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Introduction
 Nowadays, many domains rely on Rule-Based 

Systems (RBSs) to effectively manage their 
business

 Such systems allow to 
 model a domain
 express the logic of the business processes
 react to external stimuli

 When the conditions of a rule match the 
current status of the model, that rule triggers 
and its associated action takes place, possibly 
updating the model and triggering other rules
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Limitations of  RBSs
 E.g.: Tour operators use a RBS to validate 

offers according to their quality standard

 The process of developing RBSs rules is 
typically non-monotonic
 refactoring of rules may be required when updating the 

knowledge base

 If a tour operator decides to introduce an 
offer with at least one overnight stay (calling 
it a package), the validation rule has to be 
changed accordingly 



A Practical Example

 Validate offers according to  
quality standard, rejecting the 
bad ones

rule "validating offers"
when
 current item is an offer and
 it does not match the quality 

standard

then
 notify its author
 reject it

end
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A Practical Example

 Validate offers according to  
quality standard, rejecting the 
bad ones

rule "validating offers"
when
 current item is an offer and
 it does not match the quality 

standard

then
 notify its author
 reject it

end

 The rule does not trigger on 
packages unless 
 a similar one is added for packages
 the previous one is modified

rule "validating items"
when
 (current item is an offer or
 is a package) and
 it does not match the quality 

standard

then
 notify its author
 reject it

end



Limitations of  RBSs
 A Description Logics (DL) model, instead, would 

have inferred the relation between packages and 
offers 

 Thus the RBS could exploit it and continue to 
operate without needing to change the rules



Limitations of  RBSs
 A Description Logics (DL) model, instead, would 

have inferred the relation between packages and 
offers 

 Thus the RBS could exploit it and continue to 
operate without needing to change the rules

 Similarly, many real-life domains are not «crisp», 
so Fuzzy Logics (FL) could help RBSs to handle 
«imperfect» knowledge (i.e.: by computing «how 
much the offer matches the quality standard»)



Motivations
 Growing interest into the combination of DL’s 

descriptive capacity with RBS’ operational 
semantics and FL expressiveness

 DL: formal languages to represent knowledge, 
algorithms to reason upon it (consistency, classification, 
recognition)

 RBS: express application logic with rules, triggered rules 
produce the outcomes expected by business logic

 FL: express imperfect real-life domains naturally going 
beyond crisp knowledge

 Each single technology is mature by itself but 
some domains would benefit from all of them 
together (i.e.: Semantic Web)



Related Works

 The integration of couples of those 
reasoning styles has been already 
attempted or studied in literature:
 DL & RBS: Jena, Algernon, Sweet-Rules (+FOL)
 FL & RBS: FuzzyClips, FuzzyJess, Drools:Chance
 DL & FL: DeLorean, FuzzyDL

 No tool supporting ontological, rule-based 
and fuzzy reasoning at the same time is 
currently available



Integration Approaches
 In general, the integration of different 

reasoning styles is rather difficult

 A few possible approaches has been 
identified:

 Loose integration: uses available mature tools, 
requires an interface to dispatch each kind of 
knowledge to its pertaining module 

 Tight integration: defines a complex theory to 
cope with the desired reasoning styles and 
implements a system to support it



Implementation
 Our Java-based solution follows a loosely-

coupled approach, exploiting

 Drools Expert as RBS
 Pellet as DL reasoner
 FuzzyDL as FL reasoner

 The knowledge handled by each tools has 
to be kept aligned and consistent with the 
others
 Drools as main component
 Pellet an FuzzyDL called on demand



Implementation Issues
 With respect to DL & RBS, the main issue is 

due to their different contextual hypothesis:
 RBS typically embrace Close World Assumption
 DL usually adhere to Open World Assumption

 Hence, integrated systems has to deal with 
both deterministic and non-deterministic 
results

 Non-determinism could make the system 
undecidable



Implementation Issues

 When dealing with FL, its scope should be 
specified first:
 Narrow sense (truth functional many-valued logic)
 Broad sense 

 In the context of Semantic Web, the 
assumed meaning is usually the former 
(easier to handle)
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An Example of  a Rule
 Suppose you want to model the fact that 

sport offers should be recommended to 
young single male customers

 A sport offer is an offer associated with at least a sport 
event

 A young single male customer is a male customer with 
no spouse and children…

 …whose age is «roughly» between 15 and 35

 Each time a new sport offer or young single male 
customer is added to the system, the rule should trigger 



An example of  a Rule

rule "Sport, young male singles"
filter 0.66 // drops matches below 0.66
when

$c: Customer ( this isA Single.class,
gender == "m", age seems young )

$o: Offer ( this isA SportOffer.class )
then

send($o.toString(), $c.email, 
drools.getDegree());

end



Conclusions
 We have implemented a loosely-coupled hybrid 

reasoning tool capable of rule-based, ontological 
and fuzzy reasoning

 The rich environment provides a much increased 
expressiveness in rules that was only partially 
available before 

 Thanks to its architecture centred on a single 
component, the tool remains stable and 
decidable during rules propagation

 The system may be easily extended to provide 
more functionalities by means of custom 
operators



Future works

 Unfortunately, current solution requires 
three distinct knowledge models which 
makes the memory usage quite inefficient 
and may lead to performance issues

 We are currently working on an improved 
version of the system headed toward a 
tighter integration (embedment) of the 
sub-modules, using only a single shared 
knowledge model


