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EDITORIAL
Hybrid Artificial Intelligence Systems

Emilio Corchado® Manuel Grasial Viclav Sndselt Michal Wozniak?

The idea of hybrid intelligent systems is becoming more and more popular
due to its capability in handling various real-world complex problems, involving
imprecision, uncertainty, vagueness and high-dimensionality. Hybrid intelligent
systems provide us with the opportunity to use both our knowledge and raw data
to solve problems in a more interesting and promising way. This multidisciplinary
research field is continually explored and expanded by the artificial intelligence
research community.

The objective of series of international conferences on Hybrid Artificial Intel-
ligence Systems (HAIS) is to provide an interesting opportunity to present and
discuss the latest theoretical advances and real-world applications. The 5th In-
ternational Conference on Hybrid Artificial Intelligence Systems was successfully
organized in San Sebastian, Spain, in June of 2010 by the Computational Intel-
ligence Group (GIC) of the University of the Basque Country. More than 140
participants from 12 countries participated in the conference. All submitted pa-
pers were reviewed carefully by at least two independent referees, and on the basis
of their suggestions, Program Committee of HAIS selected 133 papers for oral
presentation. Additionally, six plenary lectures were given by world-recognized sci-
entists, such as Prof. Eloi Bossé, Prof. Mihai Datcu, Prof. Ali-Akbar Ghorbani,
Prof. James Llinas, Prof. Marios Polycarpou, and Prof. Gerhard X Ritter.

This special issue of the prestigious journal Neural Network World consists of
twelve extended papers selected carefully by the HAIS Program Committee Chairs.
The articles focus on various hybrid computational intelligence approaches and
their applications. Let us give short outlines of the works presented in this issue.

In their paper “A Hybridized Neuro-Genetic Solution for Controlling Industrial
R3 Workspace”, Eloy Irigoyen et al. deal with the trajectory generation by multi-
objective genetic algorithm technique and the reference tracking by a neural control
scheme with an enhanced training algorithm.
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In their article “Assessing the Evolution of Learning Capabilities and Disorders
with a Graphical Exploratory Analysis of Surveys Containing Missing and Conflict-
ing Answers”, Luciano Sédnchez et al. propose a novel extension to imprecise data
of graphical exploratory statistics, where each element is represented by a shape in
a map, modeling the uncertainty of the variables. These maps are used for mea-
suring the evolution of the learning capabilities acquired by a group of students
during a course, and also for comparing the development of behavior of possibly
dyslexic children.

In their work “Base Classifiers in Boosting-Based Classification of Sequential
Structures”, Przemyslaw Kazienko and Tomasz Kajdanowicz study the usage of
the proper base classifier in a new approach to sequence labeling problem based on
the boosting concept.

In their paper “Combination of One-class Classifiers for Multiclass Problems
by Fuzzy Logic”, Tomasz Wilk and Michal Wozniak propose a new method of
one-class classifier combination based on the neuro-fuzzy approach which allows to
restore a multiclass recognition problem.

In their article “DASBE: Decision-Aided Semi-Blind Equalization for MIMO
Systems with Linear Precoding”, José A. Garcia-Naya et al. combine unsupervised
and supervised learning algorithms to avoid the periodical transmission of unneces-
sary pilots in digital communication systems with linear precoding, which implies a
considerable spectral efficiency improvement in comparison with traditional chan-
nel estimation methods.

In their work “Detection of Heat Flux Failures in Building Using a Soft Com-
puting Diagnostic System”, Javier Sedano et al. discuss a novel Soft Computing
Diagnostic System for the detection of heat flux failures in buildings.

In their paper “Evaluating the Performance of Evolutionary Extreme Learn-
ing Machines by a Combination of Sensitivity and Accuracy Measures”, Javier
Sanchez-Monedero et al. demonstrate an efficient alternative to the current Pareto
based algorithms used when dealing with simultaneous optimization of accuracy
and sensitivity objectives.

In their article “Learning Hose Transport Control with Q-learning”, Borja
Fernandez-Gauna et al. demonstrate an innovative solution to the construction
of a controller for Multi-Component Linked Robotic Systems (MCLRS) based on
reinforcement learning. The approach is demonstrated on a simplified system which
exemplifies the basic paradigm of MCLRS moving a hose on a limited environment.

In their work “Combining Classifiers Using Trained Fuser — Analytical and Ex-
perimental Results”, Michal Wozniak and Marcin Zmyslony discuss several meth-
ods of classifier fusion and evaluate their qualities on the basis of analytical and
experimental researches.

In their paper “Neural Classifiers for Schizophrenia Diagnostics Support on
Diffusion Imaging Data”, Alexandre Savio ef al. demonstrate the innovative de-
tection of schizophrenia on the basis of a feature extraction method applied to
anatomical and diffusion weighted brain magnetic resonance imaging. The high
discriminant nature of these features allows for easy classification with a variety of
neural network architectures.

In his work “The New Upper Bound on the Probability of Error in a Binary Tree
Classifier with Fuzzy Information”, Robert Burduk presents a new estimation of the
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Editorial

upper bound of error probability for a binary tree classifier with fuzzy observations.

In their work “Ranked Tag Recommendation Systems Based on Logistic Re-
gression”, José Ramoén Quevedo et al. propose an approach to tag recommendation
in social networks based on a learning system. In addition, the proposed method
explores several pieces of information which the learner feeds on, and the fact that
the fashion matters in the sense that recent posts are more useful and suitable for
recommendation of new tags.

We hope that these papers will inspire the researchers to invent new ideas of
hybrid systems and develop new practical and efficient computer applications on
the basis of the concepts mentioned above.

We would like to thank the editors-in-chief of Neural Networks World, Prof.
Mirko Novéak for supporting this special issue, and all the authors for their con-
tributions and the reviewers who did a wonderful job in completing the reviews
within a short period of time. We also thank Prof. DusSan Husek from Institute
of Computer Science, Academy of Sciences of the Czech Republic, for his help
during the organization of this issue and all the editorial assistance related to this
issue. Finally, we would like to express our thanks to the technical staffs of Neural
Network World, who helped realize this special issue within a very short period of
time.

We would also like to invite you to participate in the next, 6t edition of the
International Conference on Hybrid Artificial Intelligent Systems, which will take
place in Wroclaw, Poland, from 237¢ to 25! May, 2011.

809



810



A HYBRIDIZED NEURO-GENETIC
SOLUTION FOR CONTROLLING
INDUSTRIAL R? WORKSPACE

E. Irigoyen, M. Larrea, J. Valera, V. Gémez, F. Artaza*

Abstract: This work presents a hybridized neuro-genetic control solution for R?
workspace application. The solution is based on a multi-objective genetic algorithm
reference generator and an adaptive predictive neural network strategy. The trajec-
tory calculation between two points in an R3 workspace is a complex optimization
problem considering the fact that there are multiple objectives, restrictions and
constraint functions which can play an important role in the problem and be in
competition. We solve this problem using genetic algorithms, in a multi objec-
tive optimization strategy. Subsequently, we enhance a training algorithm in order
to achieve the best adaptation of the neural network parameters in the controller
which is responsible for generating the control action for a nonlinear system. As
an application of the proposed hybridized control scheme, a crane tracking control
is presented.

Key words: Hybrid neuro-genetic solution, optimal trajectory generation,
multi-objective genetic algorithm, nonlinear neural control,
adaptive predictive control

Received: 20th September 2010
Revised and accepted: 13th November 2010

1. Introduction

Nowadays, our aggressive market requires more accurate, reliable, productive,
and competitive industrial solutions. This involves a monumental effort from re-
searchers and technicians in order to solve complex, real-world problems. One of
these problems is the industrial kinematic control (where it is necessary to handle
raw materials, semi-finished and finished products), which implies a wide number
of goals to reach [1]. In sequential industrial processes, for the transportation,
handling and machining of materials and products into different manufacturing

*E. Irigoyen, M. Larrea, J. Valera, V. Gémez, F. Artaza
Department of Systems Engineering and Automatic Control, Computational Intelligence
Group, University of the Basque Country (UPV/EHU), ETSI, 48013 Bilbao, Spain, E-mail:
{eloy.irigoyen, m.larrea}@ehu.es
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workplaces, it is more essential than ever to obtain automated and enhanced solu-
tions based on new technologies such as computational intelligence.

This work presents a hybrid intelligent solution that solves tracking and move-
ment problems in an R? workspace. It uses a complex calculation of a precise
trajectory. It also solves accuracy and control action issues for precise and safe
tracking operations. Our solution uses different computational intelligence tech-
niques for solving these problems. We initially implemented one device for tracing
optimal trajectories as the reference to the control system. Later on, we chose a
control scheme based on adaptive and predictive control fields. Previous control
loop approaches have been studied as presented in [2] where a 2D crane anti-swing
problem is solved.

The first part of our work focuses on designing a Multi Objective Genetic Al-
gorithm (MOGA). This MOGA solves a nonlinear and complex problem for cal-
culating R3 trajectories [3]. This solution takes account of requirements based on
the workspace (restricted areas, points of passage, etc.), and constraints on the
basis of parameter values (max-min) to preserve the life of actuators and different
components. The MOGA technique has been used with success in different works
such as [4] and [5].

Furthermore, the tracking operation is made by an Adaptive-Predictive Neural
Network (APNN) control system, which includes some intelligent strategies to reach
the appropriate target. There exist different APNN control approaches where the
performances of different control loops are tested in [6] and [7].

Our system contains two Recurrent Neural Networks (NNARX): The first one
provides a nonlinear process model for estimation of the process output and deriva-
tives in time, and the second one is involved in the current action calculation at
every sample time.

Next, in Chapter 2, the different elements of the hybridized neuro-genetic sys-
tem will be presented. In Chapter 3., the components of the multi objective genetic
algorithm reference generator will be laid out in detail. Then, the neural network
adaptive predictive control strategy that was selected as well as the specific NN
training algorithms designed will be explained. A case of study with a crane system
will be introduced in Chapter 5. Finally, the conclusions obtained and some ideas
for future work will be commented.

2. Hybridized Neuro-Genetic Strategy

This work deals with the hybridization of different computational intelligence tech-
niques for solving non-trivial real tracking problems. The genetic algorithms per-
formed well in the optimal solution calculation within multi-objective problems.
In this approach, we have designed a MOGA Reference Generator (MOGA-RG)
in order to obtain a trajectory within an R3® workspace. The MOGA-RG takes
account of several objectives and different constraints of movement and workspace,
which creates a more complex problem, the control of nonlinear systems.

To develop an appropriate control solution, the neural network paradigm has
been implemented. Different neural network topologies were designed to perform
the identification of the nonlinear system and to generate a nonlinear controller.
An adaptive predictive control strategy was selected for this work as a result of
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certain needs referring to the control strategy and the use of the NNs as controllers
and identifiers. This strategy was employed in several different works like [8], [6].

The scheme used (Fig. 1) has the following four basic blocks: MOGA-RG,
neural network identifier, neural network based controller and the nonlinear system
to be controlled. All these elements have their respective training algorithms. The
identifier can provide an online identified model, which means the scheme has the
capability to learn the system dynamics simultaneously to the nonlinear system
evolution.

w&b
[ =======2=q Neural Network
Adaptive Identifier
* target icti
s Predictive
i Neural
VMOGA Controller
_MOGA Nonlinear
= - Syst 1
Generator U(k) - "
X A
cons'traints . -
objectives

Fig. 1 Control scheme.

The block Adaptive Predictive Neural Network Controller (APNNC) is re-
sponsible for generating the control action for the nonlinear system calculated
in a predefined prediction horizon (Fig. 2) whereas the block MOGA-RG calculates
a path to be tracked by the nonlinear system.

The APNNC performs a simulation of the entire loop and employs a replica
of the nonlinear system provided by the NN identifier in order to do so. This
replica provides not only the nonlinear system output estimation () but also the
estimation of the identified system derivatives (%,%,..). Those estimations
are integrated in the training algorithm to be presented in Section 4.1. Once the
training algorithm finalizes its work, the NN controller weight and bias are tuned
to generate a control action that will be the output of the block. In Fig. 3, the
different stages in the training process are presented.

One of the advantages that the adaptive predictive control has is the capability
to change the controller behavior. This is positive when the nonlinear system to be
controlled suffers a modification (e.g. deterioration, wear, use of slightly different
parts, etc.) and the nonlinear system model changes to a new operating regime,
causing the controller change too.
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Fig. 2 Control scheme.

3. MOGA Reference Generator

The trajectory calculation between two points in an R® workspace is a complex
optimization problem considering the fact that there are multiple objectives, re-
strictions and constraint functions which can play an important role in the problem.
The following are some important aspects that have to be considered for an ap-
propriate trajectory reference calculation: minimization of the time employed to
travel from the initial to the final point, minimization of the traveled distance
between these two points avoiding obstacles and restricted areas, minimum oscil-
lation according to previous acceleration reference calculations, and minimization
of mechanical elements wear in movement transition. Consequently, the problem
formulation is not trivial especially when we take account of the fact that some
objectives are not differentiable, so gradient or higher derivatives information is
not available when searching for an optimal solution. This kind of problem can
be solved using the Genetic Algorithm (GA) [9], in a multi objective optimization
strategy, as previously introduced in Valera et al. [3].

Thereby, a possible trajectory reference 7(t) between two points in an R3
workspace is given by Equation 1.

r(t) = [=(t),y(t), 2(1)] (1)

In industrial processes the R? workspace usually has some restricted workspaces,
as shown in equation 2.
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Fig. 3 Flowchart of adapting parameters and predicting errors.
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Furthermore, this optimization problem has two main objectives to reach: to
minimize the r(¢) length or distance traveled, and to minimize the required path
time to travel from one point to the other. In addition, the trajectory has to satisfy
the following constraints and restriction functions:

IN

0
0

IA

e Electromechanical component related constraints [10]: Speed v(k) and ac-
celeration a(k) on each axis or movement must not exceed the thresholds
determined by the device manufacturers.

e Mechanical transmission elements and the useful life of the system: The ac-
celeration or torque gradient j(k) of each movement must not exceed a certain
value to avoid so-called “impact torques” in the mechanical transmission el-
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ements, which cause jerky movements and vibrations, reducing useful life of
the elements.

e Constraints related to avoiding obstacles in the workspace: Any point of this
trajectory cannot be included in the space defined by the constrained limited

surface: = = f1(23y), y = folx), and 2, = fa(a3y).

In our work, a Multi Objective Reference Generator based on Genetic Algo-
rithms (MOGA) has been developed in order to satisfy all the objectives and con-
straints presented above. Fig. 4 schematically represents the different components
that perform the R? optimal trajectory within the MOGA reference generator.

Target (RY)
MOGA Ref. Gen.

!’ -y -~~~ AN

| Trajectory (k) (R®) - | x(k)
I Boe Y
| Solver (g -

| Constraints (k) (R’) R ] 2(k)
N _I_ __________________ T __7

Objectives Mov. constraints: v(k), a(k), j(k)

Fig. 4 MOGA reference generator.

The MOGA core is the solver that generates values of the optimal trajectory
r(k), in each sample time. For this calculation, the solver takes account of the
constraints related to the working restricted areas and the movement constraints
[v(k),a(k),j(k)], and tries to minimize the travelled time and the trajectory length
as objectives.

In order to have a smooth trajectory, bounded acceleration reference and bounded
acceleration gradient [11], we divided the positioning time into six intervals taking
the speed reference shown in Valera et al. [3] into account.

To find three smooth position references (z(k), y(k), and z(k)), we used a non-
linear search method based on the Multi Objective Genetic Algorithm (MOGA)
presented before, resulting in an R® combined trajectory (R® workspace) that si-
multaneously minimizes the distance traveled, time used, and final position error.
The formulated objectives for MOGA execution can also be found in Valera et al.
(3].

The trajectory generation is a non-trivial problem because some objectives are
in competition. It has therefore been necessary to select the optimal solution by
using the Pareto set optimal solutions technique. As seen in Fig. 5, the MOGA
calculates a set of non-inferior solutions that we represented in the Pareto front.
By analyzing these solutions, we are able to find a solution that optimizes the
R? movement depending on the actual working point and the objectives priorities
previously defined. In Fig. 5, the time required for the trajectory (objective 1) is
represented on the x axis, the error of travelling near the point [xp, yp, zp] (objec-
tive 2) is represented on z axis, and the total distance (objective 3) is represented
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on y axis. In future works this selection will be solved by computational intelligence
techniques, as a fuzzy system recording the actions of an experienced operator.
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Fig. 5 Set of non inferior solutions. Pareto frontier.

4. Neural Network Adaptive Predictive Control

In this section the one dimensional adaptive predictive control will be introduced.
Using this strategy, the two NNs employed are MultiLayer Perceptrons (MLP). The
MLP are known as universal approximators because of their capacity to approxi-
mate any function of interest (both linear and nonlinear) as well as its derivatives
[12]. The latter one is of great importance in the implementation of the identifier
since the derivatives that it provides will be integrated into the training algorithm.
The topology of the NN controller and the NN identifier are correspondingly pre-
sented in Fig. 6 and Fig. 7.

The NN controller (Fig. 6) is a NN AutoRegressive with eXogenous input
(NNARX) that gives output feedback (control action).

The NN identifier (Fig. 7) obtains the nonlinear system model based on the
system input/output relation. Once the model is obtained, it can be used to
emulate the nonlinear system behavior and to extract its derivatives. Both the NN
controller and the NN identifier can be trained online or offline.
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u(k)

input layer hidden layer output layer

Fig. 6 NN controller.

input layer hidden layer output layer

Fig. 7 NN identifier.

4.1 Neural network training

The NN controller is trained in the “adaptive predictive neural controller” block
that can be seen in Fig. 1. As previously mentioned, inside this block a simulation
of the control loop is performed. This simulation creates the possibility to simulate
the control loop evolution for a prediction horizon, and to simulate it for different
control actions. The NN controller needs to know, or estimate, the error produced
on its output in order to be trained. As the desired control action () is unknown,
the error produced during the output of the NN controller is also unknown. The
only known error is the one produced on the output of the nonlinear system (y(k)—
r(k) in Fig. 1), which can be related to the NN controller weight and bias through
the NN system model. This way, the equation 3 [13] can be used to train the NN
controller in a K prediction horizon.

K !
aEk o 8Ek ayk/ auk//
owyj Z Z EZ: Oy Ouprn Owyy; ®)

k=1

Equation 3 is made up of three terms. The first one relates the error committed
in the control loop output with the nonlinear system output. The second one
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relates the nonlinear system output to the control action. Finally, the third term
relates the control action to the NN controller weights and biases. The first and
the third terms are known terms. The first is the one that depends on the error
function used, and the third is the one that can be calculated by backpropagation.
The second term represents the model of the nonlinear system to be controlled. A
general representation of a nonlinear system can be expressed by using the following
Equation 4.

y(k'y = My(k' = 1), ...,y(k' —n),u(k’ —1),...,u(k’ —m)], (4)

where n is the nonlinear system order that must satisfy m < n. Deriving y(k')
from w(k”), the unknown term ( gg}’:' ) can be obtained. This term can in turn be
broken down in the following Equation 5 [13].

8uk// - ayk/_i 8uk// 5uk/_j auk// '

The previous work [14], [13] has shown that the reduction of the computational

times can be achieved by neglecting some of these terms (( 8;’;’;21 =0 when k' —j #

k). By neglecting these terms, the second term of Equation 5 results in the
following Equation 6.

Oy _ g~ O Oty O (6)
auk” — 8yk/,i a’LLk// aUk// '

Now the three terms of Equation 5 can be found. These three terms are known
on the basis of “NN system model” input/output relations. The “universal approx-
imator” property has been applied in [15] to obtain the derivatives of the identified
system using the Equations 7, 8, 9 to do so, being the NN represented in Fig. 7.

ok +
y Z ’LU1]OJ )wjl (7)
ay k + 1) ~
Z w2;50;(1 — 0j)wj1 (8)
k —|— 1
Zwiﬁoj ) Wjt, (9)

where wy; represents the weight that links input 1 with the neuron j of the hidden
layer, w;; represents the weight that links the output of the neuron j of the hidden
layer to the neuron of the output layer, o; represents the output of the neuron j of
the hidden layer, and the n of the summation represents the number of neurons in
the hidden layer.
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4.2 NN controller training algorithm modification

The LM algorithm calculates the updated term for the weights and biases on the
basis of the equation AW in [16]. The modification proposed, which includes
the dynamics of the nonlinear system, affects the term on the output layer to be
backpropagated (AM presented in [16]).

M a g My Yk

AM = P (M) S (10)
Applying this formula and following the development presented in [16], the
dynamics of the nonlinear system and the ones of the NN controller are backprop-
agated. Therefore all the Jacobian terms are calculated so the weight adaptation
term (AW) can be obtained. Finally we emphasize the different meaning of the
term €’(w) in equation 11 for this work. If the original work represented e(w) as
the error committed in the NN output, this work uses e’(w) as the error committed

in the output of the control loop.

AW = [J7 (w) - J(w) + - 1] - J(w) - ' (w), (11)

This Equation is used in the same manner as the traditional LM algorithm in
[16]. J(w) is the Jacobian matrix which is composed of the partial derivatives of
the errors in the NN output (e(w)) on the weights (w)(12).

Oer(w)  Oei(w) Oe1(w)
Ow ow te ow
der(w)  dea(w)  Dealw)
Jw)y=| o (12)
Oex (g) 86;(.(&) .aCK (w)
owq Ows T owpn

6+yk/

To calculate the Jacobian matrix [16], the term ( o

propagated through the layers of the NN controller.

) of equation (6) is back-

5. Application to Crane Position Control

The adaptive predictive control strategy is applied in the control of a travelling
crane. The load trajectory calculation in the R3 workspace is a complex opti-
mization problem considering the multiple objectives, restrictions and constraint
functions. The nonlinear problem of the swinging angle control is considered as a
good exercise for the proposed NN control system. The crane model used consists
of a Matlab/Simulink block provided by Inteco company with a real model of the
crane (Fig. 8). See [1] for the mathematical model.

The following information pertains to the trajectory of the MOGA: initial pos.
(0,0,0), final pos. (30,80,10) with crossing point (50, 50,50) cm. The constraints
that the MOGA must respect on these 3 axes are; max. acceleration 5 ¢m/s?, max.
speed 10 cm/s and max. jerk 0.5 cm/s®. The objectives applied to the MOGA
are: passing through the specified crossing point (error < 0.5 ¢m), minimization of
the travel time required and minimization of the distance travelled. The resultant
trajectory is shown in Fig. 9.
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Fig. 9 R? trajectory.

The z-axis control behavior has been observed in a preliminary test. The main
objective of the test has been to control the crane position while minimizing the
swing of the load. Offline identification of the crane was performed to extract the
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model to be used in the control loop. The identification was carried out applying
random entries (both positive and negative steps inside the work range) to the
NN identifier. The training has been performed with the following parameters:
training vector length = 4001, validation vector length = 1000, number of epochs
= 1000, initial weights randomly generated within an interval calculated as in the
work [17]. The identification results for the training stage and validation stage are
presented in Fig. 10.
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Fig. 10 Crane identification.

Fig. 11 shows the control of the z-axis position; the dotted line is the path gen-
erated by the MOGA, and the solid line is the tracking performed by the controller.
The other lines represent the smooth control action and the low swinging of the
load.

6. Conclusions

This work tackles the problem of R multiobjective reference generation and the
system control under these circumstances. With an intelligent search algorithm
based on MOGA, the solution is stable, robust and it is a fast way to find opti-
mal solutions when real-time requirements are not needed and when the problem
involves many objectives.

Moreover, the present paper shows the use of NNs in an adaptive predictive
control strategy. The simulation results show a correct online adaptation of the NN
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controller and the validity of the modification made to the LM training algorithm.
This modification allows the integration of the nonlinear system dynamics into the
training algorithm, thus being able to train the NN controller despite not knowing
the nonlinear system. The NN identifier estimates the dynamics of the nonlinear.
The use of restrictions to control action has been tested in various works such as
[18], where first order training algorithms are used. These restrictions may be of
interest when implementing controller training that penalizes abrupt changes in
the control action. We will also take hierachical issues [19] into account.

Acknowledgement

This work comes under the ATICTA research project with reference SAIOTEKO0S
granted by Basque Government, and the BAIP2020 research project granted by
CDTT of the Spanish Government, with permission of INGETEAM for the paper
publication.

References

[1] Pauluk M., Korytowski A., Turnau A., Szymkat M.: Time optimal control of 3d crane. Pro-
ceedings of the 7th Inter. Conference on Methods and Models in Automation and Robotics,
2001, pp. 927-936.

[2] Liu G., Mareels I.: Advantages of smooth trajectory tracking as crane anti-swing schemes.
In: IEEE International Conference on Robotics and Biomimetics, (Piscataway, NJ, USA),
2008, pp. 1486-1490.

823



(3]

824

Neural Network World 7/10, 811-824

Valera J., Irigoyen E., Gémez-Garay V., Artaza F.: Application of neuro-genetic techniques
in solving industrial crane kinematic control problem, IEEE International Conference On
Mechatronics, 2009, pp. 231-237.

Pathak B., Singh H., Srivastava S.: Multi-resource-constrained discrete time-cost tradeoff
with moga based hybrid method. In: IEEE Congress on Evolutionary Computation, (Pis-
cataway, NJ, USA), 2007, pp. 4425-4432.

Xing X., Yuan D., Yan J.: A novel moga-based method of flight control law design for a
helicopter and its application. In: Proceedings of the SPIE - The International Society for
Optical Engineering, vol. 7128, (USA), 2008, pp. 71282K (6 pp.).

