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Overview
Part I: Background

• Rationale For Lattice Based Dendritic
Computing

• Lattice Neural Networks (LNNs)
• Problems Associated With Current LNNs

Part II: A Novel Two Metric Model
• The Basic Idea Behind The Two Metric

Model
• Lattice Metrics and Hyperplanes
• The Two Metric Model and Examples
• Concluding Remarks and Questions
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Rationale for Dendritic Computing
• Basic Goal: A return of ANNs to its Roots in

Neurobiology and Neurophysics
• Radial Basis Function NNs, SVM, Boltzmann

Machines, etc., bear little resemblance to
biological neural networks

• Dendrites make up more than50% of a neuron’s
membrane

• Dendrites make up the largest component in both
surface area and volume of the brain

• A neuron in the cortex typically sends messages
to approximately104 other neurons.
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Rationale for Dendritic Computing
• Dendrites and dendritic spines are major

postsynaptic targets of presynaptic inputs
• The number of synapses on a single neuron

ranges between 500 and 200,000
• The number of synapses in the human brain

ranges between 60 trillion and 240 trillion
(240× 1012)

• These synapses reside on 10 to 20 billion neurons
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Rationale for Dendritic Computing
• Recent research results demonstrate that the

dynamic interaction of inputs in dendrites
containing voltage-sensitive ion channels make
them capable of realizing nonlinear interactions,
logical operations, and possibly other local
domain computation (Poggio, Koch, Shepherd,
Rall, Segev, Perkel, et.al.)

• Based on their experimentations, these
researchers make the case that it is thedendrites
and not the neural cell bodies thatare the basic
computational units of the brain.

• Thus, when attempting to model artificial brain
networks, one cannot ignore dendrites
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Rationale for Lattice Computing
• Neurons with dendrites can function as many

independent subunits with each unit being able to
implement a rich repertoire oflogical operations

• Logical functions such asXOR, AND, OR,
andNOT; Koch, Riesenhuber, Poggio, Setiono,
Segev and others

• Lattce operations involve onlymax, min, and
addition; i.e.,∨, ∧, and+

• Thus, lattice operations provide for extremely fast
neural computation and fast learning methods
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Biological Neurons

Figure 1: Simplified sketch of the processes of a bio-

logical neuron.
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Dendritic Computation: Assumptions
• The postsynaptic neuronMj receives input from
n presynaptic neuronsN1, . . . , Nn.

• Each input neuronNi has axonal branches that
terminate at various synaptic regions ofMj.

• The synaptic regions are distributed along a finite
number of dendritesd1, . . . , dK(j).

• Incoming information from axonal branches is
transformed in the synaptic interaction

• The transformed data will result in either an
excitatory postsynaptic response or aninhibitory
postsynaptic response in the dendrites membrane.
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Postsynaptic neuron with dendritic structures
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Dendritic Computation: Mathematical Model
The computation performed by thekth dendrite for
inputx = (x1, . . . , xn)

′ ∈ R
n is given by

τ
j
k(x) = pjk

∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

xi + wℓ
ijk

)

,

where
• xi – value of neuronNi;
• I(k) ⊆ {1, . . . , n} – set of all input neurons with

terminal fibers that synapse on dendritedjk;

• L(i) ⊆ {0, 1} – set of terminal fibers ofNi that
synapse on dendritedjk;

• pjk ∈ {−1, 1} – EPSP/IPSP ofdjk.
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Dendritic Computation: Mathematical Model

• The valueτ jk (x) is passed to the cell body and the
state ofMj is a function of the input received
from all its dendritic postsynaptic results. The
total value received byMj is given by

τ j(x) = pj

K(j)
∧

k=1

τ
j
k(x).
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The Capabilities of an SLLP
• An SLLP can distiguish between any given

number of pattern classes to within any desired
degree ofε > 0.

• More precisely, supposeX1, X2, . . . ,Xm denotes
a collection of disjoint compact subsets ofR

n.
• For eachp ∈ {1, . . . ,m}, define
Yp =

⋃m
j=1,j 6=pXj

εp = d(Xp, Yp) > 0

ε0 =
1
2 min{ε1, . . . , εm}.

• As the following theorem shows, a given pattern
x ∈ R

n will be recognised correctly as belonging
to classCp wheneverx ∈ Xp
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The Capabilities of an SLLP

• Theorem. If {X1, X2, . . . , Xm} is a collection of
disjoint compact subsets ofRn andε a positive
number withε < ε0, then there exists a single
layer lattice based perceptron that assigns each
pointx ∈ R

n to classCj wheneverx ∈ Xj and
j ∈ {1, . . . ,m}, and to classC0 = ¬

⋃m
j=1Cj

wheneverd(x, Xi) > ε, ∀i = 1, . . . ,m.
Furthermore, no pointx ∈ R

n is assigned to more
than one class.
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Graphical Interpretation of Theorem

Any point in the setXj is identified with classCj;
points within theǫ-band may or may not be classified
as belonging toCj, points outside theǫ-bands will not
be associated with a classCj ∀j.
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Learning in LNNs

• Early training methods were based on the proofs
of the preceding Theorems.

