.3%
Bayesian Classifier 97.3%
Fisher Ratios Discimination 96.0%
Ho-Kashyap 97.3%

Fisher’s Iris Data Set. A 3-class problem in
R* with training set = 50% of data set.
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Topology of the dendritic associative memory based
on the dendritic model. The network is fully
connected.

Dendritic Combputina — n. 23/42



LNIVERSITY OF
FLORIDA

Patternsto Store

Top row represents the patteras x?, andx?®, while
the bottom row depicts the associated pattgrns?,
andy?. Heren = 2500 andm = 1500.
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The top row shows noisy input patterns. Bottom row
shows perfect racall association.
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i > % i > x
The triangular data can never be modedeattly

using either elimination or merging.
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Learning in LNNs

A. Barmpoutis extended the elimination method
to arbitrary orthonormal basis settings.

Basic Equation:

T/‘Z(X): v Nicrey Neeri (— D' (R - x); +wf]k)
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Problemswith Rotations

\\R

The minimal standard ..-rectangle and the minimal
45° OB-rectangle are as shown.
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L attice Metrics

Ly metricdy (x,y) = >y |z — vl
Lo metricd(x,y) = Vi |z: — vl

Hausdorff metric based on either tligor d
metric
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Thed; Sphere inR’
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Hyperplanes

A hyperplane INR"” Is defined by
a1, + asxs + - -+ + a,x, = 0,

where not all the:,’s are zero

If a; € {—1,1} V1, then the hyperplane is an
L1-hyperplane

If a;, = £1 anda; = 0V j # i, then the
hyperplane is at...-hyperplane.
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Pertinent Hyperplane Properties

A hyperplane can also be defined by the function
f(X) :a1x1+a2x2+---+anxn—b:()

A hyperplane separat@s’ into two half-spaces
H™ (i.e. f(x) > 0)andH ™~ (i.e. f(x) < 0)

Up to parallelism, there ane L..-hyperplanes
and2"~! L;-hyperplanes ifR"
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Summation Formulaefor L,-Hyperplanes

Starting with the summations

Li(x) = x1 + 2
Ly(x) = —a1+ 25

It IS easy to generate all summations for a given
dimensionn using the recursion formula:

L2 . 0f j=1,..., 272
T S v SR ety
/ — L' (x)+x, If j=2""7"+1,

where; =1, ..., 2" 2,
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Pointx = (x1,x2) IS in the triangle=

Ll(X) /N\ (4 — Ll(X)) /N\ (LQ(X) + 2) /N\ —LQ(X)
AL A (2—21) Axg A (2 —29) >0
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The Two Metric Model

The previous inequality is equivalent to

/\/\ x) + ;)]

1=1 /=0
/\/\ zzjz—l—wg)}ZO
1=1 /=0

wherew; = wy = wi = wi = 0, wy = —4,

w% = 2, andw% = —2 = wg.
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The Two Metric Model

This generalizes to

Tgx = pk /\ /\ xﬂrwfjk)}

i€l (k) beL(i

qk /\ /\ ) + wz]k)}

ieJ (k) bel’ (i

wherewﬁjk IS the synaptic weight at synapse of

L;, J(k) € {1,...,2" 11 set of all input neurons
L; with terminal fibers on ;.
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Left : LNN solving the triangle problem derived from
learning (elimination) Right : LNN after Pruning.
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Left : The2-D XOR Problem.Right : LNN derived
from learning followed by pruning
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Left : The2-D XOR Problem.Right : LNN derived
from learning followed by pruning
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Questions?

Thank you!
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