Lu C.-H., Tsai C.-C.: Adaptive predictive control with recurrent neural network for industrial
processes: An application to temperature control of a variable-frequency oil-cooling machine,
IEEE Transactions on Industrial Electronics, vol. 55, March 2008, pp. 1366-1375.

Ge S. S., Yang C., Lee T. H.: Adaptive predictive control using neural network for a class
of pure-feedback systems in discrete time, IEEE Transactions on Neural Networks, vol. 19,
Sept. 2008, pp. 1599-1614.

Tan K. K., Lee T. H., Huang S. N., Leu F. M.: Adaptive-predictive control of a class of siso
nonlinear systems, Dynamics and Control, vol. 11, Apr. 2001, pp. 151-174.

Eiben A. E., Smith J. E.: Introduction to Evolutionary Computing. Springer Verlag, 2003.

Suh J.-H., Lee J.-W., Lee Y.-J., Lee K.-S.: An automatic travel control of a container crane
using neural network predictive pid control technique, International Journal of Precision
Engineering and Manufacturing, vol. 7, no. 1, 2006, pp. 35—41.

Anand V. B.: Computer Graphics and Geometric Modeling for Engineers. New York, NY,
USA: John Wiley & Sons, Inc., 1993.

Hornik K., Stinchcombe M., White H.: Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks, Neural Networks, vol. 3, 1990,
pp. 551-560.

Irigoyen E., Galvéan J., Pérez-Ilzarbe M.: Neural networks for constrained optimal control of
nonlinear systems, IJCNN, vol. 4, 2000, pp. 299-304.

Galvan J.: Tuning of optimal neural controllers, Proc. Int. Conf. on Engineering of Intelligent
Systems, 1998, pp. 213-219.

Fujinaka T., Kishida Y., Yoshioka M., Omatu S.: Stabilization of double inverted pendulum
with self-tuning neuro-pid, IJCNN, vol. 4, 2000, pp. 345-348.

Hagan M. T., Menhaj M. B.: Training feedforward networks with the marquardt algorithm,
IEEE Transactions on Neural Networks, vol. 5, Nov. 1994, pp. 989-993.

Irigoyen E., Pinzolas M.: Numerical bounds to assure initial local stability of narx multilayer
perceptrons and radial basis functions, Neurocomputing, vol. 72, no. 1-3, 2008, pp. 539-547.

Irigoyen E., Galvan J., Pérez-Ilzarbe M. J.: A neuro predictive controller for constrained non-
linear systems, ITASTED International Conference Artificial Intelligence and Applications,
2003.

Grana M., Torrealdea F.: Hierarchically structured systems, European Journal of Opera-
tional Research, vol. 25, no. 1, 1986, pp. 20-26.



ASSESSING THE EVOLUTION OF LEARNING
CAPABILITIES AND DISORDERS WITH
A GRAPHICAL EXPLORATORY ANALYSIS
OF SURVEYS CONTAINING MISSING
AND CONFLICTING ANSWERS

Luciano Sdnchez Inés Cousol José Oterot Ana Palacios®

Abstract: The analysis of the evolution of learning with graphical maps is based
on the placement of the individuals in positions that are computed on the basis of
their answers to certain tests. These techniques are useful for detecting similarities
between the knowledge profiles of the subjects and can also be used for assessing
the acquisition of capabilities after a course. In this paper, we propose to extend
some graphical exploratory analysis techniques to the case where there are missing
or conflicting answers in the tests. We will also consider that either a missing or
unknown answer, or a set of conflictive answers to a survey, is aptly represented by
an interval or a fuzzy set. This representation causes that each individual in the
map is no longer a point but a figure whose shape and size determine the coherence
of the answers and whose position with respect to its neighbors determines the
similarities and differences between the individuals.

Key words: Knowledge surveys, graphical exploratory analysis, multidimensional
scaling, fuzzy fitness-based genetic algorithms
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1. Introduction

Graphical exploratory analysis is a simple but useful strategy for analyzing the
latent data in educational questionnaires [19]. This technique consists in process-
ing the answers to certain tests for obtaining a numerical profile of the knowledge
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of the subjects under study, and in projecting this data in a map, where each in-
dividual will be placed depending on these profiles. This allows the examiner to
identify groups with similar background problems, segment heterogeneous groups
and perceive the evolution of the learning skills or the abilities acquired during
the course.

There exist tools that can generate views of the aforementioned data for easily
drawing conclusions and making predictions about the effectivity of a course [14,
18], however the generalization of these techniques to sets of items that can be
incomplete or imprecise has not, to the best of our knowledge, been addressed yet.
This fact limits the usefulness of this technique in two frequent problems: (a) that
the individual leaves unanswered questions (blank items), and (b) the dispersion
of the values of the items associated to the same latent variable is too high, thus
the average value of the items is no longer a good estimator. According to our
approach, a missing or unknown answer in the survey will be represented by an
interval or a fuzzy set. For instance, if an item is a number between 0 and 10, an
unanswered question will be associated with the interval [0,10]. We will not try to
make up a coherent answer for blank items [8], but we will carry the imprecision in
all the calculations. In turn, multi-item values will also be represented by intervals
or fuzzy sets. For instance, let (6,1,5) be the values of three items. With our
methodology, instead of replacing this triplet by its mean, the value “4”, we could
say that the answer is an unknown number in the range [1, 6] (the minimum and
the maximum of the answers) or else a fuzzy set, understood as a nested family of
intervals at different confidence levels [5].

Using intervals or fuzzy sets for representing unknown values causes that each
individual in the map is no longer a point but a figure whose shape and size deter-
mine the coherence and completeness of the answers and whose relative position
determines the similarities between it and the other individuals. In this paper, we
will explain how this map can be generated with the help of interval (or fuzzy)
valued fitness function-driven genetic algorithms. Observe that certain modern ap-
proaches, like Independent Component Analysis (ICA) and Self Organized Maps
(SOM), have fuzzy extensions [2, 7] that might also seem appropriate for this
problem, however the algorithms we are aware of are not designed for using fuzzy
data but for improving the robustness when working with crisp data, and thus are
intended for solving problems fundamentally different than this. Other nonlinear
extensions of PCA, like Curvilinear Component Analysis (CCA) [11], have not been
extended to the fuzzy case yet. Indeed, all of these advanced nonlinear techniques
are closely related to a technique widely used in psychology: Multi-Dimensional
Scaling (MDS) [10]. This last technique has been recently generalized to fuzzy data
[6]. The algorithm in this last reference shares a common background with our own
extension, and we will compare both in the following sections.

The structure of the rest of the paper is as follows: in Section 2, we describe
the representation of the information contained in those questionnaires (educational
knowledge surveys and tests for diagnosing dyslexia) that will be used in this study.
In Section 3, we introduce the concept of Evolutionary Graphical Exploratory
Analysis for vague data and discuss its relation with the mentioned questionnaires.
In Section 4, we show the outcome of this method in real-world cases. We provide
some concluding remarks in Section 5.
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2. Representation Issues

Sensible measures for the evolution of students’ capabilities are important in order
to choose adequate teaching methods. At the beginning of a course, the prerequisite
skills of a sometimes heterogeneous group of students must match the instructional
approach. After the course ends, the evaluation of the learning outcomes should
also consider the differences between the initial preparation of the students, so
the impact of the teaching methodology for each kind of student can be precisely
assessed.

From another point of view, evaluating the learning outcomes with respect to
the prerequisite skills is arguably akin to the problem of measuring the evolution
of certain learning disorders. For example, let us consider the diagnosis of dyslexia
in children. This problem is detected with non-writing based tests, measuring
capabilities, such as verbal comprehension, logic reasoning and sensory-motor skills
[15]. As we will explain later in this paper, it is not easy to detect dyslexia in early
childhood, as the natural differences between the skills of the children mask the
symptoms. However, if the tests are done yearly, then each child passes through
different development stages, and interesting information can be obtained when
the changes between two consecutive tests are analyzed. Then again, a sensible
measure of the evolution of the learning capabilities is needed.

2.1 Questionnaires

In both the preceding cases, the information is acquired by means of questionnaires.
Generally speaking, a questionnaire is intended to measure a number of latent or
hidden variables, whose value is indirectly determined by averaging the answers
to many different questions related to the observable variables, or items. In the
following, we will use the term multi-item value to refer to the set of items contain-
ing all the information conveyed by the questionnaire about the value of a latent
variable. We will also assume that the latent variables measure the capability of
an individual for solving certain kind of problems, and the items are the answers
to the questions comprising the test [17].

Two different kinds of questionnaires will be used for assessing students’ ca-
pacities and detecting learning disorders, respectively. On the one hand, educa-
tional knowledge surveys are intended to measure the capability of the student for
understanding and solving those problems related to the learning outcomes of a
course. These surveys comprise short questions related to specific aspects of these
outcomes, and are designed by the teacher. The students can answer by writing
a single line, or choosing between several alternatives in a printed or web-based
questionnaire. On the other hand, those tests used for diagnosing a learning dis-
order are based on different variables, related to the acquisition of language skills,
attention deficit, hyperactivity, and other indicators. These last tests are standard-
ized (see Tab. I) and do not comprise questions but consist of graphical exercises
involving shapes, colors and lists of names or numbers.

In either case, the variables of interest are latent, and sets of items or constructs
must be produced to measure each domain of meaning. In this section, we revise
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Category Test Description
Verbal comprehension | BAPAE Vocabulary
BADIG Verbal orders
BOEHM Basic concepts
Logic reasoning RAVEN Color
BADIG Visual memory
Sensory-motor skills BENDER Visual-motor coordination
BADIG Perception of shapes
BAPAE Spatial relations, Shapes, Orientation
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
GOODENOUGHT | Spatial orientation, Body scheme
Reading-Writing TALE Analysis of reading and writing

Tab. I Categories of the tests currently applied in Spanish schools for detecting
dyslezia in children between 5 and 8 years. The names of the tests are standardized
in Spain, see [15] for the bibliographic references.

the properties of the questionnaires that are used in this study, and define a common
representation for both that can be combined with the Evolutionary Graphical
Exploratory Analysis described in Section 3.

2.2 Educational knowledge surveys

These surveys can be used for assessing the quality of learning, and they are also
meaningful from a didactical point of view, as they allow students to perceive the
whole content of the course. Teachers can use these surveys for deciding the best
starting level for the lectures [13], specially in Master or pre-doctoral lectures, where
the profiles of the students attending the same course are different. Recently this
has also been applied to teacher education and certification [20]. When the survey is
done at the end of the course, the effectivity of the teaching methodology along with
the attitude and dedication of the students is measured. There is certain consensus
in the literature about the weak relationship between methodology/dedication and
scoring [4]. Because of this, a survey (different than an exam, designed to score
the students) is needed.

The design of the constructs involved in a knowledge survey is often guided by
the Bloom taxonomy [1, 3]. Other researchers propose taxonomies that classify
learning phases [9] that could be useful to design questions that reveal where the
student is in the learning curve or assess the critical thinking levels in a given area
of the subject. Lastly, with regard to the measurement scales, the constructs in
this particular work have been measured by several five-point Likert scales, and
therefore the data comprises multi-item values. Each multi-item value is converted
into an interval or a fuzzy set by means of the procedure explained later in this
section.
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Fig. 1 Example of some of Bender’s tests for detecting dyslexia. Upper part: The

angles of the shape in the right are qualified by a list of adjectives that can contain

the words “right”, “incoherent”, “acceptable”, “regular” and “extra”. Middle and

lower part: The relative position between the figures can be “right and separated”,
“right and touching”, “intersecting”, etc.

2.3 Tests for diagnosing dyslexia

All the tests that have been used in this research are currently being used in Spanish
schools for detecting dyslexia (see Tab. I). In Fig. 1, we have reproduced one of the
graphical exercises involved in the analysis, that is copying some geometric draw-
ings. A psychologist or specialist dyslexia teacher scores these exercises. In this
particular case, this expert has to decide whether the angles, relative position and
other geometrical properties have been accurately copied or not, choosing between
a given set of adjectives such as “right”, “incoherent”, “acceptable”, “regular” or
“extra”. Other exercises have numerical scores, and generally speaking the data
consists of multi-item values, as in the preceding case. However, in this work we
have also allowed the expert to express indifference between different responses by
means of intervals, as in “lower than 3” or “between acceptable and regular”, thus
each item may also be an interval. There are 13 categories of tests, that expand to
a total of 413 numerical, categorical and interval-valued variables. By aggregating
the answers to each one of these categories, we will represent each individual by
means of a vector of 13 multi-item variables.

2.4 Fuzzy representation of multi-item values

For estimation of the values of the latent variables, multi-item variables are ag-
gregated. Following previous works [17], we have decided that converting the ag-
gregate into a number is not always convenient, because relevant information is
lost. Therefore, a set-valued aggregation operator is used instead. In this work, we
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will represent each multi-item value by a fuzzy set (or, as a limit case, an interval)
such that its a-cuts are confidence intervals with degree 1 — « of the mean value of
the latent variable. This procedure converts a questionnaire into a vector of fuzzy
values (or intervals), one for each variable of interest, and this transformation loses
less information than aggregating the items with central tendency measures. The
numerical algorithm is described in [17], and it is illustrated in the example that
follows, condensed from that reference.

Example 1 Let us suppose that a latent variable xq is described by the following
set of items:
X =(2,1,3,3,2,2,4). (1)

We will assume that X is a simple random sample of a population whose mean
is the unknown value xo. Let A be the membership function of the fuzzy set that
describes our knowledge about xo. Then, the family of its cuts {A%} is a nested
family of confidence intervals such that P(xg € A%) = P(A%) > 1 —a. The
membership function can be built from the quantiles of the bootstrap distribution of
the sample mean, as shown in Fig. 2.

Fig. 2 Bootstrap-based fuzzy representation of the multi-item value in Example 1.

Observe also that this construction can easily accommodate interval-valued items,
using interval arithmetic for computing the sample mean and the lower and upper
bounds of the quantiles of the bootstrap distribution. Finally, it is remarked that,
as a particular case, a missing item can be represented by an interval spanning the
whole domain of the variable, thus this representation is intrinsically able to handle
missing data.

3. Evolutionary Graphical Exploratory Analysis
There are many different techniques for performing graphical exploratory analysis

of data, as mentioned in the introduction: Sammon maps, Principal Component
Analysis (PCA), Multidimensional Scaling (MDS), self-organized maps (SOM), etc.
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[6]. These methods project the instances as points in a low dimensional Euclidean
space so that their proximity reflects the similarity of their variables. However, we
have mentioned that the surveys can be incomplete or contain conflicting answers.
Summing up, an incomplete survey is taken as the set of all surveys with any valid
value in place of the missing answer. A multi-valued item can also be understood
as a set, as we shown in the preceding section. The most immediate consequence
of this representation is that the projection of an instance is no longer a point, but
a shape whose size will be larger the more incomplete or imprecise the information
about the individual is.

In this section, we will describe first the theoretical basis of our generalization
of the MDS algorithm to fuzzy data, paying special attention to the differences
between our algorithm and its closest precedent in the literature [6]. Our definition
of the stress function and the freedom given to the shape of the projections prevent
the use of classical optimization techniques, as done in the mentioned reference,
thus we make use of a nonstandard Genetic Algorithm, described first in [16]. The
main properties of this algorithm are also described in this section.

3.1 Fuzzy MDS

This extension from a map of points to a map of shapes has already been done for
some of the techniques mentioned before. For instance, Fuzzy MDS, as described
in [6], extends MDS to the case where the distance matrix comprises intervals
or fuzzy numbers, as happens in our problem. Crisp MDS consists in finding a
low-dimensional cloud of points that minimizes a stress function. That function
measures the difference between the matrix of distances among the data and the
matrix of distances among the elements of this last cloud. The interval (or fuzzy)
extension of this algorithm defines an interval (fuzzy) valued stress function that
bounds the difference between the imprecisely known matrix of distances between
the objects and the interval (fuzzy) valued distance matrix between a set of shapes
in the low-dimensional projection.

Let us assume for the time being that the distance between two surveys is
an interval (the extension to the fuzzy case is straightforward, since it suffices to
apply the following to each cut of the fuzzy distance). For two imprecisely measured
multivariate values z; = [z;;, 7};]X. .. x [ifs m:}] and z; = [z}, x;rl] X X[z, xjf],
with f features each, the set of distances between their possible values is the interval

Dy = { /Sl i(ow — 02 o € ol € lepafd 1 <k < 7} @)

Some authors have used a distance similar to this before [6], however they
further assumed that the shape of projection of an imprecise case is always a circle.
We have found that, in our problem, this is a too restrictive hypothesis. Instead, we
propose to approximate the shape of the projections by a polygon (see Fig. 3, left
part) whose radii Rj'j and R;; are not free variables, but depend on the distances
between the cases.

For a multivariate sample of imprecise data (z1,...,2y), let T; be the crisp
centerpoint of the imprecise value z; (the center of gravity, if an interval, or the
modal point, if fuzzy), and let ((z11,---,217),---,(2N1,- -, 2Nr)) be a crisp projec-

tion, with dimension 7, of that set. We propose that the radii Rj'j and R;; depend
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Fig. 3 Left part: The projected data are polygons defined by the distances R;; in
the directions that pairwise join the examples. Right part: The distance between the
projections of x; and x; is between d;; — R, — Rj_. and d;; + RZT; — Rj;

©J i

on the distance between z; and Z; (see the right part of Fig. 3 for a graphical
explanation) as follows

55 _ 8ij
wimas (1) mma(32o).

where dij = \/ZZ:l(zik —ij)Q, 51‘]' = {D(fi,fj)}, 5;; = maX{D(xi,fj)}, and
0 = min{D(z;,T;)}. We also propose that the value of the stress function our
map has to minimize is

N N
>N du(Dij, diy — Ri; — Ry diy + R + Ryl )2, (4)

i=1 j=i+1

where dg is the Haussdorff distance between intervals.

3.2 Characteristic points

To gain insight into the actual values of the spatial coordinates of the elements
displayed in the map, we propose to add several prototypal, fictitious sets of items
(we will call them “characteristic points”) corresponding to a test without mistakes,
a test which is completely wrong, one section well answered but the remaining ones
wrong, etc. In the final map, these points will be approximately placed in a circle
enclosing the projections of the individuals. With the help of these points, the map
can be used for evaluating the capacities of a student or diagnosing a disorder by
comparing it with its closest characteristic point.
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3.3 Evolutionary algorithm

An evolutionary algorithm is used for searching the map optimizing the stress func-
tion (4). In previous works, we have shown that interval and fuzzy fitness functions
can be optimized by certain extensions of multiobjective genetic algorithms. In this
paper, we have used the extended NGSA-II defined in [16], whose main components
are summarized in the following paragraphs.

o Representation: Since the shape of each element in the map can be com-
puted given the centerpoints of both the sets and the elements of the map, as
described in Section 3.1, each map can be univocally determined from a set of
coordinates in the plane, thus each chromosome consists of the concatenation
of so many pairs of numbers as individuals, plus one pair for each character-
istic point (i.e. “Everything”, “Nothing”, “Only Subject X”, “Every Subject
but X”, etc). The chromosome is fixed-length, and real coding is used.

e Objective Function: The genetic algorithm must minimize the expression
defined in eq. (4). However, observe that this equation does not evaluate to
a number, but to an interval or a fuzzy set. Generally speaking, one cannot
properly define a total order between interval or fuzzy sets, and, therefore, the
concept of “minimum” must be replaced by that of “set of minimal elements”,
which is closely related to the definition of a Pareto front in multicriteria opti-
mization [21]. There exist, however, many different proposals for precedence
operators or rankings between fuzzy sets, some of which could be used to
define a total order over the solutions and be combined with a suitable scalar
evolutionary search [12]. In this work, however, the precedence operator in-
duces a partial order in the set of solutions, thus the search will produce a
set of nondominated maps.

e Evolutionary Scheme: A generational approach with the multiobjective
NSGA-II replacement strategy is considered. Binary tournament selection
based on the crowding distance in the objective function space is used. The
precedence operator derives from the Bayesian coherent inference with an
imprecise prior, the dominated sorting is based on the product of the lower
probabilities of precedence, and the crowding in based on the Hausdorff dis-
tance, as described in [16].

e Genetic Operators: Arithmetic crossover is used for combining two
chains. The mutation operator consists in performing crossover with a ran-
domly generated chain.

4. Results

In this section, we will illustrate, with the help of real-world datasets, how to
process different kinds of tests and interpret the resulting maps. First, it will be
shown how to segment heterogeneous groups of students and how to study the
temporal evolution of the learning, which will be represented by arrows. This is
useful for finding groups of students that cannot follow the course timeline or those
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Fig. 4 Left part: Differences in knowledge of Statistics for students in Ingenieria

Telematica. Right part: Differences in knowledge about Computer Science between

the students of Ingenieria Tecnica Industrial specialized in Chemistry, Electricity
and Mechanics.

concepts that are learned faster by each group of students. Lastly, we will apply
the same techniques to a group of preschoolers with learning disorders and use the
techniques developed in this research for analyzing their evolution.

4.1 Knowledge Surveys I: Variation of individual capacities
in the same group and between groups

In the left part of Fig. 4, a diagram for 30 students of subject “Statistics” in In-
genieria Telematica at Oviedo University, is shown. The data was acquired at the
beginning of the course 2009-2010. This survey is related to students’ prerrequisite
skills in Algebra (A), Logic (B), Electronics (C), Numerical Analysis (D), Prob-
ability (E) and Physics (F). The positions of the characteristic points have been
marked with labels. Those points are of the type “A” (all the questions about
the subject “A” are correct, the others are erroneous) “NO A” (all the questions
except “A” ones are correct, the opposite situation), etc.

In the right part of Fig. 4, we have plotted together the results of three different
groups, who attend lectures by the same teacher. Each intensification has been
coded with a distinctive pattern. This teacher has evaluated, as before, the initial
knowledge of the students in subjects that are a prerequisite. From the graphic
in that figure, the most relevant fact is that the students of the intensification
coded in the less dense pattern (Ingenieria Industrial) consider themselves better
prepared than those coded in the dark, finer pattern (Ingenieria Tecnica Industrial
Electrica), with the other group in an intermediate position, closer to the first one
(Ingenieria Tecnica Industrial Quimica). All the students of all the groups have a
neutral orientation to math subjects, and some students in the second group think
that their background is adequate only in subjects C (Operating Systems) and D
(Internet).
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Fig. 5 Evolution of the learning of pre-doctoral students. Left part: Initial survey.
Right part: The displacement has been shown by arrows.

4.2 Knowledge Surveys II: Evolution of learning capabilities

Ten pre-doctoral students in Computer Science, Physics and Mathematics attend-
ing a research master were analyzed. The background of these students is het-
erogeneous. In the survey, the students were asked 36 questions about the vari-
ables “Control Algorithms” (A), “Statistical Data Analysis” (B), “Numerical Algo-
rithms” (C) and “Lineal Models” (D). The left part of Fig. 5 shows that there is a
large dispersion between the initial knowledges. Since the course had strong theo-
retic foundations, students from technical degrees like Computer Science evaluated
themselves with the lowest scores (shapes in the right part of each figure).

The same survey, repeated at the end of the course, shows that all the students
moved to the left, closer to characteristic point “EVERYTHING”. Additionally,
the displacement has been larger for the students in the group at the right. This
displacement can be seen clearly in the right part of the same figure, where the
shapes obtained from the final survey were replaced by arrows that begin in the
initial position and end in the final center. The length of the arrows is related with
the progress of the student during the course, showing that those students that
scored the highest marks in the course (those who also considered themselves best
prepared at the beginning of the course) did not make a good use of the course,
which, on the contrary, was able to improve the capabilities of students in technical
degrees.

4.3 Diagnosis of dyslexia

For this last experiment we have collected a sample of 65 infants between 5 and
6 years old, in urban schools of Asturias (Spain). Afterwards, the same children
were examined by a psychologist, who assigned each one of them a class: normal
child, dyslexic, slight dyslexia, and attention disorder. In some cases, the child was
too young for a definite diagnostic and the expert assigned two classes to them
(for example, “might be dyslexia or an attention disorder”). We selected twelve
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Fig. 6 Evolution of dyslexia. Upper, left part: 4-5 years. Upper, right: 5-6 years.
Lower part: The displacement has been shown by arrows.

children with potential problems and repeated the tests one year later. We have
included the characteristic points of four latent variables: Reasoning (R), Visual-
Motor Coordination (C), Shape Perception (P) and Spatial Orientation (S).

In the upper-left part of Fig. 6, the initial map of the children is shown. Children
suffering dislexia (individuals 1, 2 and 6) are concentrated on the right part of the
map (low scores in all of the latent variables, as indicated by the axis joining the
characteristic points “LOW” and “HIGH”) and also tend to be in the upper part of
the map (lower values in Shape Perception, measured by Bender’s tests). The size
of some shapes reflects that there is a moderate amount of missing values, however
the map shows that the values of the missing items are not too relevant in this stage
of the diagnosis, since the intersection of shapes with different classes is low (except
for individual number 5, which incidentally had his diagnosis revised one year later).
Observe also that the three individuals labeled “dyslexia + attention disorder” (7,
10 and 12) are clearly positioned nearer to the area of attention disorder, and this
may indicate that the expert could have used this map for gaining insight in her
diagnosis.
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The upper-right part of the same figure illustrates the map of these children,
one year later. As expected, the skills of all individuals have been enhanced, and
all of them are nearer to the characteristic point “HIGH”, which is a positive
result. This is clearly seen in the lower part of the figure, where both maps are
superimposed and the shapes corresponding to the latest test have been removed
and replaced by an arrow joining the centers of the initial and final shapes that
are the final diagnosis of the expert in this second test. Observe that children 10
and 12 apparently have evolved to the same area of the map, but the expert has
labeled the individual number 10 as “dyslexic”. In this case, there is a significant
overlap between the shapes of these two individuals, and the information given by
the tests is too incomplete for being reliable. This last sanity check would have
not been possible without the extra information given by the size and shape of the
projection that are provided by this method.