• All training algorithms involve the growth of
axonal branches, computation of branch weights,
creation of dendrites, and synapses.

• The first training algorithm developed was based
on elimination of foreign patterns from a given
training set (min or intersection).

• The second training algorithm was based on
small region merging (max or union).
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Left : Two class data set.Right : The elimination
method.
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SLLP Using Elemination VS MLP

(a) SLLP: 3 dendrites, 9 axonal branches. (b) MLP 13
hidden neorons and 2000 epochs.
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SLLP Using Merging

During training, the SLLP grows 20 dendrites, 19
excitatory and 1 inhibitory (dashed).
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Another Merging Example
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Learning in LNNs

Classifier Recognition

SLLP (elimination) 98.0%
Backpropagation 96%
Resilient Backpropagation 96.2%
Bayesian Classifier 96.8%
Fuzzy LNN 100%

UC Irvine Ionosphere data set (2-class problem in
R

34 with training set = 65% of data set)
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Learning in LNNs

Classifier Recognition

Fuzzy SLLP (merge/elimination) 98.7%
Backpropagation 95.2%
Fuzzy Min-Max NN 97.3%
Bayesian Classifier 97.3%
Fisher Ratios Discimination 96.0%
Ho-Kashyap 97.3%

Fisher’s Iris Data Set. A 3-class problem in
R

4 with training set = 50% of data set.
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Dendritic Model of an Associative Memory

Topology of the dendritic associative memory based
on the dendritic model. The network is fully
connected.
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Patterns to Store

Top row represents the patternsx1,x2, andx3, while
the bottom row depicts the associated patternsy1,y2,
andy3. Heren = 2500 andm = 1500.
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Successful Recall of Noisy Patterns

The top row shows noisy input patterns. Bottom row
shows perfect racall association.
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Problems with the Hyperbox Approach
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The triangular data can never be modeledexactly
using either elimination or merging.
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Learning in LNNs

• A. Barmpoutis extended the elimination method
to arbitrary orthonormal basis settings.

• Basic Equation:

τ
j
k(x) = p

j
k

∧

i∈I(k)

∧

ℓ∈L(i)(−1)1−ℓ
(

(Rk · x)i + wℓ
ijk

)
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Problems with Rotations
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The minimal standardL∞-rectangle and the minimal
45◦ OB-rectangle are as shown.
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Lattice Metrics

• L1 metricd1(x,y) =
∑n

i=1 |xi − yi|

• L∞ metricd∞(x,y) =
∨n

i=1 |xi − yi|

• Hausdorff metric based on either thed1 or d∞
metric
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Hyperplanes

• A hyperplane inRn is defined by

a1x1 + a2x2 + · · ·+ anxn = b,

where not all theai’s are zero
• If ai ∈ {−1, 1} ∀ i, then the hyperplane is an
L1-hyperplane

• If ai = ±1 andaj = 0 ∀ j 6= i, then the
hyperplane is anL∞-hyperplane.
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Pertinent Hyperplane Properties

• A hyperplane can also be defined by the function

f(x) = a1x1 + a2x2 + · · ·+ anxn − b = 0

• A hyperplane separatesRn into two half-spaces
H+ (i.e. f(x) ≥ 0) andH− (i.e. f(x) ≤ 0)

• Up to parallelism, there aren L∞-hyperplanes
and2n−1 L1-hyperplanes inRn
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Summation Formulae for L1-Hyperplanes

Starting with the summations

L1
1(x) = x1 + x2

L1
2(x) = −x1 + x2

it is easy to generate all summations for a given
dimensionn using the recursion formula:

Ln−1
j (x) =

{

Ln−2
j (x) + xn if j = 1, . . . , 2n−2

−Ln−2
i (x) + xn if j = 2n−2 + i,

wherei = 1, . . . , 2n−2.
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The Two Metric Model

• The previous inequality is equivalent to

τ(x) =
[

2
∧

i=1

1
∧

ℓ=0

(−1)1−ℓ
(

Li(x) + ωℓ
i

)]

∧
[

2
∧

i=1

1
∧

ℓ=0

(−1)1−ℓ
(

xi + wℓ
i

)]

≥ 0

whereω1
1 = ω0

2 = w1
1 = w1

2 = 0, ω0
2 = −4,

ω1
2 = 2, andw2

1 = −2 = w0
2.
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The Two Metric Model

• This generalizes to

τ
j
k (x) =

[

p
j
k

∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ(xi + wℓ
ijk)

]

∧
[

q
j
k

∧

i∈J(k)

∧

ℓ∈L′(i)

(−1)1−ℓ(Li(x) + ωℓ
ijk)

]

,

whereωℓ
hjk is the synaptic weight at synapse of

Li, J(k) ⊆ {1, . . . , 2n−1} set of all input neurons
Li with terminal fibers ondjk.
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r

Two metric error:Area(P 2 ∩H2)− πr2, VS single
metric error:Area(H2)− πr2 = r2(4− π).
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Questions?

Thank you!
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