
Stefano Bragaglia, Federico Chesani, Anna Ciampolini,
Paola Mello, Marco Montali, and Davide Sottara

DEIS — University of Bologna
{name.surname}@unibo.it

Introduction
 Nowadays, many domains rely on Rule-Based

Systems (RBSs) to effectively manage their
business

 Such systems allow to
 model a domain
 express the logic of the business processes
 react to external stimuli

 When the conditions of a rule match the
current status of the model, that rule triggers
and its associated action takes place, possibly
updating the model and triggering other rules

A Case Study

Hybrid
Reasoner

Persistence

Domain’s
(fuzzy) Ontology

Business
Rules

Decision Support System

Customer Tour Operator

Limitations of RBSs
 E.g.: Tour operators use a RBS to validate

offers according to their quality standard

 The process of developing RBSs rules is
typically non-monotonic
 refactoring of rules may be required when updating the

knowledge base

 If a tour operator decides to introduce an
offer with at least one overnight stay (calling
it a package), the validation rule has to be
changed accordingly

A Practical Example

 Validate offers according to
quality standard, rejecting the
bad ones

rule "validating offers"
when
 current item is an offer and
 it does not match the quality

standard

then
 notify its author
 reject it

end

A Practical Example

 Validate offers according to
quality standard, rejecting the
bad ones

rule "validating offers"
when
 current item is an offer and
 it does not match the quality

standard

then
 notify its author
 reject it

end

 The rule does not trigger on
packages unless
 a similar one is added for packages
 the previous one is modified

A Practical Example

 Validate offers according to
quality standard, rejecting the
bad ones

rule "validating offers"
when
 current item is an offer and
 it does not match the quality

standard

then
 notify its author
 reject it

end

 The rule does not trigger on
packages unless
 a similar one is added for packages
 the previous one is modified

rule "validating items"
when
 (current item is an offer or
 is a package) and
 it does not match the quality

standard

then
 notify its author
 reject it

end

Limitations of RBSs
 A Description Logics (DL) model, instead, would

have inferred the relation between packages and
offers

 Thus the RBS could exploit it and continue to
operate without needing to change the rules

Limitations of RBSs
 A Description Logics (DL) model, instead, would

have inferred the relation between packages and
offers

 Thus the RBS could exploit it and continue to
operate without needing to change the rules

 Similarly, many real-life domains are not «crisp»,
so Fuzzy Logics (FL) could help RBSs to handle
«imperfect» knowledge (i.e.: by computing «how
much the offer matches the quality standard»)

Motivations
 Growing interest into the combination of DL’s

descriptive capacity with RBS’ operational
semantics and FL expressiveness

 DL: formal languages to represent knowledge,
algorithms to reason upon it (consistency, classification,
recognition)

 RBS: express application logic with rules, triggered rules
produce the outcomes expected by business logic

 FL: express imperfect real-life domains naturally going
beyond crisp knowledge

 Each single technology is mature by itself but
some domains would benefit from all of them
together (i.e.: Semantic Web)

Related Works

 The integration of couples of those
reasoning styles has been already
attempted or studied in literature:
 DL & RBS: Jena, Algernon, Sweet-Rules (+FOL)
 FL & RBS: FuzzyClips, FuzzyJess, Drools:Chance
 DL & FL: DeLorean, FuzzyDL

 No tool supporting ontological, rule-based
and fuzzy reasoning at the same time is
currently available

Integration Approaches
 In general, the integration of different

reasoning styles is rather difficult

 A few possible approaches has been
identified:

 Loose integration: uses available mature tools,
requires an interface to dispatch each kind of
knowledge to its pertaining module

 Tight integration: defines a complex theory to
cope with the desired reasoning styles and
implements a system to support it

Implementation
 Our Java-based solution follows a loosely-

coupled approach, exploiting

 Drools Expert as RBS
 Pellet as DL reasoner
 FuzzyDL as FL reasoner

 The knowledge handled by each tools has
to be kept aligned and consistent with the
others
 Drools as main component
 Pellet an FuzzyDL called on demand

Implementation Issues
 With respect to DL & RBS, the main issue is

due to their different contextual hypothesis:
 RBS typically embrace Close World Assumption
 DL usually adhere to Open World Assumption

 Hence, integrated systems has to deal with
both deterministic and non-deterministic
results

 Non-determinism could make the system
undecidable

Implementation Issues

 When dealing with FL, its scope should be
specified first:
 Narrow sense (truth functional many-valued logic)
 Broad sense

 In the context of Semantic Web, the
assumed meaning is usually the former
(easier to handle)

System Architecture

Rete

FuzzyDLPellet

Jena Framework

Custom operators
Core

Logical
Fuzzy

operators

DROOLS

knowledge base

ontological fuzzy rule-based

An Example of a Rule
 Suppose you want to model the fact that

sport offers should be recommended to
young single male customers

 A sport offer is an offer associated with at least a sport
event

 A young single male customer is a male customer with
no spouse and children…

 …whose age is «roughly» between 15 and 35

 Each time a new sport offer or young single male
customer is added to the system, the rule should trigger

An example of a Rule

rule "Sport, young male singles"
filter 0.66 // drops matches below 0.66
when

$c: Customer (this isA Single.class,
gender == "m", age seems young)

$o: Offer (this isA SportOffer.class)
then

send($o.toString(), $c.email,
drools.getDegree());

end

Conclusions
 We have implemented a loosely-coupled hybrid

reasoning tool capable of rule-based, ontological
and fuzzy reasoning

 The rich environment provides a much increased
expressiveness in rules that was only partially
available before

 Thanks to its architecture centred on a single
component, the tool remains stable and
decidable during rules propagation

 The system may be easily extended to provide
more functionalities by means of custom
operators

Future works

 Unfortunately, current solution requires
three distinct knowledge models which
makes the memory usage quite inefficient
and may lead to performance issues

 We are currently working on an improved
version of the system headed toward a
tighter integration (embedment) of the
sub-modules, using only a single shared
knowledge model