5. Conclusions

In this work, we have extended the Multidimensional Scaling to imprecise data,
and exploited the new capabilities of the algorithm for producing a method able
to process incomplete or non-consistent tests measuring learning capabilities and
learning disorders. The map of a group of individuals comprises several shapes
whose volumes measure the degree to which a survey has missing data and whose
relative positions depend on the similarities between individuals. We have shown
with the help of real-world data that these maps can help in detecting heterogeneous
groups and measuring the capabilities of the student after the course, and can also
be used during the diagnosis of certain learning disorders, being able to condense
large amounts of data in a simple graph that permits gaining insight in the evolution
of a group of individuals, even when the available data is incomplete or imprecise.
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BASE CLASSIFIERS IN BOOSTING-BASED
CLASSIFICATION OF SEQUENTIAL
STRUCTURES

Przemyslaw Kazienko, Tomasz Kajdanowicz*

Abstract: Boosting as a very successful classification algorithm represents a great
generalization ability with appropriate ensemble diversity. It can be easily applied
in the two-class classification problem. However, sequential structure prediction,
in which the output is an ordered list of the labeled classes, needs to be realized by
an adjusted and extended version. For that purpose the AdaBoostSeq algorithm
has been introduced. It performs the multi-class classification with respect to the
sequential structure of the classification target. The profile of the AdaBoostSeq
algorithm is analyzed in the paper, especially its classification accuracy, using var-
ious base classifiers applied to diverse experimental datasets with comparison to
other state-of-the-art methods.
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1. Introduction

Sequence labeling may be understood as a multi-class classification problem, whose
classified target is of a sequential nature. Uniqueness of this classification task
lays in the fact that the target labels on some sequence positions may stay in
the interaction with one another. In consequence, the knowledge about relations
between them may be utilized in the sequence labeling.

Traditional approaches dealing with multi-class classification are realized by
reducing the multi-class classification problem to multiple two-class problems. Un-
fortunately, its application to the sequence labeling problem may result in loss of
the information contained in the structure of the classified structure.

For that reason, a new AdaBoostSeq algorithm has been introduced. It natu-
rally extends the original AdaBoost algorithm to the sequence labeling case without
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Fig. 1 Ilustration of sequence labeling problem, where each case (data instance)
has assigned sequence of labels.

reducing it to several two-class problems. Similarly to the AdaBoost applied to the
two-class classification, the AdaBoostSeq algorithm also combines some weak base
classifiers and it only requires the performance of each weak classifier be better
than random guessing.

The concept of the AdaBoostSeq algorithm was introduced in [10]. In this
paper, a profile of the AdaBoostSeq algorithm is studied, in particular, the de-
pendence of AdaBoostSeq accuracy on the base classifier selection process. The
experiments shown in Section 6. revealed the algorithm’s high competitive advan-
tage compared to the best currently available multi-class classification methods.

2. Related Work

The traditional classification assumes each instance (case) belongs to exactly one
of a finite set of possible classes. Supposing that a given set of training samples
(instances, cases) (z1,y1),.--, (N, yn), where z; € XP and y; € C is a class from
finite set of classes, the goal is to find a classification rule f(x;) from the training
data, so that when a new input z; is given, we can assign to it a class label y; from
the class domain C.

The sequence labeling classification problem considered in this paper allows
instances to belong to several classes simultaneously. Classification, in such case,
may be addressed by multi-class classification, where classes assigned to the single
instance may be represented by a sequence, graph, tree, etc. In general, the goal of
mapping the input to the structured output is to assign class values to all elements
from the output structure.
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The sequence labeling problem, which was studied in many relevant researches
[3, 15, 16, 20, 24], refers, among others, to sequence labeling, parsing, collective
classification, bipartite matching, and similar.

According to the proposal in [5], it is assumed that classification assigning a
sequence to the instance x; is a type of structured prediction problem being a cost-
sensitive classification problem, where classification results y; have the structure of
a vector; y; may be a sequence of T values (a T-length sequence): y;=(yi, y2, ...,
yl), VvV (p=1,2,...,T) y!" € C. Note that the vector notation appears to be useful
not only for sequence labeling problems.

Additionally, the algorithms realizing sequence labeling can also make use of
the extended idea for feature input space. It means that while computing a given
item value y', 1 < p < T, from the T-length sequence y;=(yi, y2, ..., yl), the
algorithms may utilize the input data both from the original input x; € X and from
the partially produced output yiP * where yf) " is a part of the final y; obtained so far,
e.g. yf“:(yil, v yz’-“l) [12, 14]. This composition of x; and yf“’, ie. (ay, yf“’)
remains an input vector in Euclidean space, but in opposite to the single x; it also
depends on the output yip * achieved so far. This concept makes use of the typical
nature of the sequential data, in which a given item value y! may depend somehow
on the values of the previous items in the sequence, namely vy, y2, ...,y -1

Overall, structured prediction is a research problem that emerges in many ap-
plication domains, among others in protein function classification [27], semantic
classification of images [2] or text categorization [19)].

Generally, structured prediction methods can be categorized into two different
groups [25]: problem transformation methods, and algorithm adaptation methods.
Whereas the former group of methods is independent of algorithms and concerns
the transformation of multi-class classification task into one or more single-class
classification, the latter adapts existing learning algorithms in order to directly
handle multi-class data. This paper focuses on the second group of methods.

As the nature of structured prediction problems is complex, the majority of
proposed algorithms is based on the well-known binary classification adapted in a
specific way [17]. The most natural adaptation is structured perceptron [3] that has
minimal requirements on output space shape and is easy to implement. However,
it provides somewhat limited generalization accuracy. An example adaptation of
the popular backpropagation algorithm is BPMLL [27], where a new error function
takes multiple target into account.

Another solution are Max-margin Markov Nets that consider the structured
prediction problem as a quadratic programming problem [20]. They are very use-
ful, however, their performance is very slow. The next, more flexible approach is
an alternative adjustment of logistic regression to the structured outputs called
Conditional Random Fields [15]. It provides probabilistic outputs and good gener-
alization, but again, it is relatively slow. Another method, similar to Max-margin
Markov Net technique, is Support Vector Machine for Interdependent and Struc-
tured Outputs (SV MSTRUCT) [24], which applies variety of loss functions.

Yet other known algorithms from a lazy learning group realizing the structured
prediction task are MLKNN and BRKNN [28]. Both of them extend the popular
k Nearest Neighbors (kNN) lazy learning algorithm using a Bayesian approach
and the maximum a posteriori principle to assign the label set based on prior
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and posterior probabilities for the frequency of each label within the k£ nearest
neighbors. An alternate, based on meta learning approach, are Hierarchical Multi-
label Classifier (HMC), HOMER [22] that construct a hierarchy of multi-label
classifiers and RAKEL [26], an ensemble of classifiers trained with the applications
of different small random subset of the set of labels.

The main motivation in designing a new ensemble method for sequence labeling
is to utilize the powerful machine learning concept like boosting and apply it not
independently to individual sequence items but force the method to make use of
the additional knowledge of the structure being predicted [10].

3. Boosting for Sequence Labeling

Based on the most popular boosting algorithm AdaBoost [7, 21], the modification
to the cost function as well as the new structure of sequential increments has been
introduced to the algorithm.

It is assumed that there is a binary sequence classification problem with y! €
{-1,1},fori=1,2,...,Nand p =1,2,...,T, where N is the number of instances
(observations, cases), T is the length of the sequence. The general goal is to
construct T' optimally designed linear combinations of K base classifiers of the
form:

~

Vu=12,...,T F'(z)=)_ old(x,0}) (1)
k=1

where: F#(x) is the combined final meta classifier for the p-th sequence item;
®(x, ©}) represents the k-th base classifier, performing according to its ©% param-
eter and returning a binary class label for each instance (case) z; o, is the weight
associated to the k-th classifier.

Values of the unknown parameters (o and ©)) result from minimization of
prediction error for each puth sequence element for all K classifiers. As the direct
optimization of these both parameters is highly complex, a stage-wise suboptimal
method is performed in M steps [21]. By definition of partial sums and based on
recursion properties, the value of F*(x) at step m, i.e. F!(x), may be calculated
using the value of F!' _,(z) that has already been optimized in the previous step
m — 1, see [11] for details. Therefore, the problem at step m is to compute:

(o, O8) = argmi(g J (o, 01), (2)

a?

where the sequence-loss balancing cost function J is defined as:

N
J(a, OF) = Zexp(—yé‘(fFﬁ_l(fEi) + (1= )yl Bl (2:) + o ®(2:,01)),  (3)

where: R‘,ﬁl (z;) is an impact function denoting the influence on prediction according
to the quality of the preceding sequence labels predictions; £ is a parameter that
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allows controlling the influence of impact function in weights composition, £ €
(0,1).

R (x;) is applied in computation for the current sequence position, as follows:

m—1
RE () = > ol R*(w) (4)
j=1
K l F(2)
R () = P i‘/zsz=1 al 5
(i) = — (5)

where: R*(x;) is the auxiliary function that denotes the average coincidence be-
tween prediction result F!(z;) and the actual value yf weighted with the weights afC
associated to the k-th base classifiers for all sequence items achieved so far (from
1 to p) with respect to the value of p.

The impact function I:{fn (z;), introduced in Eq. 4 and 5, measures the cor-
rectness of prediction for all preceding labels [ = 1,...,u in the sequence. This
function is utilized in the cost function and it provides a smaller error deviation for
the whole sequence. The greater compliance between prediction and the real value
is, the higher the function value is. Due to the binary nature of the base classifier,
minimization of ©* (from Eq. 3) is equivalent to:

N
O = arg Iglun {Z wé‘(m)l(l -yl (ay, @”))} , (6)
i=1

where

_J0if 2=0
Iz) = {1,if >0 @

and wf(m) denotes the weight associated to instance x; in the m-th step, see [11]
for its detailed derivation.

The presented transformation based on basic algebraic operations lead to the
algorithm AdaBoostSeq for sequence prediction and may be found in [10].

4. Base Classifiers for the AdaBoostSeq

A crucial component of boosting scheme is a construction of good base classifiers
providing core classification. These base classifiers are weighted while undertaking
the final classification decision. However, a base classifier that is too weak cannot
guarantee high performance on composite generalization. In the context of binary
classification, that is, in fact, the most basic operation performed by the Adaboost-
Seq, it is required the weighted empirical error of each base classifier be smaller
than % - %'y, where v is a parameter quantifying the deviation of the base classifier
performance. Thus, considering a base classifier ® obtained from learning on the
dataset with all instances (z;,y!), for i = 1,2,...,N and for pp = 1,2,...,T (all
sequence items), we expect the empirical error e(®(x, OH)) for all cases z in the
learning set to be as follows:
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%, (8)

N |
N -

N
e(O(x,0M) = > whI(y! # d(x;, OM)) <

i=1

where w!' is the weight associated with instance z; at u sequence item, v > 0,
I(true) =1 and I(false) = 0.

For the real world data, while utilizing very simple base classifiers, it may be
a very difficult or even impossible task to find such ~, for which Eq. 8 holds. For
example, let us consider the two-dimension xor problem with N = 4 and data
instances: z1 = (1,1), xz2 = (1,-1), 23 = (-1,1), 24 = (=1,—1). Clearly, it will
not be solved by an axis-parallel half-space, such that e will be smaller than % for
uniform weighting over data instances.

On the contrary, an excessively complex base classifier may lead to overfitting
and can cause drop of the total performance. Again, for the real world data, where
a higher noise level usually appears, the usage of complex base classifiers may result
in exaggerated weighting for instances belonging to the noise.

As the appropriate choice of the base classifier plays a key role in successful ap-
plication, it is desirable to empirically examine basic properties of the AdaBoostSeq
in terms of base classifier selection.

5. Experiments

The main objective of the performed experiments was to discover the profile of
AdaBoostSeq in terms of its accuracy dependency on the type of the base classifier
used in classification. The AdaBoostSeq algorithm was examined according to
hamming loss, classification accuracy and computation time for five distinct base
classifiers (Decision Stump, C4.5, Naive Bayes, Logistic Regression and Support
Vector Machine — SVM) together with the other state-of-the-art representative
algorithms in the structured prediction domain, namely BPMLL, MLkNN, BRkNN,
HMC, HOMER and RAKEL. The parameters of the base classifiers utilized in the
experiments are shown in Tab. I.

Algorithm Settings
Decision Stump entropy based
Decision Tree C4.5 conf.factor=0.25; pruned;
Naive Bayes kernel estimator
Logistic Regression max Its.=-1; ridge=10"%
Support Vector Machine (SVM) | polynomial kernel; exp=1; size=250007

Tab. I Settings of the base classifiers utilized in the experiments.

As the nature of structured prediction differs from the standard approaches,
it requires different evaluation measures than those used in the traditional single-
label classification. Some standard evaluation measures of multi-class classifiers
from the previous work have been used in the experiments. The utilized measures
are calculated based on the differences of the actual and the predicted sets of labels
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over examples. The first employed measure, proposed in [19], is Hamming Loss H L,
which is defined as:

1 LY, AF(x;
> (z)

HL =+ T 9)

i=1

where: N is the number of examples, Y; denotes actual (real) labels in the se-
quence, F'(z;) is a sequence of labels predicted by the classifier, and A stands for
the symmetric difference of two sets, which is the set-theoretic equivalent of the
exclusive disjunction in Boolean logic.

The second evaluation measure utilized in the experiments is Classification Ac-
curacy C'A [9], defined as:

1 N
CA= S 1(Y = F(a), (10)

i=1

where: N,Y;, F(x;)have the same meaning as in Eq. 9, I(¢true)=1 and I(false)=0.

This is a very strict evaluation measure as it requires the predicted sequence of
labels to be an exact match of the true set of labels.

The performance of the analyzed methods was evaluated using 10-fold cross-
validation and the evaluation measures from Eq. 9 and Eq. 10. These two metrics
are widely-used in literature and are indicative for the performance of multi-label
classification methods. Additionally, the computation time has been monitored.

The experiments were carried out on three datasets from three diverse appli-
cation domains: semantic scene analysis, bioinformatics and music categorization.
The image dataset scene [2] semantically indexes still scenes. The biological dataset
yeast [6] is concerned with protein function classification. The music dataset emo-
tions [23] contains data about songs categorized into one or more classes of emo-
tions.

Dataset | Examples | Attributes | Sequence length
scene 2407 294 6
yeast 2417 203 14
emotions 593 72 6

Tab. IT Datasets used in the experiments.

Basic statistics of utilized datasets, such as the number of examples, the number
of numeric and discrete attributes and the length of label sequence are presented
in Tab. II. In each of examined datasets, the binary classification problem was
addressed.

6. Results

The sequence labeling for three diverse datasets was examined in the experiment.
First, different base classifiers within the AdaBoostSeq were evaluated in compar-
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Fig. 2 Hamming Loss measure for examined base classifiers in the AdaBoostSeq
algorithm on scene, yeast and emotions datasets.

ison with one another, see Section 6.1. Next, the results of AdaBoostSeq were
confronted against some other methods, see Section 6.2.

6.1 Evaluation of base classifiers

The AdaBoostSeq algorithm (abbreviated in figures to ABS) was applied separately
to three datasets scene, yeast, and emotions using five diverse base classifiers:
Decision Stump, Decision Tree C4.5, Naive Bayes, Logistic Regression, and Support
Vector Machine. The best value of Hamming Loss HL, Eq. 9, was achieved for
Decision Tree C4.5 as the base classifier, Fig. 2. Moreover, it referred all three
datasets.

The results obtained by the AdaBoostSeq for H L measure for the most simple
base classifiers, i.e. Decision Stump, Naive Bayes as well as with the most complex
ones (SVM) are from 5% to 80% worse than for C4.5 base classifier. The worst
base classifier was Naive Bayes.

Similar results were obtained for the accuracy measure C A, Eq. 10, see Fig. 3.
Decision trees C4.5 performed better from 4% to 29% compared to the other base
classifiers. The Naive Bayes classifier was the worse for emotions, yeast and scene
datasets (the average value of accuracy C'A at the level of only 24%, 11% and 16%,
respectively).

The above results confirm, the general boosting property of underfitting for
simple classifiers (Decision Stump, Naive Bayes) and overfitting for complex ones
(SVM), as mentioned in Section 4.

Concluding, it appears that the balanced base classifiers like decision trees pro-
vide the best results for the AdaBoostSeq method.
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Fig. 3 Classification Accuracy measure for the examined base classifiers in the
AdaBoosSeq algorithm on scene, yeast and emotions datasets.

6.2 Comparison of AdaBoostSeq with other methods

The AdaBoostSeq algorithm was also compared to some other methods, in partic-
ular to BPMLL, MLKNN, BRKNN, HMC, HOMER, and RAKEL.

As regards Hamming Loss HL, Eq. 9, the best AdaBoostSeq (ABS) with C4.5
base classifier performed better by 1% than the second best MLKNN, and by 45%
better than the worst BPMLL for the scene dataset. In the dataset yeast, ABS
C4.5 provided 34% better results compared to the second best MLKNN, and by
43% better than the worst RAKEL. In the last dataset emotions, the AdaBoostSeq
resulted in a 13% better prediction than BPMLL, and was by 29% better than the
worst MLKNN, see Fig. 4.

It is worth mentioning that while the other algorithms examined on all three
datasets are not resistant to the profile of data (e.g. MLKNN provides a fair pre-
diction only for some of them), the AdaBoostSeq with C4.5 base classifier appears
to be rather resistant. It is a sign of stability of the AdaBoostSeq method when
using a balanced base classifier.

While considering the classification accuracy C A, Eq. 10, again the AdaBoost-
Seq with C4.5 base classifier provided the best performance in comparison to all
other algorithms, see Fig. 5.

The experimental results confirm that the nature of the sequence-loss cost func-
tion, Eq. 3, accompanied by an appropriate, balanced base classifier utilized within
the AdaBoostSeq algorithm, promotes minimization of the error on the individual
sequence item rather than minimization of the error for the whole sequence at once.
As a result, we receive competitive outcome.
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Fig. 4 Hamming Loss measure for the examined algorithms on scene, yeast and
emotions datasets.

Fig. 5 Classification Accuracy measure for the examined algorithms on scene, yeast
and emotions datasets.

6.3 Time efficiency

Unfortunately, the AdaBoostSeq algorithm with any of the tested base classifiers
requires much more computational effort in comparison to other algorithms, see
Fig. 6. Furthermore, decision trees C4.5 and logistic regression taken as base
classifiers appear to be the most demanding in terms of computation time. Among
AdaBoostSeq approaches, the method using the simple Naive Bayes base classifier
was the fastest. Moreover, its execution time was smaller than that of some other
classification methods like HOMER, HMC, and RakEL.
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Fig. 6 Execution time in seconds for the examined algorithms on scene, yeast and
emotions datasets (ABS — AdaBoostSeq).

Overall, we can state that the best balanced classifier — decision tree C4.5 is
simultaneously the most time consuming.

7. Conclusions

The usage of the proper base classifier in a new approach to sequence labeling —
the AdaBoostSeq algorithm, which is based on a boosting concept, was analyzed
in the paper.

The experimental studies were carried out on several known benchmark datasets
using diverse base classifiers. Additionally, the AdaBoostSeq algorithm was com-
pared to other state-of-the-art algorithms in the structured prediction domain.

The results have shown that the AdaBoostSeq is a valuable and useful alter-
native approach that may provide the best and most accurate classification results
if an appropriate, balanced base classifier is used. Both simple and complex base
classifiers performed worse compared to the best balanced decision tree C4.5 all
the experiments conducted.

The AdaBoostSeq method may be more or less resistant to under- and overfiting
when utilizing diverse base classifiers. Overall, the balanced base classifiers enable
the AdaBoostSeq to provide the most accurate outcomes, which are better than
those of other recently known methods.

A significant disadvantage of the best classifier C4.5 was its long processing
time.
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COMBINATION OF ONE-CLASS CLASSIFIERS
FOR MULTICLASS PROBLEMS BY FUZZY
LOGIC

Tomasz Wilk, Michat WozZniak*

Abstract: Combining classifiers, so-called Multiple Classifier Systems (MCSs),
gained a lot of interest has recent years. Researchers, developed a large variety of
methods in order to exploit strengths of individual classifiers. In this paper, we
address the problem of how to implement a multi-class classifier by an ensemble
of one-class classifiers. To improve performance of a compound classifier, different
individual classifiers (which may, e.g., differ in complexity, type, training algorithm
or other) can be combined and that could increase its both performance, and
robustness. The model of one-class classifiers can only recognize one of the classes,
therefore, it is quite difficult to produce MCSs on the basis of one-class classifiers.
Thus, we introduce a new scheme for decision-making in MCSs through a fuzzy
inference system. Specifically, we address two important open problems in the
context: model selection and combiner training. Classifiers’ outputs as supports
for given classes are combined by means of a fuzzy engine. Thus, we are interested in
such individual classifiers which can return support for given classes. There are no
other restrictions on the used classifiers. The proposed model has been evaluated by
computer experiments on several benchmark datasets in the Matlab environment.
Their results prove that fuzzy combination of binary classifiers may be a valuable
classifier itself. Additionally, there are indicated both some application areas of
the models, and new research frontiers to be examined.

Key words: Multiple classifier systems, pattern recognition, fuzzy logic, one-class
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1. Introduction

There is much current research into developing even more efficient and accurate
recognition algorithms. Multiple classifier systems (MCSs), known as combining
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classifiers, are currently the focus of intense research. In this approach, the main
effort is concentrated on combining knowledge of the set of individual classifiers.
The main motivations of using MCSs are as follows:

e It could avoid selection of the worst classifier by e.g. averaging the individual
ones [20].

e There is ample evidence that combination of classifiers can result in a classifier
that outperforms the best individual.

e Many machine learning algorithms use heuristic search algorithms which do
not guarantee that optimal solution is found. Exhaustive search, i.e. testing
the whole space of possible solutions for most decision problems, is impos-
sible; therefore, the combining approach which starts the machine learning
algorithm from different points is an attractive proposition.

e Combined classifier could be used in distributed environment, especially in
the case that database is partitioned for privacy reasons.

e According to the “no free-lunch theorem” there is not a single solution which
could solve all problems, but classifiers have different domains of competence
[20].

There is a number of important issues while building the aforementioned systems.
The problem of designing compound classifiers consists of three main areas:

e topology,
e classifier ensemble design,
e fuser design.

As a topology parallel one is the most popular because it has a good methodological
background.

Another important issue while building MSCs is how to select classifiers in a
way making the quality of ensemble better than quality of individual classifier.
Let us notice that combining similar classifiers could not contribute much to the
system being constructed, apart from increasing the computational complexity.
That is why it is important to select members of a committee with possibly different
components. One of current research is trying to answer the question how the
diversity could be measured. Proposed methods exploit several types of diversity
measures which, for example, can be used to minimize the possibility of coincidental
failure by different classifiers in the ensemble [18].

A strategy for generating the ensemble members must seek to improve the
ensemble’s diversity. We could use varying components of the MCS to enforce
classifier diversity:

e using different input data, e.g. we could use different partitions of data set
or generate various data sets by data splitting, cross-validated committee,
bagging, boosting [23], because we hope that classifiers trained on different
inputs are complementary;
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e using classifiers with different outputs, i.e. each individual classifier could
be trained to solve subset of M class problem (e.g. binary classifier — one
class against remaining ones strategy) and fusion method should recover the
whole set of M classes. The well-known technique is Error-Correcting Output
Codes (ECOC) [6];

e using classifiers with the same input and output, but trained on the basis of
different models or model’s versions.

Another important issue is the choice of a collective decision-making method. There
are many different voting methods like majority voting [35] and more advanced
types based on weighting the importance of decisions coming from particular com-
mittee members [23, 33]. Treating the process of weight selection as a separate
learning process is an alternative method [15, 16].

The second group of collective decision-making methods bases on supports given
by individual classifiers for each given classes, the main form of which are the pos-
terior probability estimators, associated with probabilistic models of a given pat-
tern recognition task [1, 5, 17]. One also has to mention many other works that
describe analytical properties and experimental results, like [9, 12, 32]. The aggre-
gating methods, which do not require a learning procedure, use simple operators,
like average, maximum, minimum, or product, but they are typically subject to
very restrictive conditions [8], which severely limits their practical use. Therefore,
the design of new fusion classification models are currently the focus of intense
research.

The purpose of our contribution is to present a theoretical model of fuzzy com-
bination method of one-class classifiers. Its implementation is elaborated and val-
idated. We prove efficiency of the proposed scheme through a series of tests and
discuss next steps for the future research and improvement areas.

2. Related works

Fuzzy set theory can be successfully used when dealing with uncertainty in decision-
making. Thus, fuzzy sets gained attention on many research frontiers such as
information technology, production support, decision-making, pattern recognition,
diagnostics, data analysis, etc. [4, 11, 22, 23, 24, 34, 37].

Kuncheva et al. [22] report that the Fuzzy Integral (FI) gives excellent results
as a classifier combiner. Its main idea is to measure the competency of the collec-
tions of classifiers, instead of measuring competency of only single classifiers. The
measure of strength is defined as a Fuzzy Measure. Lee et al. [19] show that usage
of FI allows us to use relative weight of each of individual classifiers. One must
also mention Decision Templates (DT) with fuzzy measure as a similarity measure
[22]. During a classification process, every DT is compared with decision profile of
an input object. Kuncheva et al. [22] proof that DT supported by the fuzzy logic
give good results.

The other fuzzy combination method involves usage of neuro-fuzzy systems.
Fuzzy systems implemented as adaptive neural networks (ANNS) are fuzzy systems,
which use neural networks support in their properties determination process (for
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both fuzzy sets and rules). Therefore, neuro-fuzzy systems harness the power of
the two paradigms: fuzzy logic and ANNs, by combining learning ability of neural
networks with the strength of the tuned and approximated human logic to process
uncertain information [27]. Good example of such a system is the Adaptive Neuro-
Fuzzy Inference System (ANFIS) which shows good results in modeling nonlinear
functions. ANFIS learns the membership function parameters from a data set with
features corresponding to a given problem [11].

Giiler et al. [11] use model based on ANFIS to classify EEG signals. ANFIS
based classifiers were trained on different sets of features and finally combined.
Zeng et al. [37] reports successful implementation of ANFIS with genetic algorithms
support for toughening of materials.

A multi-class classification problem can be decomposed in the finite quantity
of two-class classification problems [37]. Thus, connecting binary classifiers should
aim to solve multi-class problem by dividing it into dichotomies. In literature there
are several examples of construction of the multi-class classifier by combining the
outputs of two-class classifiers [7, 14, 29].

Usually the combination is made via a simple nearest-neighbor rule, which finds
the class that is closest in some sense to the outputs of the binary classifiers. The
most common variations of binary classifier combinations are: one-against-one and
one-against-all [7]. The latter allows one to create neat and intuitive multi-class
classifier. In this model, at least one binary classifier corresponds to each class.
The hypothesis that the given features vector belongs to the selected class is tested
against it belonging to one of the other classes. Such an approach has a flow in a
case of conflicting answers from classifiers which is not quite straightforward. One-
against-all method is usually implemented as so called Winner Takes All (WTA).
Each classifier is trained on instances of different class which becomes first class, all
the other classes correspond to the second one. Final result is achieved by the max-
imum rule on the values of support for every class. Dieterich and Bakiri [6] propose
a combination model, which in case of binary classifier ensembles appeared to be
a good extension of approaches mentioned above. Each sequence of bits produced
by a set of binary classifiers is associated with codewords during learning. The
ECOC method selects a class with the smallest Hamming distance to its codeword.
Passerini et al. [26] used successfully this scheme for support vector machines.

On the other hand, the combination of one class classifiers still awaits proper
attention [10]. One-class classification problem, also called data description, is a
special case of binary classification [28]. Their main goal is to detect anomaly
or a state other than the one for the target class [30]. It is assumed that only
information of one of the classes, the target class, is available. The task is to define
a boundary around the target class, such that it accepts as much of the target
objects as possible, while it minimizes the chance of accepting outlier objects.

3. Fuzzy Combiner

3.1 Model of proposed combiner

In the modeling task, we concentrate on both the parameter, and the structure
identification. Therefore, it can be treated as a system identification procedure.
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First, we must focus on such global system parameters as the following: member-
ship functions, linear coefficients, fuzzy engine type etc. Afterwards, we search for
an optimal number of rules, a feature selection scheme and a proper partition of
the feature space.

The aim of the pattern recognition task is to classify a given object described
by its features = [z, ..., 2(D]T € R? to one of the predefined categories j €
M ={1,..., M}, which leads to the following definition of classifier ¥

v:X— M. (1)

To use the fuzzy decision-making (FDM) for combination of classifiers, the following
fuzzy combiner model is proposed (Fig. 1).

One class classifier 1

L

One class classifier i

L

One class classifier L

L

Fig. 1 A general scheme of the proposed fuzzy ensemble where M > 3.

Let us denote a dataset described as DS = {(x1,41),..., (Xn,jn)}, where n
defines the size of a dataset. Each k-th element of DS is described by a feature
vector values x and its correct classification jy.

In the presented model, the quantity of one-class classifiers will be also equal to
M. Let g;(x) denote the support value for the statement that the current input data
belongs to the i-th class. In the case of the proposed combiner, normalized values
or g;(x) in the form of probability estimates are not required. Set of discriminant
functions, G, is defined by G = {G1, ..., Gar }, where G; denotes the i-th one-class
classifier in the ensemble, i = 1,2,..., M. One seeks classifiers that minimize the
number of misclassified samples. According to the proposed approach, the label of
each data is determined from the aggregation of the experts in the form of one-class
classifiers. In contrast to FI and DT, g;(x) couldn’t be a fuzzy support value. It is
an input value which still needs to be fuzzified.

In the proposed model, both one-class classifiers and one-against-all binary clas-
sifiers could be used. Binary classifiers are transformed to the one-class classifiers
through the following equation:

9(z) = g1(x) = go(). (2)
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In such case, the classifier support for a given class is a difference between a
support for the target g¢(z) and the outlier class g,(x). The individual classifiers
are assumed to be trained, and this issue will not be investigated further.

One-class classifiers provide us uncertain data. The proposed solution operates
on the abstract level in order to extract more data, which is not possible when
operating on classifiers’ outputs in the form of the class labels or binary values.
Therefore, values returned by classifiers are interpreted using fuzzy logic.

Decision problems could be divided into two groups:

e processing of partial information
e processing of uncertain information.

In the second case, fuzzy logic can be used successfully [36].

In a generic form we can describe our fuzzy combiner as a classifier with M
discrimination functions. We will define their set as Y = {y1, ..., ym }-

It is a common practice that a Fuzzy Decision Making System (FDMS) is usually
comprised of four main components: fuzzification block, reasoning block, knowledge
base and finally defuzzification block (Fig. 2).

Explanation of the given blocks is following [27]:

e Fuzzification block is responsible for the assigning of the membership values
to the fuzzy sets for a given input vector.

e Reasoning block combines fuzzy rules with membership values of correspond-
ing fuzzy sets and provides reasoning similar to human.

e Defuzzification block is responsible for translating fuzzy output variables into

actual output value.
Fuzzy Rules
Database

Fuzzyfication block Reasoning block Defuzzyfication block

Fig. 2 Fuzzy engine general scheme.

According to definition [27], in some non-empty space fuzzy set A is denoted as

A(gi(z)) = {(gi(w), palgi(z))); pa(gi(z))) € < 0,1 >}, (3)

where g is a membership function of the fuzzy set A. Fuzzification in proposed
scheme can be described as a mapping of g;(x) to a fuzzy set A.
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The most common membership functions are trapezoid

f(z) :== maz(1;min(0;0.5 + o(z — a)) (4)
or sigmoid function

1
£(@) = Ty

where ¢ and « are parameters which require optimization.

Maénnle [25] points out that the shape of the membership function has a minor
influence on the FDMS performance. On the other hand, Kuncheva et al. [22]
argue that classifiers usually output extreme values, that is, values with very high
or very low level of support for the hypothesis. Therefore, despite the shape of the
membership functions used, their parameters (center, width) must be adjusted to
each type of one-class classifiers for a given multi-class problem separately.

Theoretically, a higher number of fuzzy sets should improve quality, but it would
be at the cost of the performance of the proposed model. It could also decrease
generalization properties of the fuzzy combiner and provide additional parameters
of the model, for which larger training dataset would be required.

The assumption is made that the memory to sustain fuzzy rules is of sufficient
size. We propose space partitioning in order to find membership function param-
eters and fuzzy rules candidates, therefore the number of the fuzzy rules will not
be a parameter of the proposed system.

In reasoning block conclusions are made basing on decision rules (linguistic
model), where the k-th rule looks as follows

IF(gi(x) IS A¥ AND/OR ... AND/OR gy (z) IS A%))
THEN (y, IS D¥ AND ... AND yy IS D%)), (6)

(5)

where k denotes number of a fuzzy rule, D¥ denotes fuzzy set for output variable
y1, used in k-th rule.

Above rule is an example of the Mandani type rule [27]. It has an implemen-
tation drawback in the form of the defuzzification block in fuzzy engine and also
high calculation complexity. These problems do not exist in Yasukawa and Sugeno
type rules.

In Yasukawa’s fuzzy rules system response is calculated using constant ¢(*) € R:

IF(gi(z) IS A¥ AND/OR ... AND/OR gy(x) IS A%))
THEN (y, = ¢®). (7)

Sugeno’s k-th rule on the right side of the equation has linear function in the
form:

IF(gi(x) IS A¥ AND/OR ... AND/OR gy (z) IS A%))
THEN (yx = cék) + cgk)Gl + .t C%’})GM), (8)

where each c(()k)7 ...,cg\I}) € R.
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It was shown [25] that Sugeno’s fuzzy rules give better results than Yasukawa’s
ones, therefore, proposed model uses Sugeno’s rules. Parameters of these rules,
as well as the rules themselves, fuzzy sets parameters, will be adjusted to each
given problem separately. It can be achieved through expert knowledge or by an
automatic technique, like one with support of ANNs [27].

Each output of fuzzy combiner will be equal to Sugeno’s fuzzy engine output
and can be denoted as:

S
Z(wk(G) * fr.(G))
yi(G) = == : 9)
wk(G)

M

k=1

where S is a number of rules, wy(G) is a fuzzy relation on the k-th rule and f;(G)
is a linear function output.

Class supports are calculated using (9). Fuzzy combiner points to a class for
which the support value is the highest.

3.2 Illustrative example

Below we try to give more insight into why the proposed fuzzy combiner is expected
to work differently from other widely used combiners.

Fig. 3 Attempt to classify object “?”.

One-class classifiers give us a potential of adjusting single class supports. On
the combiner level, we can connect such classifiers using repeating errors or some
sort of intuitive connections between class distributions. In our case, it is not even
important if the support value will be in the form of a distance to some reference
group of objects, probability estimate or other. In the proposed model, support val-
ues for classes are being interpreted by fuzzy engines through fuzzification process.
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A whole proposed classification process can be compared to team skate racing. In
such a race, the result of slowest team member is taken in consideration. In the-
ory, each competitor tries to do his/her best. The team coach is responsible for
the tactic, that is, for choosing when the team is to slow down or speed up, what
should be the right tempo for the team. Similar operation can be expected from
the fuzzy combiner. Like the coach, it knows how team effort can be adjusted to
optimize the final result. Knowing where one class classifier is usually wrong, we
can adjust the supports to be higher in some cases, lower in the others. Therefore,
an attempt to classify an object (Fig. 3) can gain from fuzzy reasoning (Fig. 4).

One class classifier #

L

IF # 1S medium

AND

$1S small
AND

% IS small
THAN

# 1S medium
$1S high
% IS medium

One class classifier $

L

One class classifier %

L

Fig. 4 Example of pattern recognition using one fuzzy rule.

We achieve a model which can be described as a set of generic templates. Such
solution can change decision boundaries, and — perhaps — improve the overall classi-
fication quality. That makes the proposed fuzzy combiner similar to DT. Proposed
fuzzy combiner is also a class-indifferent as it also treat the classifiers outputs as a
context-free set of features. Kuncheva argues [23] that all class-conscious combiners
are idempotent by design, that is, if an ensemble consists of L copies of classifier
U, the ensemble decision will be no different from the decision of ¥. As in case of
the DT, the proposed combiner will not be necessarily identical to D.

4. Implementation Model of the Proposed Fuzzy
Combiner

ANFIS was chosen as the implementation model because of its strong background
in both control and classification tasks. It is based on a fuzzy Sugeno model which
is optimized via the ANNs training. The initial membership functions and rules
for the fuzzy inference system can — but do not need to — be designed by employing
human expertise about the target system to be modeled. Afterwards, ANFIS
adjusts fuzzy rules and membership functions to improve description of the given
system behavior [37]. The only drawback is that ANFIS is a fuzzy inference system
with one output only. Therefore, proposed fuzzy combiner must be implemented
as a set of ‘one-against-all’ ANFIS blocks, which is depicted in (Fig. 5).
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One class classifier 1

L

One class classifier i

L

One class classifier L

L

Fig. 5 Implementation model.

A fuzzy decision-making system is designed and implemented using Matlab,
PRTools and DD tools software for combining the decisions of experts systems
that have made our MCS. PRTools [13] is a Matlab based toolbox for pattern
recognition. DD Tools [31] is a framework for one-class classification.

5. Learning algorithm

The general scheme of the learning algorithm is presented in Fig. 6. In order to
improve the training efficiency and eliminate the possible trapping due to local
minima, a hybrid learning algorithm is applied to tune the parameters of the mem-
bership functions. It is a combination of the gradient descent methodology and the
least-squares estimate. During the forward pass, the node outputs advance until
the output membership function layer where the consequent parameters are iden-
tified by the least squares estimate. The backward pass uses the back propagation

Support values
from one-class
classifiers

Subtractive
clustering of
input/ output

Hybrid algorith of
least squares
method with
backpropagation
gradient descent
method

Tune fuzzy
engines
parameters

a Grid search @

Fig. 6 Fuzzy combiner training.
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gradient descent approach to update the premise parameters, based on the error
signals that propagate backward. More detailed description of ANFIS can be found
in [37]. Factorial design (grid search) [3] is chosen to find values for the learning
algorithm parameters. The selected factors are revealed in Tab. I.

Factor Description Values
Radii Subtractive clustering 0.20.30.40.5
The squash factor Subtractive clustering 1152
The accept ratio  Subtractive clustering 0.30.40.5
The reject ratio  Subtractive clustering 0.1 0.2 0.3
Epochs number ~ ANFIS epochs number 60 75 90 105

Initial step size ANFIS initial step size for  0.005 0.01 0.05 0.1
backpropagation gradient
descent method

Tab. I Factors used in grid search. The most often used values in experiments are

bolded.

In order to find values for selected training parameters a given dataset is divided
into two sets: one for training and for combiner performance evaluation. The first
one is twice bigger than the second one. Classification error is used as a grid search
criterion. The parameters are listed underneath.

1. Radii (subtractive clustering) — represent a cluster radius in which cluster
center will be searched.

2. The squash factor (subtractive clustering) — multiplied by radius, is used to
discourage selection of other cluster centers near actual one.

3. The accept ratio (subtractive clustering) — it is a fraction of the potential of
the first center, above which another point will be accepted as an another
cluster center.

4. The reject ratio (subtractive clustering) — it is a fraction of the potential of
the first center, below which another point will be rejected as another cluster
center.

5. Training epoch number (ANFIS).

6. Initial step size.

6. Experimental investigation

6.1 Set-up of experiments

The experiments have been carried out using five benchmark databases described
in Tab. II.

Classification errors were obtained using 5x2 Fold Cross-Validation. Commonly
used T-test has a flow in the form of quite significant results variability and that
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no. dataset classes features objects percentage origin
of the most
represented
class
1 Cone Torus 3 2 800 50 generated
Iris 3 4 150 Probabilities UCI
of all classes
are equal
3 Glass identi- 6 9 214 35,51 UCI
fication
4 Image seg- 7 19 2310 Probabilities UCI
mentation of all classes
are equal
5 Gaussian 8 2 600 14 generated
distributed
classes *)

*) Objects were randomly generated according to Gaussian distributions using
PRTools toolbox.

Tab. II Datasets used for testing.

is why the Alpaydin’s 5x2 Fold Cross-Validation Paired F Test [2] was used for
hypothesis testing.

Tax et al. [29] proposed few approaches for binary classifiers combination. Two
schemes of voting were compared, one including “one-against-one” classifiers (vote
1-1), as also “one-against-all” classifiers (vote 1-r). In two other methods (prob 1-1
and prob 1-r) outputs of binary classifiers were mapped to a posterior probability
estimate. Afterwards, the object was assigned to the class with the largest output.
In the method vote 1-1, as also in vote 1-r, random assignment of rejected objects
reduced performance. Because of this fact, prob 1-r gave the best results from all
the combination methods used by Tax [29], and we decided to use it as a reference
combiner. One can easily notice that in case of one binary classifier per class with
the output in the form of posterior probability estimate, this combination method
is equal to ‘one-against-all’ ECOC. Though not possessing good error correcting
capabilities, they are the most used schemes due to their simplicity. Yet, in tests
[21] they appeared to be a challenging opponent to other combination methods of
binary classifiers.

Classification error is denoted by:

fo+fn
N )

where N is objects quantity, f,, f, are false positive and false negative response.
Individual classifiers implementation available in PRTools and DD Tools were

used. No attempt was made to additionally tune the individual classifiers. Linear

f= (10)
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One-class  Types of one-class classifiers Description

classifiers

per class

1 Linear perceptron Standard PRTools training

1 Quadratic Bayes Normal Standard PRTools training
Classifier

1 Support Vector Machine Standard PRTools training,
(SVM) polynomial kernel

1 Simple  Gaussian Target Standard DD Tools training
Distribution

1 The Auto-encoder Neural Standard DD Tools training
Network

1 The Support Vector Data Standard DD Tools training,
Description (SVDD) RBF kernel

Tab. III Variations of proposed algorithm.

Perceptron, Quadratic Bayes Normal classifier and Support Vector Machine were
changed into one-class classifiers using (2). Simple Gaussian Target Distribution,
the Auto-encoder Neural Network and the Support Vector Data Description were
used as examples of standard one-class classifiers. In case of the SVDD, sigma
parameter must have been altered for Image segmentation dataset (value changed
from 5 to 50). The problem was that these classifiers for this dataset accepted all
objects as a target class, returning quasi constant values.

6.2 Experimental results

Through tests we attempted to defend the following hypotheses:

e In the real problems fuzzy combination can improve response of the binary
classifier ensembles.

e Proposed fuzzy combination method can be used successfully both with bi-
nary classifiers and one-class classifiers.

e Fuzzy combination of one-class classifiers can be a valuable multiclass classi-
fier itself.

Tests results on described datasets are summarized in Tab. IV.

Results are presented in the following way: the number of the dataset (defined
in Tab. IT) followed by fuzzy combiner (FC) and prob 1-r (1-r) combination errors.
The base classifier is presented at the top of each table. Both fuzzy combiner and
prob 1-r combination method have used exactly the same instances of individual
classifiers. Multiclass classifier (MC) is an individual classifier trained in PRtools
for a multi-class task directly. F statistic paired test (FSPT1) was performed
between fuzzy combiner and prob 1-r combination method. F statistic paired test 2
(FSPT2) was performed between proposed fuzzy combiner and multiclass classifier.
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Linear Perceptron Auto-encoder neural net-
work

DS FC l-r MC FSPT1 FSPT2 FC 1 FSPT

1 34 81 88 0,88 1,57 88 132 221
2 138 38,1 381 4,88 8,34 174 22,6 3,70
3 396 475 543 1,85 2,93 446 61,3 1,94
4 3,6 14,8 13,7 40,32 5,66 8,74 294 16,22
5 13,3 67,5 66,0 37,50 77,80 16,3 24,4 8,41
Quadratic classifier Simple Gaussian Target
distribution
1 11,7 6,5 36 1,38 2,18 3,1 3,6 0,68
2 149 251 19,3 13,08 3,99 134 249 15,25
3 48,7 51,9 854 1,37 10,65 42,5 449 0,70
4 157 31,5 14,6 70,31 0,58 4,5 16,3 15,77
5 13,6 282 14,0 29,01 1,16 16,3 21,8 5,159
The support vector machine The support vector data
description
1 4,0 241 4,0 38,54 0,67 75 6,8 2,33
2 152 284 26,9 28276 244,86 14,3 35,3 12541
3 43,1 522 410 2,60 1,66 36,8 59,1 6,74
4 51 195 7,9 84,50 18,06 10,5 24,5 12,61
5 16,8 61,2 46,9 258,81 226,25 154 39,6 21,38

Tab. IV Classification errors (in %) from 522 Fold Cross Validation Test.

In the second part of the table, standard one-class classifier errors are presented
in the same way. There is no default implementation of multi-class classifier using
one-class classifiers. Finally, Tab. V summarizes experiments we carried out.

F Test - F Test - FC FC FC gave Number
hypothesis hypothesis error is error is the best of
rejected defended smaller  bigger result tests
19 11 28 2 26 30

Tab. V Tests sum-up.

We can state that according to 5x2 Fold Cross Validation Paired F-Test in most
cases we can reject hypothesis that compared classifiers (proposed fuzzy combina-
tion model, prob 1-r) are equal. In no case, where fuzzy combination gave higher
error, has the F-Test allowed us to make statement that the combination methods
are considerably different (significance level F,, = 474). Only in some cases the
performance of the proposed fuzzy combiner is worse than prob 1-r or a standard
multiclass classifier.

In most cases, the F-test sustained the hypothesis that on the Iris data set com-
bination methods do not differ significantly. This seems to be caused by a relatively
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good performance of all classification methods for the mentioned dataset, causing
the field for correction to be relatively small. Similar results were achieved in re-
lation to the Glass identification. It is somewhat surprising because difference in
classification error of combination schemes exceeds 16% for the Auto-encoder Neu-
ral Network used as a base classifier. The performances on the Glass identification
dataset are very poor, the best was the proposed fuzzy combiner with the support
vector data description as an individual classifier. For the experiments regarding
datasets — Cone Torus, Image segmentation as well as Gaussian distributed classes
— in most of the examined cases the F-test rejected the hypothesis that combina-
tion schemes do not differ significantly. Therefore, the proposed fuzzy combiner
appeared especially successful for the above listed datasets.

Proceeding from the F-Test results, we can state that we managed to achieve
significant improvement for both the Support Vector Machine, and the Support
Vector Data Description. For these classifiers, in four cases from among the five, the
F-Test allowed to reject the hypothesis that the combination methods do not differ
noticeably. The worst result was noticed for the Auto-encoder Neural Network for
which the F-test was rejected only in two cases from among the five. On the other
hand, results obtained from the proposed fuzzy combiner had smaller error than
prob 1-r combination of this base expert.

Incorrectly classified objects bring us some additional information, showing that
the one-class classifiers combination for the multi-class tasks reduces control of the
allowed error type I. Furthermore, one cannot expect the one-class classifier to
have a good performance as a two-class one because training samples from two
classes provide more information to define the decision boundary. However, the
use of one-class classifiers is fully justified by the results presented above, as the
proposed fuzzy combiner yields consistently lower error rates for the major part of
the datasets. In conclusion, the performed tests support our hypotheses stated in
the beginning of the chapter.

7. Conclusions

The paper has presented a new method of one-class classifier combination based on
the neuro-fuzzy approach which allows to restore a multiclass recognition problem.
The proposed idea for implementing a fuzzy multi-class classifier was found to
perform quite satisfactorily on some benchmark datasets. The obtained results
indicate that the fuzzy combination can improve response of the binary classifier
ensembles in the real problems. It is worthwhile to point out that satisfactory
results can be achieved even in the standard case of one one-class classifier on
class in a multi-class problem. The proposed fuzzy combiner provides a clear
improvement of the overall results proving that one-class classifiers combination
leads to a good and flexible approach. Among many advantages of the proposed
scheme, one must mention a small number of limitations on structure of combined
one-class classifiers. Another strong point of the presented solution is the intuitive
way to provide nonlinearity by fuzzy combiner of linear classifier, as it was received
in the case of the linear perceptron. According to the performed tests, the one-
class classifiers based on class distributions can additionally provide modifications
of their responses in order to get better approximation of true classes distribution,
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or at least to update the intersection points between them.

Authors are confident of the need for further research. As a research frontier
we can point out both the combination of different types of one-class classifiers in
one ensemble, and the influence of individual classifiers’ increase upon the classifi-
cation results. Additionally, results of the proposed methods of one-class classifier
combination should be compared to well-known alternative fusers used by MCSs,
such as ECOC or Decision Templates, in the case of classification with reduced
number of classes.
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DASBE: DECISION-AIDED SEMI-BLIND
EQUALIZATION FOR MIMO SYSTEMS

WITH LINEAR PRECODING

José A. Garcia-Naya, Adriana Dapenal Paula M. Castro, Daniel Iglesia

Abstract: Multiple-Input Multiple-Output (MIMO) digital communications stan-
dards usually acquire Channel State Information (CSI) by means of supervised
algorithms, which implies loss of performance since pilot symbols do not convey
information. We propose obtaining this CSI by using semi-blind techniques, which
combine both supervised and unsupervised (blind) methods. The key idea consists
in introducing a decision criterion to determine when the channel suffered a signif-
icant change. In such a case, transmission of pilot symbols is required. The use of
this criterion also allows us to determine the time instants in which CSI has to be
sent to the transmitter from the receiver through a low-cost feedback channel.

Key words: Channel estimation, blind source separation, learning algorithms,
hybrid systems, linear precoding
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1. Introduction

The main task when transmitting over channels with multiple antennas at the
transmitter and/or at the receiver side is the separation or equalization of the
transmitted data. Linear Transmit Processing (LTP), also termed Linear Precoding
(LP), is a powerful method to separate signals in Multiple-Input Multiple-Output
(MIMO) systems since it reduces computational costs and power consumption at
the receiver end. Thus, the equalization task is performed at the transmitter, so
the channel is pre-equalized or precoded before transmission with the goal of sim-
plifying one side of the link and avoiding filter operations at the receiver. Such
an operation prior to transmission is only possible for a centralized transmitter,
e.g. the base-station in the downlink of a cellular system. Moreover, in case of a
multiuser scenario with non-cooperative receivers, the users cannot cooperatively
transform the received signals. Thus, transmit filters are necessary to separate
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signals for different users before transmission through a fading channel. Therefore,
the advantages of carrying out this pre-equalization of channel effects at the trans-
mitter are clear, compared to the traditional receiver and equalization alternatives.
Although Wiener Filtering (WF) for precoding has been dealt with by only a few
authors [15], unlike other criteria, Wiener linear precoding seems to be attractive
transmit optimization that minimizes the Mean Square Error (MSE) between the
transmitted and received symbols [8,14,17,19].

The design of LP schemes has been widely studied for an ideal case in which
Channel State Information (CSI) is perfectly known at the transmitter side [8,14,
17,19]. However, for transmit processing the availability of instantaneous CSI at
the transmitter is the major difficulty. Thus, this work is focused on determining
channel changes which will allow us to update the CSI available at the transmitter
side by sending appropriate information through a reverse (also called feedback)
channel. Most recent wireless communications standards include such a feedback
channel for sending user link parameters. For example, Worldwide Interoperability
for Microwave Access (WiIMAX) standard uses this channel to send an index for
selecting the most adequate code according to channel conditions [11]. However,
to the knowledge of the authors, none of the current standards —even those under
development— make use of such information to decide whether pilot symbols must
be sent or not.

In this work, we propose a novel approach termed Decision-Aided Semi-Blind
Equalization (DASBE), which allows us to reduce penalizations introduced by the
use of pilot symbols and to get efficient utilization of the feedback channel. The
main difficulty is to detect channel variations by using a simple decision criterion.
The proposed criterion compares the channel matrix estimated using an unsuper-
vised algorithm, to the previous estimate obtained by a supervised one. Pilot
symbols are required only when channel variations are significant with respect to a
previously selected threshold. A similar scheme has been proposed by the authors
in [7,10], where the transmitter could send two types of frames: frames containing
only pilot symbols or frames containing only user symbols. This setup differs from
the frame structure used in current standards, in which frames are composed by
both pilot and user symbols. For this reason, the decision criterion proposed in
DASBE is used to determine the instants where pilot symbols can be eliminated
(or reduced) in standards frames.

This work is organized as follows. Section 2 shows our digital communications
system. Section 3 reviews some supervised and unsupervised algorithms for channel
estimation and source data recovery. Section 4 proposes the DASBE approach.
Representative computer simulations are presented in Section 5 and Section 6 states
some concluding remarks.

Vectors and matrices are denoted by lower case bold and capital bold letters,
respectively. We use E[], tr(.), (.)*, ()T, (.)B, det(.), In(.) and ||.||2 for expectation,
trace of a matrix, complex conjugation, transposition, conjugate transposition,
determinant of a matrix, natural logarithm and Euclidean norm, respectively. The
i-th element of a vector x is ;. h(.) is used to denote a scalar function and h'(.)
and h”(.) denote its first and second derivatives.
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Fig. 2 MIMO system with linear precoding.

2. System Model

We consider a MIMO system with N; transmit antennas and N, receive antennas,
as plotted in Fig. 1. The user symbols are expressed as u[n] = [ui[n], ..., ux,[n]]T
and they are used by the encoder to generate the transmitted signal denoted by
z(n) = [z1(n),...,2n,(n)]T. Suppose that z;(n) is transmitted from the i-th
transmit antenna to the j-th receive antenna through the path hj;[g]. Thus, the
received signals (observations) presents the form

y[n] = Hlglz[n] + n[n], (1)

where n =0, 1,2,... corresponds to sample index, g denotes time-slot, and n(n) =
[n1(n),...,nn, (n)]T contains Additive White Gaussian Noise (AWGN) with co-
variance matrix C,,. We assume that the sources are transmitted in frames of Ny
symbols and that the channel remains constant during several frames, i.e. the index
q is unchanged during those frames. It can be demonstrated that this discrete-time
model is equivalent to the continuous-time one only if Inter—Symbol Interference
(IST) between samples is avoided, i.e. if the Nyquist criterion is satisfied. In that
case, we are able to reconstruct the original continuous signal from samples by
means of interpolation. Hereafter, we assume this channel model, known as time-
varying flat block fading channel.

As it was mentioned above, in order to simplify the requirements at the re-
ceiver, the equalization task can be performed at the transmitter so the channel
is precoded before transmission, as plotted in Fig. 1. Such an operation —prior
to transmission— is only possible when a centralized transmitter is used (e.g. the
base-station for the downlink of a cellular system). The goal is to find the opti-
mum transmit and receive filters, F € CNt*M and G = gI € CN-*N: | respectively.
Note that IV, is the number of scalar data streams. The resulting communications
system is shown in Figure 2, in which the data symbols u[n] are passed through the
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transmit filter F to form the transmit signal «[n] = Fu[n] € CN*. The constraint
for the transmit energy must be fulfilled, i.e.

E [||z[n]|l3] = tr (FCLF") < Ey,

where C,, = E[u[n]uf[n]] is the correlation between the uncoded symbols and Ei,
is the total transmitted energy. Thus, the received signal is given by

y[n] = HFu[n] + n[n]. (2)
After multiplying by the gain g, we get the estimated symbols
aln] = gyln] = gH Fuln] + gnln] € C™. (3)

Therefore, the implementation of precoded systems implies very simple receivers
since the observations are only multiplied by the gain factor g. Clearly, the re-
striction about common weights g for all the receivers is not necessary in case of
decentralized receivers.

As mentioned before, we consider Wiener linear filtering, whose optimization
consists in minimizing the MSE with a transmitted energy constraint, i.e.

{Fwr,gwr} = arg {rgin}E [Hu[n] - '&[n]||§] S.t.: tr(FCuFH) < FEy. 4
g

Note that such a constraint is necessary to avoid the dependence of the result-
ing transmitted energy on the channel realization. So, the transmitted energy
constraint mentioned above might be the maximum value for poor channel real-
izations and thus the respective precoder solution is not valid. The transmitter
may also not use the whole available transmitted energy, and therefore the final
quality would not be as good as possible, since it could be improved by using more
transmitted energy. In [8,17], it is shown that the solution for the linear filters
designed using that MSE criterion is expressed as

Fur = gy (HUH +I) " HY,

tr ((HHH +pI) 2 HHC’uH)
Eyy

; ()

gwF =

where 1) = trgr”).

3. Source Data Recovery Methods

Current digital communications standards define a frame as a sequence of pilot
and user symbols. Supervised algorithms use the pilot symbols to estimate the
channel (and to recover the transmitted signals), while unsupervised (blind) ap-
proaches discard this information [9]. In particular, in order to recover transmitted
signals (sources), we will use a linear system whose weight matrix W [n] € CN-*N:
(termed also recovering matriz) will be obtained using a supervised or unsupervised
algorithm. The outputs of this system are computed using

z[n] = W n]y[n]. (6)
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3.1 Supervised approach

We consider the utilization of a supervised approach to estimate the channel matrix
H using the model in Eq. (1), in which y[n| and x[n| represent observations and
sources, respectively, as a reference.

An important family of adaptive filtering algorithms arises from the minimiza-
tion of the MSE between the outputs, z[n], and the sources, x[n] [13,18]. Mathe-
matically, the cost function is defined as

N
Juse = 3 B lafn] - il
i=1
= B [tr (W nly[n] — din)) (W n]y[n] — e[n])")] 7)
Then, the recovering matrix is updated using the following gradient algorithm
Win+1] = Win] — p Vw Jusge[n), (8)
where Vw Jusg is the gradient of Jysg with respect to W, i.e.
Vw Jise = B [yln) (W nly[n] - zln)"]. )

The classical stability analysis for gradient—based algorithms consists in finding
the point in which the gradient vanishes, and in defining the Hessian matrix whose
coefficients are given by the second derivatives of J [4]. In particular, it can be
demonstrated that the stationary points of the rule defined by Eq. (8) are

VWJMSE =0=W = C;lcym, (10)

where C,, = E[y[n]y"[n]] is the autocorrelation of the observations and Cy, =
E[y[n]z[n]] is the cross-correlation between the observations and the desired sig-
nals. In practice, these desired signals are considered as known only in a finite
number of instants (pilot symbols) in which the estimation is used to recover the
transmitted symbols. For this reason, the performance of this type of algorithms
is degraded in the presence of calibration errors.

3.2 Unsupervised approach

The transmission of pilot symbols and the prior knowledge about channel matrices
can be avoided by using Blind Source Separation (BSS) algorithms [5,9,16]. BSS
methods simultaneously estimate the mixing matrix and the realizations of the
source vector. In particular, we consider the model given by Eq. (2), where y[n]
and u[n] represent observations and sources, respectively. The joint matrix HF' is
the matrix to be estimated.

One of the best known BSS algorithms has been approached by Bell and
Sejnowski [3]. The idea proposed by these authors is to obtain the weighted co-
efficients of an artificial neural network, Wn], in order to maximize the mutual
information (MI) between the outputs before the activation function h(z[n]) =
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h(WH[n]y[n]), where h(.) is the activation function, and y[n] are the inputs. The
resulting cost function is given by

Ja1(Wn]) = In(det(WHn) +iEln Rl (zi[n)))], (11)

=1

where h; is the i—th element of the vector h(z[n]), and " denotes the first deriva-
tive. The maximum of this cost function can be obtained using a relative gradient
algorithm [1,2], which gives

Win+1] = Win] + uW [n]WHn] (z[n] f(y[n]) — W H[n))
— Wil + Win) ([ £ (2ln]) - I) (12)

where f(z) = [-h"(21)/h (21), ..., =" (2N, )/ (2n,)]T. The expression in Eq. (12)
admits an interesting interpretation by means of the use of the non-linear function
f(z) = 2*(]z|*> = 1). In this case, Castedo and Macchi [6] have shown that the Bell
and Sejnowski rule can be interpreted as an extension of the Constant Modulus
Algorithm (CMA) proposed by Godard [12].

4. Decision-Aided Semi-Blind Equalization
(DASBE)

Recent digital communications standards include a low-cost feedback channel which
can be used to send estimates obtained using a supervised approach. Using this
information, the transmitter adapts the precoding matrix F' according to existing
channel conditions. This approach has several limitations: Firstly, transmission
of pilot symbols penalizes throughput, and secondly, as a consequence, overhead
of the feedback channel appears in case of CSI and the transmission must be sent
from the receiver each time a new frame is acquired. In addition, a large number
of pilot symbols is needed to guarantee the convergence of the adaptive algorithm
in Eq. (8) or to ensure that the matrix Cy in Eq. (10) is not singular.

In this section, we present a novel DASBE approach, which combines super-
vised and unsupervised techniques to mitigate the limitations found in classical
approaches. By Wy, [n] and W;[n] we denote the respective matrices for the unsu-
pervised and supervised modules.

We consider two frames types: firstly, classical frames formed by pilots and user
symbols, and secondly, user frames containing only user symbols. The following
procedure is performed at the receiver side each time a classical frame is received:

e First, the supervised algorithm estimates the channel matrix H from pilot
symbols and, subsequently, it computes the gain parameter gwr and the
precoding matrix F according to Eq. (5).

e The joint matrix HF (denoted by HF') is computed and the unsupervised

. _H
algorithm is initialized so that Wy, [n] = HF .

876



Garcia-Naya J. A. et al.: DASBE: Decision-aided semi-blind equalization. ..

e The channel matrix H is sent to the transmitter through the feedback chan-
nel allowing the transmitter to update the precoding matrix F' as given by
Eq. (5).

On the contrary, when user frames are received, the unsupervised algorithm (see
Eq. (12)) is adapted and the decision criterion is evaluated after processing all
the frame symbols. An “alarm” is sent to the transmitter through the feedback
channel when that decision criterion indicates that a significant channel variation
has occurred. The user symbols included in both types of frames are recovered
using @[n] = gwryn].

An important question is how to design the decision module in order to detect
such channel variations. By combining Eqgs. (2) and (6), the output z[n| can be
rewritten as a linear combination of the sources

z[n] = Tlnluln, (13)

where I'[n] = W,,"[n] HF represents the overall mixing/separating system. Sources
are optimally recovered in case of selecting the matrix Wy, [n] such that every out-
put extracts a different single source. This occurs when the matrix I'[n] has the
form

I'ln] = DP, (14)

where D is a diagonal invertible matrix and P is a permutation matrix. An in-
teresting consequence of using a linear precoder is that the permutation ambiguity
associated with unsupervised algorithms is avoided because of the initialization

Wyln] = (HAF) H. This implies that the data sources are recovered in the same
order as they were transmitted. Therefore, taking Eq. (14) into account, the opti-
mum separation matrix produces a diagonal matrix I'[n] and thus, the mismatch
of I'ln] with respect to a diagonal matrix allows us to measure channel variations.

Although channel matrices are unknown, we can use the estimation HF ob-
tained by means of the supervised approach as a reference. Thus, we compute
I'ln] = WuH[n]Itf F' after processing the symbols in a frame. Consequently, that
distance with respect to a diagonal matrix is measured using the following “error”

criterion:
oo N~ (hall? | bl
Error[n + S ) ) (15)
Z Z (l%z [n]| [vii[n] 2
i=1 j=1,j#1
where v;;[n] denotes the i—th diagonal element of the matrix I'[n]. A possibility for
determining when the channel changed significantly is to compare the above error
value to a fixed threshold value (denoted by t), i.e. Error[n] > ¢t would mean that
a classical frame (i.e. a frame with pilot and user symbols) is required.

5. Simulation Results

In order to show the performance achieved with the proposed DASBE approach,
we present results obtained by several computer simulations performed considering
that 10000 QPSK symbols have been transmitted through a MIMO system in
blocks of 200 symbols each one (i.e. 50 frames). The system consists of four transmit
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Fig. 3 BER versus SNR obtained using a classical approach.

and four receive antennas. The channel matrix changes each 10 frames according
to the following model
H=(1-a)H + aH,ey,

where H ey is a 4 X 4 complex matrix randomly generated according to a Gaussian
distribution. The rest of parameters used for DASBE has been: threshold of ¢ = 0.1
and initial step-size parameter of ; = 0.001 for the unsupervised algorithm. The
following results have been obtained by averaging 1000 independent realizations,
varying both channels and transmitted symbols.

Using the classical supervised approach, Fig. 3 shows the performance in terms
of Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for a channel up-
dating parameter o = 0.05 and different percentages of pilot symbols per frame.
Specifically, we select 10%, which means that 20 symbols per frame are dedicated
to pilot symbols, and 50%, which corresponds to 100 pilots per frame. As a per-
formance bounds, the following curves are also plotted in Fig. 3:

e BER curve when both perfect CSI and feedback channel are available between
the receiver and the transmitter side (labeled as Perfect CSI with feedback).

e BER curve without feedback channel (labeled as Perfect CST). In such a case,
the precoding matrix is never updated, which leads to loss in performance
with respect to the previous situation with the existing feedback channel.
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Fig. 4 BER versus SNR obtained using DASBE.

Notice that the utilization of the feedback channel produces a considerable im-
provement in terms of BER and SNR (in fact, for the SNR plotted in this figure,
the system without feedback is not able to achieve a BER of 1072). It is also appar-
ent that the classical approach needs 50% of pilot symbols to obtain a performance
close to the Perfect CSI with feedback.

Fig. 4 plots the results obtained with the DASBE approach considering both
10% and 50% percentages of pilot symbols per frame. Notice that, using the
DASBE approach, only the classical frames carry pilot symbols, while the user
frames exclusively contain data symbols. From Fig. 4 it is apparent that the per-
formance is similar to that offered by the classical approach (see Fig. 3), but with
the advantages of reducing the feedback channel overhead (see Fig. 5) as well as
the amount of needed pilot symbols (see Fig. 6).

Fig. 5 presents the utilization of the feedback channel depending on the ap-
proach used for tracking channel variations. Note that the classical approach
transmits through the feedback channel each time a new frame is received, i.e.
50 times in total (independently of the pilot symbols percentage). However, the
channel utilization for DASBE depends only on the decision criterion. It can be
observed from Fig. 5 that the feedback channel utilization is considerably reduced
in case of implementing DASBE.
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Fig. 5 Utilization of the feedback channel versus SNR obtained using a classical
approach and DASBE.

Finally, Fig. 6 shows another important advantage of DASBE with respect to
the classical approach, which consists in a considerable reduction in the number of
needed pilot symbols. This is because pilots are included only when the degradation
of the channel estimates is too large (according to the previously fixed threshold).
Also note that for the DASBE approach, Fig. 6 plots the mean number of pilot
symbols per frame considering the two frame types (i.e. classical and user frames)
required to transmit 50 frames.

5.1 Remarkable comments

It is important to note that in case of the supervised estimation in Eq. (10),
the matrix Cy may be singular. When this occurs, we decided to consider the
previous channel estimate. Moreover, for those frames in which the unsupervised
algorithm diverges, we reduced the step-size parameter to ;1 = /10 and initialized
the algorithm to the matrix W,,[n] given by the previous frame.

Moreover, note that the BSS problem assumes that the observations are linear
mixtures of the sources. From Eq. (5) it is easy to verify that for LP systems,
assuming perfect CSI at the transmitter side, the joint matrix HF' is diagonal
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Fig. 6 Pilot symbols versus SNR obtained using a classical approach and DASBE.

when 1) is close to zero or, equivalently, when SNR is large. In that case, BSS
methods are not justified. However, under realistic transmission scenarios, SNR is
usually constrained to the interval [5dB, 15 dB] and perfect CSI is not available at
the transmitter, which produces a non-diagonal matrix H F' that allows us to use
BSS algorithms.

6. Conclusions

Given a communications system in which a block flat fading channel is considered,
we proposed an intuitive as well as simple method to detect channel variations. This
decision criterion is used to develop a novel hybrid approach which combines both
supervised and unsupervised algorithms. In case of significant channel variations,
our system utilizes a supervised approach to estimate the channel coefficients, which
are sent to the transmitter through a low-cost feedback channel. Otherwise, an
unsupervised adaptive algorithm is used to track those channel variations. Simu-
lation results have shown that the proposed approach is an attractive solution for
wireless systems since it provides an adequate BER with a low overhead caused by
transmitted pilot symbols and with reduced feedback channel occupancy.
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DETECTION OF HEAT FLUX FAILURES
IN BUILDING USING A SOFT COMPUTING
DIAGNOSTIC SYSTEM

Javier Sedano® Emilio Corchadol Leticia Curieli José Ramdn Villar,
Enrique de la Cal’

Abstract: The detection of insulation failures in buildings could potentially con-
serve energy supplies and improve future designs. Improvements to thermal insula-
tion in buildings include the development of models to assess fabric gain -heat flux
through exterior walls in the building- and heating processes. Thermal insulation
standards are now contractual obligations in new buildings, and the energy effi-
ciency of buildings constructed prior to these regulations has yet to be determined.
The main assumption is that it will be based on heat flux and conductivity mea-
surement. Diagnostic systems to detect thermal insulation failures should recognize
anomalous situations in a building that relate to insulation, heating and ventilation.
This highly relevant issue in the construction sector today is approached through
a novel intelligent procedure that can be programmed according to local building
and heating system regulations and the specific features of a given climate zone. It
is based on the following phases. Firstly, the dynamic thermal performance of dif-
ferent variables is specifically modeled. Secondly, an exploratory projection pursuit
method called Cooperative Maximum-Likelihood Hebbian Learning extracts the
relevant features. Finally, a supervised neural model and identification techniques
constitute the model for the diagnosis of thermal insulation failures in building
due to the heat flux through exterior walls, using relevant features of the data set.
The reliability of the proposed method is validated with real datasets from several
Spanish cities in winter time.
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1. Introduction

The diagnostic system for identification of thermal insulation failures (TIF) could
significantly increase building energy efficiency and substantially contribute to re-
ductions in energy consumption and in the carbon footprints of domestic heating
systems. Conventional methods can be greatly improved through the application
of learning techniques to detect TIF when a building is in operation through a heat
flux model - heat flux through exterior walls in a building-.

Assessing thermal insulation in new buildings is a well-known problem that has
not as yet been fully resolved [21, 50]. Several different techniques are proposed
in the literature. In [23], thermal insulation leaks are found by measuring thermal
resistance and infrared (IR) thermography, while in [2], [37] only IR thermography
is used to locate thermal insulation failures. The main drawback of using IR ther-
mography is the high cost of equipment, alternatives using different technologies
are always of interest.

Nevertheless, predicting the thermal dynamics of a building in operation is a
complex task. The dynamic thermal performance of a building has mainly been
used to estimate its power requirements. As an example, the difficulties of obtaining
a black-box model for a generic building are documented in [47]. Furthermore, [11]
cites examples of the errors associated with different kinds of techniques while
providing possible solutions. Local building regulations need to be analyzed in the
determination of TIF in order to profile the premises and the legal specifications
for their physical parameters.

This interdisciplinary research represents a step forward in the development of
techniques to improve dynamic thermal efficiency in existing buildings through a
diagnostic system -modeling of heat flux- in the building. Although this may at
first appear simple, noise due to occupancy and lighting profiles can introduce dis-
tortions and complicate detection. A novel three-step soft computing procedure for
testing and validating the model -used in the diagnostic system- is proposed: firstly,
the dynamic thermal behavior of a specific configuration is calculated using HTB2
software [29]. The outcome of the HTB2 should then be post-processed to obtain
a suitable dataset. Subsequently, the dataset is analyzed using an exploratory pro-
jection pursuit (EPP) method [9], [16] called Cooperative Maximum-Likelihood
Hebbian Learning (CMLHL) [6, 7], to extract the dataset structure and key re-
lationships between the variables. Finally, a dynamic ANN model is trained and
validated with them, which is used for fault diagnosis. This diagnosis dynamic
model is responsible for estimating the heat flux through the exterior walls in the
building, and the results are then compared with the real heat flux. Differences
between the estimated and the real measures -above a reference value- are detected,
which indicate the TIF.

Soft Computing represents a set of several technologies that aim to solve inexact
problems [51]. It investigates, simulates and analyzes very complex issues and
phenomena in order to solve real-world problems [40]. Soft Computing has been
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successfully applied in feature selection, and plenty of algorithms are reported in
the literature [4], [5], Principal Component Analysis (PCA) among others [30]. In
this study, an extension of a neural PCA version [17] and other extensions are used
to select the most relevant input features in a dataset as well as to study its internal
structure.

This paper is organized as follows. Following this introduction, Section 2 de-
scribes the problem. Section 3 introduces the unsupervised connectionist tech-
niques for analyzing the datasets in order to extract their relevant internal struc-
tures. Section 4 deals with classical identification techniques used in the diagnostic
system -modeling system-. Section 5 describes a real case study in detail and the
multi-step procedure. Section 6 describes the experiments and results obtained and
finally, the conclusions are set out and comments are made on future lines of work.

2. Spanish Regulations and the Problem
Description

Several national regulations on buildings and their construction were approved in
Spain, 2007. The minimum pre-requisites for energy efficiency with which buildings
must comply are given in the European Directive 2002/91/CE [13]. Project speci-
fications, construction conditions and the basic requirements in Spain are specified
in the CTE (Cddigo Técnico de Edificacion [Building Regulations]) [35]. One of
the basic requirements is document HE1 that specifies the energy consumption
limitation in buildings [35] and its revised updates.

Local regulations will be analyzed to extract the minimum requirements and
parameters for heating systems and thermal comfort, and the certification proce-
dure for energy efficiency. In Spain, energy efficiency is calculated as the ratio
of combustible consumption needed to satisfy the energy demand of the building.
Energy efficiency in the case of buildings constructed before the CTE approval is
still an open issue, and the assumption is that it will be based on heat flux and
conductivity measurement.

In these conditions, it could be interesting to model the heat flux in order
to detect the isolation failures in buildings in operation. It is interesting that
such model could distinguish the climate zone to analyze, the specific building
geometry and orientation, etc. A novel procedure is proposed for this modeling
task. This procedure includes several steps: the thermal dynamics simulation, the
feature selection, the heat flux identification using neural networks models, and the
detection of failures.

3. Analysis of the Internal Structure of the Dataset

In general, to obtain an efficient diagnostic system it is necessary to model it with
a good dataset. Often, the systems are modeled using all the variables collected.
This is not a proper way as some of them influence in the dynamic of the system
and its inclusion only adds complexity to the model process degrading the effective-
ness of the final model. Therefore, in this research, we propose a previous analysis
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of the dataset using statistical methods and neural models, as Principal Compo-
nent Analysis (PCA) [27, 34] and the Cooperative Maximum Likelihood Hebbian
Learning model (CMHL) [6, 8], respectively, in order to know if the dataset is in-
formative enough and to extract the most relevant variables in order to model it
using only the main variables.

3.1 Component analysis

Principal Component Analysis (PCA) originated in the work by Pearson [34], and
independently by Hotelling [27], describing multivariate dataset variations in terms
of uncorrelated variables, each of which is a linear combination of the original vari-
ables. Its main goal is to derive new variables, in decreasing order of importance,
which are linear combinations of the original variables and are uncorrelated with
each other.

3.2 A neural implementation of exploratory projection
pursuit

The standard statistical method of EPP [9, 16] provides a linear projection of a
dataset, but it projects the data onto a set of basic vectors which best reveal the
interesting structure in data; interestingness is usually defined in terms of how far
the distribution is from the Gaussian distribution [42].

One neural implementation of EPP is Maximum Likelihood Hebbian Learning
(MLHL) [9, 18]. It identifies interestingness by maximizing the probability of the
residuals under specific probability density functions that are non-Gaussian.

An extended version of this model is the Cooperative Maximum Likelihood
Hebbian Learning (CMLHL) [6] model. CMLHL is based on MLHL [9, 18] adding
lateral connections [6, 8], which have been derived from the Rectified Gaussian
Distribution [42]. The resultant net can find the independent factors of a dataset
but does so in a way that captures some type of global ordering in the dataset.

Considering an N-dimensional input vector (z) and an M-dimensional output
vector (y), with W;; being the weight (linking input ¢ to output j), then CMLHL
can be expressed [8, 18] as:

1. Feed-forward step:

N
Yi = ZWZ‘jl‘j,Vi (1)
j=1
2. Lateral activation passing:
yi(t+1) = [ys(t) + 7(b — Ay)]" (2)
3. Feedback step:
M
ej=z;— Y Wiy, Vj (3)
i=1
4. Weight change:
AW = n.yi-sign(e;)le; [P~ (4)
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Where: 7 is the learning rate, [ ]* is necessary to ensure that the y-values
remain within the positive quadrant, 7 is the ”strength” of the lateral connections,
b the bias parameter, p a parameter related to the energy function [9, 8, 18] and
A the symmetric matrix used to modify the response to the data [6]. The effect of
this matrix is based on the relation between the distances separating the output
neurons.

4. Diagnostic System Using Identification
Algorithms

Among the different methods for the detection and diagnosis of faults are: checking
limits or thresholds, physical redundancy, deterministic methods -mathematical
models-, methods based on knowledge and so on. Some examples are found in the
literature [1, 28, 44, 45, 48].

In this context, System identification [31] is concerned with obtaining a model
that best suits a given process behavior [31]. Firstly, several measurements are
sampled from the process. The data gathered are then analyzed to obtain a model
that estimates the desired process behavior. The model is then used to optimize the
process output. Finally, the process is modified in order to enhance its outcome.
If more adjustments are needed the cycle is repeated.

The system identification procedure includes the experiment design, the data
visualization and analysis, the model learning and testing, and the model validation
(31, 32, 33, 38, 39, 46, 49].

The experimental design determines the signals to be measured, the sensors to
be used and their placement, the sample rate, and the generation of the datasets.
Expertise is required as the experimental design decisions are problem dependent.
Moreover, it is not always feasible in real world applications to gather data from
the most relevant variables and, in most cases, the data are limited by the locations
of the sensors that are installed. In other cases, portable instrumentation can be
employed to measure some extra process variables. Nevertheless, the human-expert
who designs the experiment always has an a priori theory and knowledge about
the relationships between the variables.

When the dataset is gathered, several tasks should be carried out: eliminating
missing data and outliers [3, 12, 14, 19, 20] scaling and normalizing the data [43],
etc. Whenever data gathering is expensive and little data are available, it is usual
to partition the data generating several train and test datasets. Standardized
partitioning schemas are the k-fold cross validation and the 5x2 cross validation.
This is all included in the data pre-processing and analysis step.

The selection of the model structure, their training and validation represents
the core of the system identification. The classic theory includes a vast amount
of model structures and training methods [31, 41]. Well-known functions are also
used to rank the viability of the models. These functions are used as the criteria
in the optimization problem of training the model. In the next subsection, several
criteria functions are introduced and the use of Artificial Neural Networks in system
identification is outlined.
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4.1 The system identification criteria

According to [31], several measures have been proposed in the literature to evaluate
the viability of a model:

e The representation percentage of the estimated model in relation to the true
system, that is, the numeric value of the normalized mean error. There are
several typical estimation models used in the literature, such as the one-step
ahead prediction error (FIT1), the ten-step ahead prediction error (FIT10),
and the simulation error (FIT). Equations (5) to (10) are used to calculate
the FIT1 and FIT indexes. The FIT10 index can be derived in a similar
manner as FIT1. In these equations, u(t) is the input, y(¢) is the output,
§1(t|m) is the one-step ahead prediction, §(t|m) is the simulated output of
the model, G(q) is the estimated transfer function from u(t) to y(t), H(q) is
the estimated transfer function from e(t) to y(t) and ¢ is the forward shift
operator. The term e(t) represents the white noise signal and it is included
in the modeling errors. The term e(t) is associated with a series of random
variables of mean null value and variance A.

J1(tlm) = H (q)G(q)u(t) + (1 — H ' (q)y(t) (5)
N
Tam) = <= S lole) — n () P (6)
FIT1(%) = (1 — Jim) 100 (7)
& i ()2
Joo(tlm) = G(q)u(t) (8)
1 N
Joo(m) = > ly(t) — gtm)|? (9)
FIT(%) = (1 — o) 100 (10)

L3l @)

e The loss or error function (V): the numeric value of the mean square error
(MSE) that is calculated from the estimation dataset by means of Eq. (6).

e The generalization error value: the numeric value of the normalized sum of
squared errors (NSSE) that is computed with the validation dataset by means
of Eq. (6).

e The average generalization error value: the numeric value of the final predic-
tion error (FPE), which is a criterion that is calculated from the estimation
dataset. Eq. (11) is used to calculated the FPE value, where djs is the
dimension of € -the estimated parametrical vector- and N is the number of
samples of the estimation dataset.
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e The graphical representations of true system output and both the one-step
ahead prediction §;(t/m), the ten-step ahead prediction §1o(¢t|m), and the
model simulation ge (t|m).

4.2 The ANN in the identification process

The use of ANN in the process of identification requires the selection of several pa-
rameters: the number of layers, the number of neurons per layer, and the activation
functions. The methods by which the parameters are set up are fully documented
in the literature. It was found that ANNs with two layers using non-linear functions
in the hidden layer are universal approximators or predictors [10, 26].

The number of neurons per layer is also a relevant design parameter, and it
should be analyzed in order to avoid over fitting [22, 24]. Each algorithm in-
troduces some restrictions in the weight matrix. The most widely used training
algorithms in system identification are the Lenvenberg-Marquardt method [15], the
recursive Gauss-Newton method [31] and the batch and recursive versions of the
back-propagation algorithm [25].

When using ANN, the purpose of an identification process is to determine the
weight matrix based on the observations Z!, so as to obtain the relationships be-
tween the nodes in the network. The weight matrix is usually referred as w, W or
0.

The supervised learning algorithm is then applied to find the estimator 6, so
as to obtain the identification criterion [40]. Several well-known model structures
are used when merging system identification with ANN. If the AutoRegressive
with eXternal input model (ARX) is used as the regression vector, the model
structure is called a Neural Network for ARX model (NNARX). Likewise, the
Neural Network for Finite Impulse Response model (NNFIR), the Neural Network
for Autoregressive Moving Average with eXternal input model (NNARMAX), and
the Neural Network for Output Error model (NNOE), are also extensively used
[40]. In the same way, it is possible to use an estimator for the one-step ahead
prediction of the output g;(¢|m), where the polynomial degree values -n,, ny, ne,
nq, ny and ny- are given as parameters.

5. A Multi-Step Method for Modeling Heat Flux
in Buildings

The novel three-step Soft computing method is proposed to diagnose insulation
failures, for the detection of heat flux through exterior walls in the building in-
corporates a diagnostic system that integrates different methodologies to obtain a
parametric model which performs the diagnosis.

Firstly, the building is parameterized and its dynamic thermal performance in
normal operation is obtained by means of simulation. Then, the data gathered
are processed using CMLHL as a dimensionality reduction technique to choose the
most relevant features in order to determine the heat flux. The second step outcome
is a dataset, which is finally used to train and validate the heat flux nonparametric
model that was used in the diagnostic system.
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Fig. 1 shows the diagnostic system in a global manner. It indicates how training
data are acquired from a theoretical model -HTB2-, which incorporates all the
dynamic characteristics of thermal system. After data are preprocessed, using
feature selection techniques and attributes. A dynamic ANN model is trained
and validated with them, which is used for fault diagnosis. The actual data -real
dataset- of the building’s thermal system will be evaluated in the model that is
generated by assessing two indexes: the representation percentage of the estimated
output in relation to the true output (FIT1), Eq. (7) and the numeric value of the
error, which is the difference between the responses of the heat flux -y, (¢)- in the
building and the estimated heat flux -§; (¢|m)- in the diagnostic system.

When the error exceeds a certain value -threshold value- or the FIT1 is less
than a reference value, then the diagnostic system determines a failure.

* Heater gain

Pre-processing
Internal structure
analysis
Feature selection
* Ocasional gain
* Ventilation gain Training = R I
 Exterior air temperature dataset I
* House air temperature ‘ZJJ ({rf qu

Estimated Fault
heat flow alarm
Process
dataset

Real heat flow

Fig. 1 The diagnostic system: the data are obtained from a theoretical model

-through HTB2-. They are then processed and a better dataset is found. The dataset

s used to train the dynamic ANN model. Actual data -from a thermal system in

operation- will be evaluated on the model, identifying errors that will determine
the failure.

5.1 Thermal dynamics data gathering by means
of simulation

The following variables and datasets should be gathered in order to simulate the
thermal behavior of a building: building topology; climate zone according to the
specific regulations; building materials that comply with local regulations for the
chosen climate zone; meteorological data for the climate zone and the simulated
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time period: such as solar radiation, outdoor temperature, wind speed, etc., and
realistic profiles for heating, lighting, small power devices, occupancy and ventila-
tion.

In this study, the system is applied in Spain where the regulations establish
five winter/summer zones, from E1 (a more severe climate zone) to A3 (a gentler
climate zone).

Having defined and/or gathered these datasets, then the chosen simulation tool
is applied to obtain the output data. In our case, the simulation software used is
HTB2 [29]. The typical values that each variable could take for an E winter climate
zone of maximum severity in Spain -i.e. the cities of Leon, Burgos or Soria among
others- are shown in Tab. L.

Variable (Units) Range of || Transmittance level (W/m?K)
values

Fabric gain -heat flux- | 0 to -7,100 -External cavity wall: 0.54

(w), y1(t). -Double glazing: 2.90

Heater gain (w), uy(t). 0 to 4,500 -Floor/ceiling: 1.96

Occasional gain  small | 0 to 5,500 -Party wall between buildings: 0.96

power, occupancy and -Another party’s wall: 1.05

lighting gain — (w), uz(t). -Internal partition: 2.57

Ventilation gain  (w), | 0 to -5,500

U3(t).

Exterior air temperature | 1to 7

in February (°C ), ua(t).

Air temperature of the | 14 to 24

house (°C), us(t).

Tab. I Typical values of each variable in an E winter climate zone city in Spain.

5.2 Selection of the relevant features

As detailed in Section 2, PCA (Fig. 2.a) and CMLHL (Fig. 2.b), which were
both applied to this real-life problem, are instrumental in identifying the internal
structure of the data. In this procedure, the dataset gathered in the previous step
is analyzed. The objective is to find the relationships between the input variables
with respect to the heat flux. CMLHL (Fig. 2.b) allows to detect the relations of
dependence and to choose the most relevant features. The outcome of this step is a
new dataset with the features for which a relationship with the heat flux is found.

5.3 System identification applied to model normal building
operation

Once the relevant variables and their transformations have been extracted from the

thermal dynamics data, then a model to fit the normal building operation should

be obtained in order to identify bias in the heat flux through exterior walls in
the building. The heating process exhibits nonlinear behavior between output and
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inputs, due to which the linear modeling techniques do not behave properly except
in the linear behavior zones of the process. Consequently, the heating process has
been modeled using soft computing techniques, specifically an ANN.

The different learning methods used in this study were implemented in Matlab(C)
[36]. The experiment followed the identification procedure detailed in Section 4:
the model structures were analyzed in order to obtain the models that best suited
the dataset. The Akaike Information Criterion (AIC) is used to obtain the best
degree of the model and its delay for each model structure. A total of thirty four
different combinations of model structures and optimization techniques were con-
sidered, such as the Levenberg-Marquardt method and the recursive Gauss-Newton
method for the NNARX, NNFIR, NNARMAX and NNOE models [31, 36].

Three different residual analyses based on cross correlation were performed:
residual analysis between the residual RN (1), between the residual and the input
RN (1) and the non-linear residual correlation ]A%é\'zw (7).

6. Experimentation and Results

The theoretical model has been generated from realistic situations. The model used
in this study was implemented in HTB2 [29] and used to gather the initial dataset.
The main output of a HTB2 simulation is the heater gain —the power requirements
in the modeled building-, but also the Fabric gain -heat flux- the temperature and
other variables in Tab. I.

The realistic materials in the construction, the volumetric measures of each
room, the neighbourhood of the rooms, the orientation and geographical earth
zone, the solar radiation profile, the environment data, the heating subsystems,
the occupancy profile, the temperature-time profile for each heating subsystem,
the small power devices and the light ON profiles were considered, among others,
to validate the proposal. A building in the E winter zone, in the city of Avila is
used as the actual building location. Different sample periods and the length of
the simulations have been fixed too.

This initial dataset has been analyzed, then, in order to select the features that
best describe the relationships with the heat flux. As may be seen in Fig. 2, PCA
(Fig. 2.a) and CMLHL (Fig. 2.b), both methods have identified the occasional
gain as the most relevant variable but more structured clusters than in the PCA
projections may be noted in the CMLHL projections (Fig. 2.b).

Having analyzed the results obtained with the CMLHL model (Fig. 2.b), it can
be concluded that CMLHL has identified four relevant variables and seven clus-
ters ordered by occasional gain. Inside each cluster there are further classifications
according to heater gain, ventilation gain and, to a lesser degree, exterior air tem-
perature. Accordingly, it may be said that the heat flux and the dataset have an
interesting internal structure. When the dataset is considered sufficiently informa-
tive, then the third step of the process begins. This step performs an accurate and
efficient optimization of the heating system model to detect the heat flux model in
the building, through the application of several conventional modeling systems.

Thus, an ANN was used to monitor the thermal dynamics of the building. The
objective was to find the best suite of polynomial model orders [ng, np1, np2, Nb3,
Npa, Ney N, Nf, NE1, k2, NE3, Nka). Using the dataset from the previous stage and
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/ Heater gain
Ocassional gain

Ventilation gain

Occasional gain
///

,// g

Fig. 2 PCA projections in the left figure (Fig. 2.a) and CMLHL projection in the
right figure (Fig. 2.b) after 20000 iterations using a learning rate of 0.05, 3 output
neurons p = 0.8 and 7 = 0.3.

the Optimal Brain Surgeon (OBS) [22, 24] network pruning strategy to remove
superfluous weights, the best suite model was found from the residual analysis.
Tab. II shows the estimation and prediction characteristics and qualities of the
chosen ANN, along with their indexes.

Model Indexes

ANN model for the heating process, NNARX regressor, the or- | FIT1:91.4%
der of the polynomials of the initial fully connected structure | V:0.0068
are na:47 nb1=4, nb2=5, ’rng:].7 nb4=4, nk1=2, nk2=2, nk3:2, FPE:0.12
nga=2, [4 4514222 2]. The model was obtained using the | NSSE:0.0049
regularized criterion. This model was optimized by CMLHL anal-
ysis, residual analysis and the pruned network, using OBS. The
model structure has 10 hidden hyperbolic tangent units and 1 lin-
ear output unit. The network is estimated using the Levenberg-
Marquardt method, and the model order is decided on the basis
of the best AIC criterion of the ARX model.

Tab. IT The value of the quality indezes obtained for the proposed model. FIT1, V,
NSSE and FPE stand for the graphical representation percentage, the loss function
error, the normalized sum of squared error and the final prediction error.

Fig. 3 shows the time responses of the heat flux -y;(¢)- and of the estimated
heat flux -g1 (¢t|m)- for the NNARX model [40]. The x-axis shows the number of
samples used in the estimation and validation of the model and the y-axis represents
the normalized output variable range, which is the normalized heat flux of the
house. The estimation and validation datasets include 2000 and 1126 samples,
respectively, and have a sampling rate of 1 sample/minute. Fig. 4 indicates the
final neural network structure chosen for modeling heat flux, both of which are
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polynomial model orders. These orders specify the inputs to the ANN -four for a
full connected- and the indices of the orders represent each of the thermal system
inputs.

Fig. 3 Output response of NNARX model: the actual output (solid line) is graph-

ically presented with one-step-ahead prediction (dotted line). In Fig. 3.a (left) the

real measure can be compared with the estimated data, while in Fig. 3.b (right) the
real measure is compared with the validation data.

It can be concluded from Fig. 4 that the pruned network of the NNARX model
is able to simulate and predict the behavior of the heat flux through exterior walls
in a building as a consequence of the heating process: and it is capable of modeling
more than 91.4% of the actual measurements. This model does not only present a
lower loss function (V) and error values (NSSE and FPE), but also a higher system
representation index value (FIT1).

u3(t-2) o
u2(t-6) o
u2(t-5) o
u2(t-4) o
u2(t-3) o
u2(t-2) o P y1tim)
ul(t-5) o
ul(t-4) ]
ul(t-3) o
ul(t-2) I3
y1(t-4) o
y1(t-3) [¢)
yi(t-2) ¢
¢

y1(t-1)

Fig. 4 Optimal architecture of the NNARX model, with the pruned network for

the heat flux through the exterior walls of the building -output §;(t|m)-. Positive

weights are represented in solid lines, while a dashed line represents a negative
weight. A wvertical line through the neuron represents a bias.
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7. Conclusions and future work

Effective thermal insulation is an essential component of energy efficient heating
systems in buildings. Thus, the possibility of improving the detection of thermal
insulation failures represents a fresh challenge for building energy management.

The new methodology proposed in this study to diagnose insulation failures
from the heat flux through exterior walls in the building can be used to determine
the normal operating conditions of thermal insulation in buildings in Spain, which
has recently became a mandatory test in the evaluation of building insulation.

The novel soft computing diagnostic system as presented here improves fault
detection with respect to detection systems that rely on isolated signals -used in the
industrial processes-. The detection is based in the analysis of the numeric value of
the error -difference between the responses of the real heat flux and the estimated
heat flux in the building- and the representation percentage of the estimated output
in relation to the true output. This analysis presents a low dependency respect to
the input signals.

Future work will create a standard of theoretical failures -dataset- in the normal
conditions of heating, lighting, small power devices, occupancy and ventilation, so
that the diagnostic system in the building -thermal system- can incorporate a global
fault classifier. Moreover, automation of the diagnostic system will further improve
its performance.
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SENSITIVITY AND ACCURACY MEASURES
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Abstract: Accuracy alone can be deceptive when evaluating the performance of
a classifier, especially if the problem involves a high number of classes. This paper
proposes an approach used for dealing with multi-class problems, which tries to
avoid this issue. The approach is based on the Extreme Learning Machine (ELM)
classifier, which is trained by using a Differential Evolution (DE) algorithm. Two
error measures (Accuracy, C, and Sensitivity, S) are combined and applied as a
fitness function for the algorithm. The proposed approach is able to obtain multi-
class classifiers with a high classification rate level in the global dataset with an
acceptable level of accuracy for each class. This methodology is evaluated over
seven benchmark classification problems and one real problem, obtaining promising
results.
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1. Introduction

In recent years, the imbalanced learning problem has drawn a significant amount
of interest. The fundamental issue with the imbalanced learning problem is the
ability of imbalanced data to significantly compromise the performance of most
standard learning algorithms [1]. If the training methods are not proper, the fea-
tures representing the classes that have a small number of examples in the training
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set may likely be ignored by the classifiers. This problem is more serious when the
dataset has a high level of noise [2].

To evaluate a classifier, the machine learning community has traditionally used
the correct classification rate or accuracy to measure its default performance. In the
same way, accuracy has been frequently used as the fitness function in evolutionary
algorithms when solving classification problems. However, the pitfalls of using
accuracy have been pointed out by several authors [3]. Actually, it is enough to
simply realize that accuracy cannot capture all different behavioural aspects found
in two different classifiers. Therefore, we assume the premise that a good classifier
should combine a high classification rate level in the testing set with an acceptable
level for each class. We can consider the traditionally used accuracy (C) and the
minimum of the sensitivities of all classes (5), that is, the lowest percentage of
examples correctly predicted as belonging to each class with respect to the total
number of examples in the corresponding class [4].

On the other hand, Huang et al. have recently proposed an original algorithm
called Extreme Learning Machine (ELM) [5], which randomly chooses hidden nodes
and analytically determines (by using Moore-Penrose generalized inverse) the out-
put weights of the network. The algorithm tends to provide good testing perfor-
mance at an extremely fast learning speed. However, the ELM may need a higher
number of hidden nodes due to the random determination of the input weights
and hidden biases. In [6], a hybrid algorithm called Evolutionary ELM (E-ELM)
was proposed by using the differential evolution algorithm [7]. The experimental
results obtained show that this approach reduces the number of hidden nodes and
obtains more compact networks. The ELM and its extensions have been applied
to microarray gene expression cancer diagnosis [8], sales forecasting [9], real-time
watermarking [10] and other problems.

In this paper, the simultaneous optimization of accuracy and sensitivity is car-
ried out by means of a slight modification of the E-ELM algorithm. The key point
of this modification is the considered fitness function, which tries to take both C
and S objectives into account. A convex linear combination of both tries to achieve
a good balance between the classification rate level in the global dataset and an
acceptable level for each class. The paper is structured as follows. First, we present
the sensitivity versus accuracy pair (S, C). Secondly, some related works are pre-
sented. Then, the evolutionary approach and its characteristics are introduced.
Section 4 analyses the results obtained in seven benchmark classification problems
and one real problem. The last section includes the main conclusions of the work.

2. Accuracy and Sensitivity

A classification problem with @ classes and N training or testing patterns is con-
sidered, with g as a classifier obtaining a () X @ contingency or confusion matrix

M(g) = {nij; Zgjzl nj = N}, where n;; represents the number of times the
patterns are predicted by classifier g to be in class j when they really belong to

class i. The main diagonal corresponds to the correctly classified patterns and the
off-diagonal to the mistakes in the classification task.
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Fig. 1 Unfeasible region in the two-dimensional space for a concrete classification
problem.

The number of patterns associated with class i can be denoted by f; = 2?21 n;j,
i=1,...,Q. Two scalar measures, which take the elements of the confusion matrix
into consideration from different points of view [4, 11] are derived. Let S; = n;/f;
be the number of patterns correctly predicted to be in class ¢ with respect to the
total number of patterns in 4 (sensitivity for class ¢). Therefore, the sensitivity for
class i estimates the probability of correctly predicting a class ¢ example. From
the above quantities, the sensitivity S of the classifier is defined as the minimum
value of the sensitivities for each class, S = min {S;; i =1,...,Q}. Moreover, the
Correct Classification Rate or Accuracy is the rate of all the correct predictions:
C=(1/N) X7 njj.

The two-dimensional measure (S, C') associated to a classifier g is an interesting
alternative for representing its behaviour (S on the horizontal axis and C on the
vertical axis). A classifier depicted in this space is giving information about two of
its features: the global performance and the performance in each class. One point
in (S, C) space dominates another if it is above and to the right, i.e., it has more
accuracy and greater sensitivity.

It is straightforward to prove the following relationship between C' and S
(see [11]). Let us consider a Q-class classification problem. Let C and S be respec-
tively the accuracy and sensitivity associated with a classifier ¢, then
S < C <1—(1-295)p*, where p* = fo/N is the minimum of the estimated
prior probabilities.

Therefore, each classifier will be represented as a point outside the shaded
region in Fig. 1. Several points in (S, C) space are important to note. The lower
left point (0, 0) represents the worst classifier and the optimum classifier is located
at the (1,1) point. Furthermore, the points on the vertical axis correspond to
classifiers that are not able to predict any point in a concrete class correctly. Note
that it is possible to find classifiers with a high level of C', among them, particularly
in problems with small p* [4].
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Our objective is to build an evolutionary algorithm that tries to move the
classifier population towards the optimum classifier located in the (1,1) point in
the (S, C) space. We think an evolutionary algorithm could be an adequate scheme
allowing us to improve the quality of the classifiers, measured in terms of C' and
S, directing the solutions towards the (1, 1) point.

3. Related Works

As mentioned in Section 2, our approach tries to build classifiers with C' and S
simultaneously optimized. These objectives are not always cooperative, especially
with high C' and S values. Moreover, considering the multiobjective evolutionary
framework, C and S are opposite objectives at high levels. This fact justifies the
use of a multiobjective approach for the evolutionary algorithm [4] formally called
MultiObjective Evolutionary Algorithms (MOEAs).

The idea of designing neural networks within a multiobjective approach was
first considered by Abbass in [12, 13]. In that work, the multiobjective problem
formulation essentially involved setting up of two objectives, complexity of the net-
work and training error. For addressing that, an algorithm called Memetic Pareto
Artificial Neural Networks (MPANN) which uses Pareto differential evolution was
proposed, showing improvements with respect to many other MOEAs.

Férnandez et al. [4] extends the NSGA-II algorithm [14] by including C' and
S as the objectives in the algorithm. In addition, the NSGA-II is hybridized with
iRprop™ [15] as the local search procedure, but this algorithm is only applied in spe-
cific generations during the evolution, the resulting algorithm is called MPENSGA-
II. This Pareto multiobjective approach has been successfully applied in order to
solve predictive microbiology problems [16]. These problems are often imbalanced
and in general the classes with a smaller number of patterns are the most important
classes.

However, it is well-known that Pareto-based approaches are expensive in terms
of computational time as pointed out in [17]. This is mainly due to the process of
building the Pareto front, when nondominance must be check in a set of feasible
solutions.

One alternative for addressing multiobjective problems in a more efficient strat-
egy (in terms of computing time) is to combine objectives into a single function
which is normally denominated an aggregating function. This option can be suit-
able when the behaviour of the objective functions is more or less well-known. The
weighted sum approach is one alternative for implementing a aggregating func-
tion. This method consists of adding the different objective functions with different
weights for each one of the functions, then the multiobjective problem is turned
into a scalar optimization problem formulated as:

k
min'S ™ wifi (),
=1

where f; is an objective function, w; is the weight coefficient representing the
importance of f; and Zle w; = 1.
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The weighted linear combination proves to be very efficient in practice for cer-
tain types of problems, for example in combinatorial multiobjective optimization.
Some applications of this technique are schedule evaluation of a resource scheduler
or design multiplierless IIR filters [18]. The main disadvantage is that it may be
difficult to determine the proper weights.

4. The Proposed Method

4.1 Extreme learning machine and differential evolution

Let us consider the training set given by N samples D = {(x;,y;) : x; € Ry, €
R9,j =1,2,...,N}, where x; is a k x 1 input vector and y; is a ) x 1 target
vector.

Let us consider a MultiLayer Perceptron (MLP) with M nodes in the hidden

layer given by f (x,0) = (f1(x,01), fo(x,02),..., fo(x,00)):
filx,0)) = By + 300 Blo(x,wy), 1 =1,2,...,Q,

where © = (01,...,00)7 is the transpose matrix containing all the neural net
weights, 8; = (B!, w1,...,wys) is the vector of weights of the I output node, B! =
B, B, ﬁfw is the vector of weights of the connections between the hidden layer
and the [-th output node, w; = (wij,...,wk;) is the vector of weights of the
connections between the input layer and the j-th hidden node, @ is the number of
classes in the problem, M is the number of sigmoidal units in the hidden layer and
0; (x,w;) the sigmoidal function defined by:

1
= .
1+exp (7 (woj +> i wijxi))

Suppose we are training an MLP with M-nodes in the hidden layer to learn the
N samples of set D. The linear system f(x;) =y;,7 =1,2,..., N, can be written
in a more compact format as H3 = Y, where H is the hidden layer output matrix
of the network.

The ELM algorithm randomly selects the w; = (wij,...,wg;),j =1,..., M
weights and biases for hidden nodes, and analytically determines the output weights
B, B, ﬁf\/[ for i =1...Q by finding the least square solution to the given linear
system. The minimum norm least-square solution (LS) to the linear system is
[3 = H'Y, where H' is the Moore-Penrose (MP) generalized inverse of matrix H.
The minimum norm LS solution is unique and has the smallest norm among all
the LS solutions.

The Evolutionary Extreme Learning Machine (E-ELM) [6] improves the origi-
nal ELM by using a Differential Evolution (DE) algorithm. Differential Evolution
was proposed by Storn and Price [7] and it is known as one of the most efficient
evolutionary algorithms [19]. The E-ELM uses DE to select the input weights
between input and hidden layers and Moore—Penrose generalized inverse to analyt-
ically determine the output weights between hidden and output layers.

i (x,w;) =
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E-ELM-CS Algorithm:
Require: P (Training Patterns), T (Training Tags)
1. Create a random initial population 6 = [wy,..., W, by,...,b;] of size N
2: for each individual do
3 B= ELM _output(w, P,T) {Calculate output weights}
4 ¢y = Fitness(w, 3, P,T) {Evaluate individual }
5: end for
6: Select best individual of initial population
7: while Stop condition is not met do
8
9

Mutate random individuals and apply crossover
for each individual in the new population do

10: B = ELM _output(w, P, T) {Calculate output weights}
11: ¢ = Fitness(w, 3, P,T) {Evaluate model}
12: Select new individuals for replacing individuals in old population

13:  end for
14:  Select the best model in the generation
15: end while
function 8 = ELM _output(w, P,T):
1: Calculate the hidden layer output matrix H
2: Calculate the output weight [3 =H'Y
function ¢, = Fz'tness(w,f‘], NPT
1: Build training confusion matrix M
2: Calculate C' and S from M
3. Get classifier fitness as ¢y =

1
(I=XN)C+AS

Fig. 1 E-ELM-CS algorithm pseudocode.

4.2 The E-ELM-CS algorithm

In this paper, we use a linear combination of C' and S to obtain the maximization
of both objectives. This option is a good method when there are two objectives and
when the first Pareto front has a very small number of models, in some cases only
one (see results from MPANN methodology in Balance and Newthyroid datasets in
Tab. II). In addition, its computational cost is noticeably lower than a traditional
multiobjective approach [17].

Then, we consider the fitness function defined by:
(I=X)C+ \S, (1)

where X is a user parameter in the range [0, 1]. This function evaluates the perfor-
mance of a classifier depending on a weighted accuracy and sensitivity.

Our proposed method is implemented by using the Evolutionary ELM [6]. The
original E-ELM for classification problems only considers the misclassification rate
of the classifier. We have extended the E-ELM to consider both C' and S (E-ELM-
CS). Since the E-ELM considers an error measure as the fitness which should be
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Dataset Size #Input #Classes Distribution p*
Two classes
BreastC 286 15 2 (201,85) 0.2972
BreastCW 699 9 2 (458,241) 0.3448
HearStalog 270 13 2 (150,120) 0.4444

Multiclass

Balance 625 1 3 (288,49,288)  0.0784
Gene 3175 120 3 (762,765,1648)  0.2400
Iris 150 4 3 (50,50,50) 0.3333
Newthyroid 215 5 3 (150,35,30) 0.1395
BTX 63 3 7 (9,9,9,9,9,0,0)  0.1429

Tab. I Datasets used for the experiments.

minimized, we reformulate our fitness function as:

1

A=A TNCAS

The E-ELM-CS algorithm pseudocode is shown in Fig. 2. Mutation, crossover
and selection operations work as described in [6]. It can be checked how the pro-
posed fitness function is applied in order to take account of not only the accuracy
of the classifier, but also of its performance over the worst classified class.

5. Experiments

We consider seven datasets with different features taken from the UCI repository
[20] and one real-world problem of analytical chemistry (benzene-toluene-xylene
(BTX) and their mixtures discrimination, [21]). Tab. I shows the features for
each dataset. The experimental design was conducted using a stratified holdout
procedure (see Prechelt [22]) with 30 runs, where approximately 75% of the pat-
terns were randomly selected for the training set and the remaining 25% for the
generalization set.

The E-ELM-CS is implemented as an extension of E-ELM source code available
at the author public website!. For the experiments, the crossover and mutator
parameters were set up as described in [6]. The number of individuals in the
population were 100 and the number of generations were set up to 50. The crossover
constant C'R was 0.8, the constant factor F', which controls the amplification of
the differential variation, was 1, and the tolerance rate was 0.02. The number of
hidden nodes of the neural network was obtained by a cross-validation procedure
varying the number of hidden nodes between 5 and 20. There have been considered
two different experimental studies:

e Firstly, we consider the effect of the A\ values over the results obtained. The
objective of this study is to evaluate how the E-ELM-CS can achieve very dif-
ferent results depending on the A value selected, and how different typologies
of datasets can demand different A values.

e Then, we compared the results of the proposal to those obtained by other
alternative MLP design methods.

Thttp://www3.ntu.edu.sg/home/egbhuang/
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5.1 Analysis of the effect of )\ values

In this section, we briefly observe the effect of the A value of the fitness function
described in Eq. 1 on the classifier performance in terms of C' and S. The results
are presented in the (S, C') space described in Section 2 for BreastC, Balance and
BTX datasets described in Tab. I. Both training and generalization performance
results are presented. Fig. 3 presents results of E-ELM-CS for all the A values in
the set [0.0,0.1,...,1.0]. The results are the mean of the best models of 30 runs
for each configuration. Each subfigure in Fig. 3 shows a box containing a higher
scale representation of the most interesting zone. Note that changing the values
of A value gives us different points which are similar to the Pareto front points in
multiobjective problems [17].

Subfigure 1la, showing BreastC performance results, clearly proves that C' and
S can be competitive objectives. Observe that classifiers which are moved through
higher sensitivity values lost performance in the global classification accuracy. A
trade-off point between increasing minimum sensitivity without losing lots of global
accuracy could be classifiers trained with A = 0.4 or A = 0.5. Looking at the
generalization results in Subfigure 1b, it can be checked that the degree of over-
fitting is not excessively high, and the behaviour of the fitness function for different
A values is quite similar to that in the training set.

Subfigures 1c and 1d show a very clear example of how balance between the two
objectives is necessary. The results show that when only considering C' (A = 0.0),
the method cannot improve results for all the classes. Furthermore, Subfigure 1d
shows that using only S (A = 1.0) as a unique classification performance measure-
ment is neither suitable. Then, we can consider that A = 0.4, A = 0.5 and A = 0.6
have the best results for improving the two measures.

Finally, we comment on the BTX performance results. In Subfigure le it can
be seen that A value has not a very significant influence on the results achieved by
the E-ELM-CS. However, it should be noticed that using only S (A = 1.0) is not
suitable, and the best results are obtained by using only C' (A = 0.0). This makes
sense since BTX is a perfectly balanced dataset (see number of patterns per class
distribution for the BTX dataset in Tab. I), with a not very high noise level, so the
behaviour of the classifiers is usually very similar for all classes.

In this preliminary analysis we can conclude that there is no rule for determining
the best A value. Therefore, we propose optimizing this parameter by the cross
validation procedure described in the following section.

5.2 Comparison with other MLP training methodologies

In this section, we compare the results obtained with the E-ELM-CS to other
three methods: the original E-ELM algorithm, and two popular multiobjective
MLP training methods. As previously stated, the original E-ELM algorithm [6]
considers only C' as the fitness function.

Two additional multiobjective MLP training algorithms are considered for com-
parison purposes:

1. MPANN [13]. MPANN is a MOEA based on Differential Evolution with two
objectives; one is to minimize the Mean Squared Error (MSE), and the other
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Fig. 1 Different \ results for BreastC, Balance and BTX databases.
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is to minimize ANN complexity (the number of hidden units). The back prop-
agation algorithm is used in MPANN as local search. We have implemented
a Java version using the pseudocode shown in [13] and the framework for evo-
lutionary computation JCLEC [23]. We select both extremes of the Pareto
front to compare the results with those from the E-ELM-CS: the methodol-
ogy is named MPANN-MSE when the extreme selected is that one providing
the best MSE, or it is called MPANN-HN if the extreme that is chosen has
the best complexity value.

2. TRAINDIFFEVOL (Differential Evolution training algorithm for Neural Net-
works) [24]. TRAINDIFFEVOL is an algorithm to train feed forward MLP
neural networks based on Differential Evolution. This algorithm uses the
MSE and mean squared weights and biases for training the networks. To ob-
tain the sensitivity for each class, a modification of the source code provided
by the author? has been implemented.

From a statistical point of view, these comparisons are possible because we use
the same partitions of the datasets. If not, it would be difficult to justify the equity
of the comparison procedure. Regarding the settings of each algorithm that has
been compared to the E-ELM-CS, we have used the algorithm values advised by
the authors in their respective studies. The E-ELM-CS and E-ELM algorithms are
set up with the same parameter values for the number of population, number of
generations and number of hidden nodes.

In Tab. IT we present the values of the mean and the standard deviation (SD)
of C' and S for 30 runs associated with the best model in each run using the
generalization set. For C' and S, the best result in each data set is in bold face
whereas the second best result is highlighted in italic face.

In the E-ELM-CS, the A parameter is a user parameter, and it has been obtained
as the best result of a preliminary experimental cross-validation design (without
considering the generalization set) with A € {0.0,0.1,...,1.0}. The train data is
stratified into 10 sets so 10 validation configurations can be formed. Each one of
the 10 validation tests consists of different combinations of 9 sets for training and a
different one for generalization. The E-ELM-CS algorithm is run with a different A
value 3 times for each one of these 10 validation tests so there are 30 runs for each
A value. Then, the A value with maximum validation mean C is selected as the
best one. Finally, the E-ELM-CS with the selected A value is run with the original
dataset holdout partitions for comparing with the other methods.

If we analyze the results for C' in the generalization set, we can observe that the
E-ELM-CS methodology obtains results that are, in mean, better than or similar
to the results of the second best methodology in seven datasets. On the other
hand, the results in mean of S show that the E-ELM-CS methodology obtains
performance that is always better than the second best methodology. In general,
the E-ELM-CS improves results of the E-ELM in S.

In order to determine the best methodology for training MLP neural networks
(in the sense of its influence on C' and S in the dataset), an ANalysis Of the VAri-
ance of one factor (ANOVA 1) statistical method or the non-parametric Kruskal-

2http://www.it.lut.fi/project/nngenetic/
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C (%) S(%) Means Ranking Means Ranking
Dataset Algorithm Mean+SD Mean+SD of the C' of the S
BreastC  E-ELM-CSx—_g4 68.97+3.19 33.9746.82 MpLMcs = HTDIF ZHELMCS 2=
E-ELM 68.3641.98 23.3346.42 Keiv > HyPAN 2 -
TDIF 68.9242.89  26.35+11.71 ZMPANHN = ZMPANEN =
MPANN-MSE 66.53+3.07 28.79+14.23 MPAN TDIE N
MELM> HELMCS
MPANN-HN 66.5343.07 28.41414.34 HontpANN (9))
(T-test)
BreastCW B-ELM-CS,_o4 96.32+0.86  93.87+2.28  Kppuvcs = HpLnves >
E-ELM 95.6841.19 92.6143.21 HMPANHN 2 HMPANHN 2
TDIF 03.9841.75 86.224-4.69 HMpPAN = HELM > BMPAN = MELM >
MPANN-MSE 96.0441.08 92.7543.40 Hroie Hroie
MPANN-HN 96.2741.00  93.30+3.36
Balance E-ELM-CSx—_q.7 91.48+1.50 86.74+10.01  HypaNHN = HELMCS >
E-ELM 90.5641.38 14.00417.73  HeLvos (), MW) pypanun (%),
TDIF 87.1242.56 2.0046.10 (MW)
MPANN-MSE 92.94+1.81  60.00+14.14
MPANN-HN 92.94+1.81  60.00+1/.1}
BTX E-ELM-CSx—0.0 78.89+8.17 34.44+23.95 MeLvcs = MELM ZHBELMCS 2=
E-ELM 78.89+8.17 34.444+23.95 PMPAN = HTDIFF MBELM = HMPAN =
TDIF 71.11+3.94 1.1146.09 ‘PeLvcs T*) “MPANP%Q)’ “(lﬁ/wﬁs s
MPANN-MSE 72.38+10.85  19.99+29.81 | MPANHN Hororer()
MPANN-HN 69.524+11.46  18.39+29.81
Gene E-ELM-CSx—0.1 83.724+1.93 81.104+2.94 HErLvos 2 HELM > HELMCS >
E-ELM 83.48+1.90 78.8944.97 MMPANHN = ; LM (0), BELMCs >
TDIF 61.18+9.20 35.1049.13 Hatpan > Brpie( )ﬁMPAN N -
MPANHN» ELMCS
MPANN-MSE 75.1144.82 36.2543.90 L VW)
MPANN-HN 75.1144.82 36.2543.90
Heart E-ELM-CSx—0.3 T7.45+2.87 64.00+5.13 MELMCS = MELMCS =
E-ELM 75.2942.51 61.7843.69 HAPANHN = HypAN = N
TDIF 76.3242.02 60.0043.82 ﬁMPAN”— - ﬁMPANEN’“ELN;CS =
) > TDIF; HMPAN ELM> MELMCS =
MPANN-MSE 76.9141.10  62.68+2.21 ot o O W)
MPANN-HN 76.91+1.10  62.68+2.21
Iris E-ELM-CS»_oo 97.41+1.76  94.53+11.24 Hpruvcs > HpLMves >
E-ELM 97.04+2.21 92.18+4.98 MMPANHN Hervs HELvcos HTDir
p . MprLvcs > (*), (MW)
TDIF 97.1841.03  91.54+3.10 pELMCS N
= ELM '»MPTDIFF
MPANN-MSE 95.3049.85 86.16£29.51 o IS
MPANN-HN 94.534+11.24  83.85433.70
Newthy E-ELM-CSx=0.9 96.23+2.31 80.85+11.88 MELMCS = HELMCS 2
ES
E-ELM 94.2642.35 75.77410.16 “MPANHN>2 “ﬁwNHN( )s
TDIF 91.11+4.77 59.47+£22.74 l’jMPA_NNf “ELM>>( )
MPANN-MSE 94.87k3.82  7211+2229 |, TDITERNCS
MPANHN )
MPANN-HN 94.87+£8.82 721142229  (T-test)

(*),(0): The average difference is significant with p—value = 0.05 (*) or 0.10 (o)

(MW), (T-test):
Wilcoxon T tests are applied

Normality hypothesis is not satisfied, so Kruskal-Wallis and Mann-Whitney or

Tab. II Statistical results for E-ELM-CS, E-ELM, TRAINDIFFEVOL,
MPANN-MSE and MPANN-HN in generalization.

Wallis (KW) tests were applied depending on the satisfaction of the normality
hypothesis of C and S values. The levels of the factor represent the methodol-
ogy applied, and they are the following: ¢ = 1...5, corresponding to E-ELM-CS
(ELMCS), E-ELM (ELM), TRAINDIFFEVOL (TDIF), MPANN-MSE (MPAN)
and MPANN-HN (MPANHN). The results of the ANOVA or KW analysis for C
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unfeasible region E-ELM X MPAN-MSE O ‘
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Fig. 4 Comparison of E-ELM-CS, E-ELM, TRAINDIFFEVOL, MPANN-MSE
and MPANN-HN methods for Balance database.

and S show that, for the eight datasets, the effect of the methodologies is statisti-
cally significant at a level of 5%.

Now we apply post hoc tests because the previous tests found significant differ-
ences in mean for C' and S for all datasets; a post hoc multiple comparison test of
the mean C' and S obtained with the different levels of the factor is performed. We
have chosen a Tukey test [25] for those datasets where the normality hypothesis
is satisfied, and a pair-wise Wilcoxon T-test, or a pair-wise Mann-Whitney test in
other cases. Columns 5 and 6 of Tab. II present the results obtained by using the
post hoc Tukey test, or the Mann-Whitney (MW) test or Wilcoxon T-test. The
mean difference is significant with p—value = 0.05 (*) or 0.10 (o). In this table,
A > up means that methodology A yields better results than methodology B,
but the difference is not statistically significant; u4 > pp indicates that method-
ology A yields better results than methodology B with significant differences. It is
important to note that both the binary relations > and > are not transitive.

Observe that there is a relationship between the imbalanced degree of the
dataset and the results obtained by the E-ELM-CS algorithm. It is worthwhile
to point out that, for imbalanced datasets, the E-ELM-CS gets the best perfor-
mance results and the highest differences in S when comparing the algorithms (see
Balance and Newthyroid results in Fig. 4. On the other hand, even for two class
problems we can observe the same behaviour (compare the S results of BreastC-
W and BreastC datasets). Finally, our approach improves sensitivity levels with
respect to the original Evolutionary Extreme Learning Machine (E-ELM), while
maintaining accuracy at the same level.

As an example of usefulness of the (S,C) representation, Fig. 4 depicts the
sensitivity-accuracy generalization results (in mean of the results of best individu-
als of 30 runs) of the four methodologies for the Balance dataset in the (S, C) space.
A visual inspection of the figure allows us to easily observe the difference in the per-
formance of E-ELM-CS with respect to E-ELM, TRAINDIFFEVOL and MPANN.
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6. Conclusions

This work proposes a new approach to dealing with multi-class classification prob-
lems. Assuming that a good classifier should combine a high classification rate
level in the global dataset with an acceptable level for each class, we consider tra-
ditionally used accuracy, C, and the minimum of the sensitivities of all classes,
S. The Differential Evolution algorithm and the fast ELM algorithm are used for
optimization of both measures in a multiobjective optimization approach, by using
a fitness function built as a convex linear combination of S and C. The proce-
dure obtains multi-class classifiers with a high classification rate level in the global
dataset with a good level of accuracy for each class. The proposed method makes
the ELM algorithm applicable for datasets with a high level of imbalance or with
a high level of noise per each class.

Some suggestions for future research are the following: to study other fitness
functions based on the (S,C) measures, to adapt the algorithm in order to deal
with moderate imbalanced problems, and to evaluate the suitability of other basis
functions in this context (e.g. Product Units [26], Radial Basis Functions [27, 28],

).
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LEARNING HOSE TRANSPORT CONTROL
WITH Q-LEARNING
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Abstract: Non-rigid physical links introduce highly nonlinear dynamics in Mul-
ticomponent Robotic Systems (MCRS), which can hardly be solved analytically.
In this paper, we propose the use of reinforcement learning methods to allow the
agents learn by themselves how to deal with this kind of elements, as opposed to
classical control schemes. In this paper we deal with the simplest case: only one
hose segment and one robot at the tip of the hose. The task is to move the hose tip
to an approximate position in the space. Learning is performed and tested using a
hose-MCRS simulation environment developed by our group.
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1. Introduction

According to the Multicomponent Robotic System (MCRS) categorization pro-
posed in [4], Linked MCRSs (L-MCRSs) are defined as a collection of autonomous
robots linked by a non-rigid physical link. They are distinguished from Distributed
MCRS (D-MCRS), which are uncoupled groups of robots, and Modular MCRS
(M-MCRSs), which are rigidly linked modular robots.

Modeling these non-rigid links is a non-trivial issue, but it is critical for study-
ing those systems either analytically or via simulation. Some dynamic modeling
techniques for non-rigid uni-dimensional objects are reviewed in [5, 6]: differen-
tial equations [13], rigid element chains [10], spring mass systems [9], combining
spline geometrical models and physical dynamical models [14], and spline models
combined with the Cosserat rod theory [17], also known as Geometrically Exact
Dynamic Splines (GEDS). Throughout this paper, we will use GEDS, as we believe
it is the most adequate model for uni-dimensional objects.

The study of L-MCRS is a novel research and no relevant information about this
subject can be found in literature. We started dealing with control and modeling of
these systems in [5, 6] and [7]. The latter showed that even a simple spring model
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of the physical-link in a cooperative control problem introduces highly nonlinear
dynamics in the system, making it a hard task to control.

The paradigm of L-MCRS is exemplified by the task of carrying a hose from
the origin point to a predefined destination using a collection of autonomous robots
attached to the hose. Because of the inherent complexity of robot dynamics, further
increased by the complex model of the hose, the system is not solvable in an
analytic fashion. In this paper, we propose to solve the control system design
problem using Q-Learning, which is a well-known type of Reinforcement Learning
(RL) method [16]. RL methods allow autonomous agents to learn based on a
reward system and sensorial information. Several authors have approached the
robot navigation problem from an RL perspective: [12] applies an RL method to
the path-finding problem, [2] applies a quantum computation-inspired variant of
Q-Learning to indoor robot navigation, [3] fuses a fuzzy inference system and a
Q-Learning algorithm to derive a fuzzy control system, which yields in efficiency
and adaptability. Q-Learning was even applied to cooperative navigation in [11],
but has never been applied in the presence of physical-links. RL methods can be
applied both in the real environment or in a simulated environment. As RL requires
a huge amount of attempts to teach the system, whenever possible, it is better to
use simulation to learn the system parameters. Simulation avoids tearing down the
physical system and it is faster. To approach the problem, we restrict the work in
this paper to the case of a single robot managing a hose attached to the fixed end
(i.e. the source).

This paper is organized as follows: Section 2 summarizes the hose GEDS model,
Section 3 explains some of the specifics and decisions taken to apply the Q-Learning
algorithm, and Section 4 describes the experiments carried out in this work, and
the results obtained. Finally, our conclusions are given in Section 5.

2. Hose Model

In this chapter we summarize the hose physical model which is the base for the
simulation used to train and test the control system of the robot moving the hose.
More detailed descriptions can be found in [6, 5]. The combination of spline geo-
metrical modeling and physical dynamical models was introduced by [14]. They
allow a continuous definition of uni-dimensional objects. The drawback of the
spline model is that, since it is exclusively based on the spline control points, it
is unsuitable for representing the hose torsion. The work of [17] has improved the
spline representation by combining the spline-based modeling with the Cosserat
rod theory [1, 15], allowing to model twisting of the hose. This approach, known
as Geometrically Exact Dynamic Splines (GEDS), represents the control points of
the splines by three Cartesian coordinates plus a fourth coordinate representing
the twisting state of the hose.

2.1 Geometry of the hose

The spline expression for a curve q(u) is a linear combination of control points
p; where the linear coefficients are the polynomials N;(u) which depend on the
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Fig. 1 Hose section.

parameter u defined in [0,1). In the following equation the spline definition is
presented:

q(u) = éONi(")'Pm (1)

where N;(u) is the polynomial associated with the control point p;, and q(u) is the
point of the curve at the parameter value u. It is possible to travel over the curve
by varying the value of parameter u, starting at one end for v = 0 and finishing
at the other end for v = 1. In our work we used B-spline for modeling the hose,
so we only need a set of control points, a set of knots and a set of coefficients, one
for each control point, so that all curve segments are joined together satisfying the
certain continuity condition.

Given n + 1 control points {po,...,pr} and a knot vector U = {ug, ..., Umn},
the B-spline curve of degree p defined by these control points and knot vectors U
is:

qQu) = X Nop()pi, (2)

where N, ,(u) are B-spline basis functions of degree p (p = 3 in this work), built
using the Cox de Boor’s algorithm. Because the control points of the curve will
vary in time, we rewrite equation (2) in terms of the time parameter ¢:

Nip(w)-pi(t). (3)

0

q(u,t) =

This extended model is named Dynamic Splines, and it is the model that we
have used for modeling the hose. If we want to take the hose internal dynamics
into account, we also need to include the hose twisting at each point given by
the rotation of the transverse section around the axis normal to its center point, in
order to compute the hose potential energy induced forces. In the GEDS approach,
the hose model follows the Cosserat rod approach characterizing it by the curve
given by the transverse section centers ¢ = (x,y, z), and the orientation of each
transverse section #. This description is summarized by the following notation:
q = (c,0) = (z,y,2,0). In Fig, 1, the relation between the Cosserat rod director
vectors and the twisting angle 6 is shown; vector t represents the tangent to the
curve at point c¢, and vectors n and b determine the angle 6 of the transverse
section at point c.
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2.2 Hose dynamical model

Following the Cosserat representation and applying the Lagrange equation (4) a
mathematical relation between the potential energy U, the kinetic energy 7 and
the generalized external forces F is obtained.

d (0T ou
dt(ap> = o )

The kinetic energy is the motion energy, while the potential energy is the energy
due to the hose configuration. Let F = {F(,Fq,...,F,} denote the model of the
external forces acting on the hose spline model control points. Each F; acts on
control point p;. It is usually assumed that mass and stress are homogeneously
distributed among the n 4+ 1 degrees of freedom of the hose spline control model.

When the objects lie in fact in the 2D space we can obviate the moments.
Therefore, the potential energy U is defined by the following integration along the
hose, from v =0 up to u = L:

L
u=§A(&fWTW% (5)

where Fy; = (fs,ft,fb)T are, respectively, the stretching force, and the torsion
and bending moments suffered by the hose due to its configuration, € = (es, €, eb)T
is the deformation vector.

The kinetic energy of the hose 7 is defined as:

1 [Ldq” d
T:i/ ;44 4, (6)
0

where J is the inertial matrix. Taking derivatives of the energy expressions, and
making adequate substitutions, we come to the following matrix expression of the
Lagrange equation:

MA =F + P, (7)
where P = [g—gi}, the elements of matrix M are of the form M,;; = JfOL(Nj,(u)
N;(u))du, and A = {d’pf} :

dt?

2.3 Hose-robots model

The whole system model, composed by the robots and the hose-like linking element,
is built from the uni-dimensional element GEDS model by specifying the positions
u, of the robots along the hose. A configuration h of the hose-multi-robot system
is defined as:

h={p,U,U,}, (8)

where p is the control point vector of the hose B-spline model, U is the collection
of knots in the B-spline model, U, C U is the collection of knots that correspond
to robot attachments to the hose. The robot knot vector U, = {u,,} contains the
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values of the arclength parameter u where the robots are attached to the hose.
The spatial position of the i-th robot r; is given by the expression: q(u,,) =
izj:ONi(uri)‘pi =Try.

Equation 7 relates the acceleration at the control points with the internal energy
of the hose and the external forces applied to it. Among the external forces F that
act on the control points, we differentiate those resulting from the ones applied by
the robots F, from other external forces F,:

F=F,+F,. (9)

The relation between the forces applied on the robot attaching points F, and
the resulting forces on the control points Fy, is given by:

Fp = Jp - Fo, (10)
on the basis of the Jacobian matrix J,, relating robot positions and control points:

oa(ur,) . 9a(ur)

9po Opo No (url) - No (un)
Jpr = : : = : : . (11)
datury) . dalun) No(tg,) +++ Np(ur)
OpPn opPn

3. Reinforcement Learning

Reinforcement Learning (RL) [16] is a set of methods that enable an agent to learn
from experience. Although there are many variants, certain shared elements exist:
policy, reward function, value function and, in some cases, model of the environ-
ment. The policy describes a way an agent reacts to the perceived states and picks
up an action from those available. The reward function inherently describes the
goals of the agent, as it returns a number describing how desirable the perceived
state to the agent is. This number is called a reward and it is immediate. The value
function is a long-term version of the reward function (return), that is, the total
amount of rewards expected from a given state. Learning tasks providing experi-
ence to the agent can be continuous or episodic, that is, separate finite episodes.
There are three main families of RL algorithms: Dynamic Programming (DP),
Monte-Carlo (MC) methods and Time Difference (TD) learning, each of them
having its own strengths and weaknesses. The DP algorithms are mathematically
very well founded, but they are computationally expensive and require an accurate
model of the environment, which is not always possible. The MC methods and TD
learning algorithms do not require a model of the environment, furthermore, they
both can learn just from experience, even from simulation of a simple model that
provides a sample of the possible transitions among states. MC methods learn on
an episode basis, that is, they need to know the actual final return for the learning
to be done. On the other hand, TD algorithms are able to deal with online learning
tasks, that is, they do not need to know the actual final return of the episode, but
only the estimated value one time step ahead, the value prediction is made based
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Algorithm 1 Q-learning algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @
Take action a, observe reward r and new state s’

Q(st,a¢) « Q(st,a¢) + [Tt+1 + ngfQ (st41,a) — Q (8¢, at)
5« s

until s is terminal

on the prediction made one step ahead. Both MC and TD methods are known to
converge to optimal control. Q-Learning, as described in the following chapter, is
a TD method.

3.1 Q-Learning

In its simplest form, Q-Learning is defined by the following iteration:

Q(51,ar) = Q(81,a¢) + |41 + 7 -maz Q (se41,0) = Q (St»at)] , o (12)

where a; is the action taken at time ¢, s; is the state assumed at time ¢, Q(s¢, ay)
represents the learned action-value discrete map at time ¢ and state s;, o € [0, 1]
is a step-size parameter that determines how new and old information is averaged,
riy1 is the reward at time ¢ 4+ 1, a4 is the action taken at time ¢, and v € [0, 1]
is a discount-rate parameter that indicates the importance of future rewards. Al-
gorithm 1 represents the basic form of the learning algorithm. Thus the learning
process is composed of a succession of “episodes”: each episode is a complete re-
alization of the behavior of the system, that is, its evolution from an initial state
until either the equilibrium state is reached or a stopping condition is met. Time
variable ¢, thus, refers to the time during an episode. The whole learning process is
an iteration over the whole matrix ), which evolves along the episodes. We avoid
indexing it for notational simplicity.

The system design phase involves decisions and definitions on various levels
of abstraction. On the first level, as we use the reinforcement learning based
technique, we have to specify some concepts:

e State: The state has to capture the reality of the scenario in which the
problem solution is carried out. It is necessary to get equilibrium between the
fidelity of the representation of the world and the quantity of the information
that we have to deal with. The definition of the learning state may involve
elements of the problem, as well as the dynamics of the system (i.e. the
working space). In control processes it may include the control goal.

e Actions: Actions are a set of actions that our agent can perform in the world.
They must be discrete.
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e Reward system: The reward system specifies the immediate reward that the
agent perceives from the environment after doing any possible action. To
completely specify a reinforcement system we have to establish the immediate
rewards for different scenarios:

— the goal is reached, i.e. the extreme of the hose attached to the mobile
robot reaches the destination point;

— a failure or forbidden situation occurs, i.e. the mobile robot has collided
with the hose;

— other scenarios that are neither the goal nor failures.

On the second level of abstraction, the Q-Learning specific parameters must be set.
Finally, on the third and last level of abstraction we have to consider two practical
matters:

e State space and action discretization: As the relationship between state and
action is a discrete map, the resolution in the discretization of the state
space and the actions is critical to obtain efficient and accurate realizations.
Low resolution may allow fast realizations, losing accuracy; conversely high
resolutions may hinder the realization of practical experiments.

e Action selection: The mechanism for the generation of actions during the
simulation or physical realization of a learning epoch.

4. Experimental Design and Results

The system we will deal with is composed of one hose segment attached to a fixed
end (the source) and whose other end (the tip) is transported by a mobile robot
attached to it. Fig. 2 exemplifies several configurations of this system. The fixed
end is set as the middle of the configuration space. The task for the robot is to
bring the tip of the hose to a destination. The working space where the tip-of-
the-hose robot moves is a square of size 2 x 2m?. The specific definitions of the
Q-learning experiment realized are the following:

e State: We have defined the state as S = (P,, Py, i), where

— P, = (x,, y,) is the actual position of the tip-of-the-hose robot,
— Py = (x4, ya) is the desired position of the tip-of-the-hose robot,

— 4 is a binary variable that indicates if the line P, P, intersects the hose.
17 = 1 means that there is such an intersection.

e Working space discretization: In order to follow with the simplest formulation
of the problem we have considered a discretization step of 0,5m. This dis-
cretization determines the cardinality of the universe of states that we work
with, and it determines the precision of the coordinates of the point P, and
P, too. Our working space is, thus, partitioned into 16 boxes. These boxes
are the minimum resolution for the placement of a robot. As the robot point
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P, can be in any of these 16 boxes, and the destination point P; can be in any
of these 16 boxes too; there are 256 combinations. Also, the state has another
boolean component called ¢, so there could be a maximum cardinality of 512
possible states.

Actions: In our problem we can only interact with the scenario using the
mobile robot to change the position of the tip-of-the-hose, so the actions
are the possible motion directions of the robot. We have chosen a small set
of only four actions: A = { North, South, East, West }, meaning that the
robot will move in this direction for a length equivalent to the size of the
resolution box.

Reward system: We used a simple reward system that gives a positive value
to the agent when it reaches the goal, a negative value when the agent fails
to reach the goal, and the zero value when the decision is postponed:

+1 if thegoalisreached
r <« < —1 ifafailureoccurs

0 else

The condition reaching the goal is equivalent to “reaching the same box where
the goal is located”. As the motion of the tip-of-the-hose robot is of fixed
step-size, it is in general impossible to meet a predefined goal point with
arbitrary precision.

a: [0 <« <1], as we suppose that we work in a deterministic environment
we can assume that the value of this parameter is 1, so the Q-table update
expression 12 simplifies as follows:

Q (5,a¢) «— i1+ “maz Q (st41,0a) .

~: [0 < 7y < 1], we have set this value to 0.9.

Action selection: We have chosen an e-greedy policy. This policy is based
on the existence of a parameter € that establishes the equilibrium between
the use of the known information (exploitation) and the discovery of new
information (exploration), and we have set this value as 0.2. This means that
in each step of each episode, with the system being in the state s, we choose
the action a with this criterion:

max@ (s, a’) with probability (1 — €)
a+—< .
anya € A with probability e

Generation of the initial state: It amounts to the problem of generating a fea-
sible configuration of the hose. To that end, we generate the positions of the
spline control points in order from the working space origin (the source) out-
wards. We generate 10 control points, ensuring that the resulting GEDS will
not have excesive bending or streching. FEach episode starts from a randomly
generated configuration of the hose.
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Fig. 2 Example of the learned behavior.

Our experiment consisted of 76.000 episodes, and performance was measured ap-
plying the learned Q matrix to new 1.000 episodes. The success rate, i.e. the
percentage of episodes where the robot reaches the goal, is 73%. 0.7% test episodes
concluded because the maximum allowed step count was reached. Finally, 26.3%
test episodes failed either because the robot collided with the hose or because the
whole system reached a non-feasible position.

In order to illustrate the behavior achieved by this learning method, we have
chosen a difficult initial configuration in which the hose is placed between P, and
P;. In Fig. 2 we show the succesive P, positions of the robot moving the tip-of-the-
hose after each of the actions taken during the episode. The initial hose conguration
corresponds to a continuous line. All the intermediate hose configurations carried
out until the robot reached the desired cell P; are shown as dotted lines. It can be
easily appreciated how the robot avoids collinding the hose by taking an initially
suboptimal strategy (i.e. going away from the goal position). Animations of some
test episodes made after the system learns are available online!.

5. Conclusions
We have approached the hose transportation problem in a L-MCRS using rein-

forcement learning methods, more specifically, Q-learning. The work in this paper
is restricted to a single robot moving the tip of the hose to a desired position,

Thttp:/ /www.ehu.es/ccwintco/index.php/DPI12006-15346-C03-03-Resultados#videos
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while the other end is attached to a fixed position. The results of the training
computational experiment are very good.

The computational time required to conduct the experiments is one of the
biggest issues. The hose model computational requirements are a prime factor,
the other factor is the huge number of episodes needed to explore the state-action
space before the learned Q-table exploitation can yield good results. Further work
will focus on optimization of the state-action space representation, while keeping
the most important information required for the learning purpose. The sensitivity
of the approach to variations of the value of the o parameter, and the scheduling
of action selection probability € in time will be explored. We plan to apply the
learned knowledge on real robots to further validate the results. Future work will
involve learning control strategies for a collection of robots attached along the hose.
Hierarchical design strategies [8] will be considered.
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COMBINING CLASSIFIERS USING TRAINED
FUSER - ANALYTICAL AND
EXPERIMENTAL RESULTS

Michal Wozniak, Marcin Zmyslony*

Abstract: Combining pattern recognition is a promising direction in designing
effective classifiers. There are several approaches to collective decision-making,
including quite popular voting methods where the decision is a combination of
individual classifiers’ outputs. The article focuses on the problem of fuser design
which uses discriminants of individual classifiers to make a decision. We present
taxonomy of proposed fusers and discuss some of their properties. We focus on
the fuser which uses weights dependent on classifier and class number, because of
a pretty low computational cost of its training. We formulate the problem of fuser
learning as an optimization task and propose a solver which has its origin in neural
computations. The quality of proposed learning algorithm was evaluated on the
basis of several computer experiments, which were carried out on five benchmark
datasets and their results confirm the quality of proposed concept.

Key words: Pattern recognition, multiple classifier system, trained fuser, neural
networks
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1. Introduction

Thanks to progress in computer science companies have collected huge amounts of
data, whose analysis is impossible by human beings. Nowadays, simple methods
of data analysis are not sufficient for efficient management of an average enterprise
since knowledge hidden in data is highly required for smart decisions. A testimony
of the mentioned trend is fast progress of machine learning approaches. One of the
most popular data mining task is classifier designing, whose aim is to classify the
object to one of the predefined categories, on the basis of its feature values. The
aforementioned methods are usually applied to many practical areas, like credit
approval, prediction of customer behavior, fraud detection, designing of IPS/IDS,
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medical diagnosis, to enumerate only a few. Numerous approaches have been pro-
posed to construct efficient classifiers like neural networks, statistical learning, and
symbolic learning [2]. For a practical decision problem we can usually have several
classifiers at our disposal. It causes that methods of designing Multiple Classi-
fier Systems (MCSs), which can exploit individual classifier strengths, are steadily
growing. One of the most important issues while building MSCs is how to select
a pool of classifiers. We should stress that combining similar classifiers would not
contribute much to the system being constructed, apart from increasing the com-
putational complexity. An ideal ensemble consists of classifiers with high accuracy
and high diversity, i.e. they are mutually complementary.

Another important issue is the choice of a collective decision-making method.
It is worth noticing that many works consider the quality of the Oracle as the
limit of the quality of different fusion methods [17]. The Oracle is an abstract
fusion model, where if at least one of the classifiers recognizes an object correctly,
then the committee of classifiers points at the correct class too. In this paper,
we will consider it is possible to produce such a method of classifier fusion which
is capable of achieving higher accuracy than the Oracle. Additionally, we will
systematize methods of classifier fusion on the basis of classifier responses and
discriminants. Then we will consider which of the presented fusion methods might
potentially outperform the Oracle. Our observations will be evaluated on the basis
of analytical and experimental researches.

1.1 Fusers based on class labels

The first group of methods includes algorithms for classifier fusion at the level of
their responses [18]. Initially, one could find only the majority vote in literature,
but in later works more advanced methods were proposed [16, 23].

Let us assume that we have n classifiers W, w2 W) For a given object
x each of them decides if it belongs to class i € M = {1, ..., M}. The combined
classifier ¥ makes a decision on the basis of the following formulae:

T (\p@)(;p), v (), .., \If(")(x)) — arg max 5(j, \Il(l)(x)) wOwO (), (1)
jeM =1

where w®) is the weight assigned to the I-th classifier and

N B R ' G
Let us note that weights used in (1) play the key role in establishing the quality
of W. There is much research dedicated to weight configurations, e.g. in [22, 10]
the authors proposed to train a fuser.
Let us consider the possibilities of weight assigning:

1. Weights w(") assigned to the classifier — e.g., Kuncheva stated [18] that weights

should be assigned according to w® P, ;/1— P, ; where P,; denotes
probability of accuracy of the I-th classifier.
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2. Weights w®) (i) are assigned to each classifier and each class.

3. Weights w¥ (i, z) are assigned to each classifier, each class, and additionally
they are dependent on values of feature vector .

The only model based (partially) on the class label which could achieve better
results than the Oracle is a classifier which produces decisions on the basis of class

labels given by set of n classifiers W), ¥ () and feature vector values. In
other words, in this case the decision of the combining classifier depends addition-
ally on the value of the feature vector z i.e., ¥ (\Il(l)(x), U@ (z), .., T (), )

as distinct from (1). The described model was considered in some papers like
(22, 10, 12].

1.2 Fusers based on discriminants

The second group of collective decision-making methods exploits classifier fusion
based on discriminants. The main form of discriminants is the posterior probability,
typically associated with probabilistic models of the pattern recognition task [5],
but it could be given, e.g. by the output of neural networks or that of any other
function whose values are used to establish the decision by the classifier. One
should cite the work [20], in which the optimal projective fuser was presented,
and one has also to mention many other works that describe analytical properties
and experimental results, like [8]. The aggregating methods, which do not require
a learning procedure, use simple operators, like taking the maximum or average
value. However, they are typically subject to very restrictive conditions [6] which
severely limit their practical use. Therefore, the design of new fusion classification
models, especially those with a trained fuser block, are currently the focus of intense
research.

Let us assume that each individual classifier makes a decision on the basis of
the values of discriminants. Let F() (i, ) denote a function that is assigned to
class i for a given value of z, and which is used by the I-th classifier ¥(). The
combined classifier ¥ (2) uses the following decision rule [13]

U(x)=14 if F@,z)=maxF(k, z), (3)
keM
where . .
EF(i, z) = Zw(l)F(l) (i, ) and Zw(l) =1 (4)
=1 i=1

Let us consider the possibilities of weight assigning:

1. Weights dependent on classifier — this is a traditional approach where weights
are connected with classifier and each discriminant of the [-th classifier is
weighted by the same value w("). The estimation of probability error of such
classifier could be found in, e.g. [26].

2. Weights dependent on classifier and feature vector — weight w(") (z) are as-
signed to the [-th classifier and for a given x have the same value for each
dicriminants used by it.
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3. Weights dependent on classifier and class number — weight w® (1) are assigned
to the [-th classifier and the i-th class. For given classifier weights assigned
for different classes could be different.

4. Weights dependent on classifier, class number, and feature vector — weight
w® (i, x) are assigned to the I-th classifier but for given z its value could be
diverse for different discriminants assigned to each class.

If we consider the two-class recognition problem only for the last two cases where
weights are dependent on classifier and class number it is possible to produce
compound classifier which could achieve better quality than Oracle one. But when
we take into consideration more than two class problem we could see that it is
possible in all aforementioned cases to get results better than Oracle one. In the
next section, we will show some analytical properties of fusion methods based on
discriminants.

2. Analytical Properties of Fusion Methods

Let us take into consideration two-class recognition problem where ¢ denotes correct
class and ¢ wrong one. Let us focus on fuser which uses discriminants of individual
classifiers multiplied by weights dependent on classifier and feature vector x only.
Let us assume that all individual classifiers make wrong decisions, then it is not
possible to produce such a fuser which could classifies object correctly, i.e. it is not
possible to outperform the Oracle.

Theorem 1.

Ve if Yieq,.n} OW(z) =7 then O (2)=7 ie., F(i,z)<F@i,z). (5)

Proof It means that

Zw(k) « FR (i | z) < Zw(k) « FR (i | ). (6)
k=1 k=1
Let us write (6) as
S w® s (FW(i | 2) — F® (G | 2)) < 0. (7)
k=1

Because
Vie{t1,...n} w™ >0
and all individual classifiers make mistakes
Vit (F®(i] @) = FW(i]2)) <0

therefore (5) is always true. O

Creating fuser where weights dependent only on classifiers gives also the same
results, because it is a special case of the aforementioned model. For three-class
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recognition problem situation looks different and it is possible to get correct result
even if all classifiers point at wrong classes, which could be presented by the fol-
lowing example.

Let us consider three-class recognition problem and we have 3 individual classifiers
at our disposal. Let us assume that a given x belongs to class 3. The supports for
each class and classifier are presented in Tab.I.

Classifier Support for class
1 2 3
vM(z)  0.34 0.36 0.30
@ () 050 0.10 0.40
G (z)  0.09 0.46 0.45

Tab. I Exemplary support functions’ values.

Let us note that ¥ (z) = 2, U@ (z) = 1, and ¥®) (z) = 2, which means
that all classifiers make mistakes about z, i.e. that every fuser based on class
number only cannot classify object correctly. Let us consider a combined classifier
based on discriminants which uses averages of support functions given by individual
classifiers. In our case, the supports given by this classifier for each class look as
follows:

F(1,z) =031, F(2,z) =0.31, F(3,2) = 0.38,

which means that z is classified correctly. We would like to stress that we show
only possibility that fuser based on discriminants could produce correct decision
even if all individual classifiers are wrong but this approach does not guarantee
that we produce fuser which outperforms Oracle classifier. This observation is very
interesting because this model is known as “mixture of expert” and several works,
such as [14] recognize it as a very flexible and effective approach to produce trained
fusers.

Let us consider similar two-class recognition problem again but in this case we use
weights which are dependent on classifier and class number. Let

W= [W(l), we, W(")} 8)

which consists of weights assigned to each classifier and each class number
W = [w@ @), w®@),...,w? (M)} T, 9)
Let us assume that all individual classifiers make wrong decision. Then it is possible
to produce such a fuser which points at the correct class, i.e. we could produce

fuser which outperforms the Oracle.
Theorem 2.

w if Viep,.ny YW(2) =7 then VW (z) =i ie, F(i,z)<F@i,2). (10)
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Proof Because combined classifier points at correct class that means

S (i)« FOG 1) > 3w (i) » FOG | 2) ()
=1

1=1
Let us assume that weights and support functions are normalized, i.e.
Vietr,.mVe FO@ | 2)+ FO(G | 2) =1 and w (i) + w® (@) = 1. (12)

therefore

D w@) « (1= FO(i|2) > > w (i)« FO(i |z) (13)
=1 =1
and finally

wP @) + .+ w™ @) > FOG|2) + ...+ FM (G |z).0 (14)

From the final form of the inequality we can see that it is possible to get correct final
result even if all classifiers are wrong. If the sum of weights assigned to classifiers
which point at correct class is bigger than the sum of support functions for incorrect
one. Let us notice that this conclusion covers the case when weights dependent on
classifiers, class number and feature vector value because it is a special case of the
aforementioned model.
We should underline that the theorem 2 shows only possibility to get such a result.
In practical terms, it is usually impossible to assign weights in the analytical way.
Then let us focus on the problem of establishing weights dependent on classifier
and class number only because this case looks very promising and does not need
additional prior knowledge about weights contrary to the case where weights are
additionally dependent on feature values. If weights depend on z, then they are
de facto functions, and their estimation is more complicated and usually requires
prior knowledge about them.
For the case under consideration, a fuser training task leads to the problem how to
establish the vector W (8). The aim is to find out such a fuser which assures the
lowest misclassification rate of W.
In order to solve the aforementioned optimization task, we could use one of a variety
of widely used algorithms, e.g. evolutionary or neural approach. In this paper,
we present approach which has its origin in neural computations because neural
networks are used to model complex relationships between inputs and outputs.
Well-known methods of the network training solve the optimization problem by
finding such a set of interesting weights. In our study, we decided to use one layer
neural network which is an appropriate model for the problem under consideration,
and it is presented in Fig. 1.

Trying to solve this optimization problem, some computer experiments were
carried out and their results are presented in the next section.
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Fig. 1 One layer neural network as a fuser which uses weights dependent on clas-
sifiers and class numbers.

3. Experimental Investigation

The aim of the experiments is to evaluate the performance of fuser based on weights
dependent on classifier and class number.

All the experiments were carried out in Matlab environment using PRTools toolbox
[7] and our own software. The experiments were carried out on 5 benchmark
datasets from UCI Machine Learning Repository [3], which are described in Tab. II.

Dataset Number of
Attributes Classes Examples
1 Breast Cancer 10 2 699
2 Connectionist 10 11 528
3 Glass 9 7 214
4 MAGIC 10 2 17117
5 Yeast 10 2 17177

Tab. II Databases’ description.

For the purpose of this experiment, five neural networks were prepared that could
be treated as individual classifiers. They were slightly undertrained (the training
process was stopped early for each classifier and we guarantee that classification
error of each individual classifiers was lower than random guessing) to ensure their
diversity. Classification errors of individual classifiers used during experiments
(denoted as C1, C2, C3, C4, C5) are presented in Tab. III.
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Dataset C1 C2 C3 Cc4 Cb
Breast cancer 38,5 34,2 12,7 344 16,6
Connectionist 46,1 40,0 40,9 41,9 41,0

Glass 49,7 48,2 492 476 46,1
MAGIC 40,3 36,0 33,1 32,8 36,0
Yeast 51,6 344 21,4 352 229

Tab. IIT Classification errors of individual classifiers used in experiments.

The remaining details of used neural nets are as follows:
e Five neurons in the hidden layer,
e Sigmoidal transfer function,
e Back propagation learning algorithm,

e Number of neurons in the last layer equals number of classes of given exper-
iment.

During the experiments we wanted to compare quality of two trained fusers

e FCCNV — fuser based on weights dependent on classifier, class number, and
feature vector,

e FCCN — fuser based on weights dependent on classifier and class number

with the quality of Oracle classifier. For trained fuser, realized according the idea
depicted in Fig. 1, number of training iterations was fixed to 1500. Classification
error of individual classifier and fuser models were estimated using 10 Fold cross-
validation method [15]. Statistical differences between the performances of the
classifiers were evaluated using 10-Fold cv Paired ¢ Test [2] at the significant level
0.05. The results of experimets are presented in Tab. IV.

Dataset Oracle FCCNV FCCN FCVP1 FCVP2 FCVP3
Breast cancer 2,22 34,39 34,39 0,00 -49,55 -49,55

Connectionist 20,91 15,06 17,65 1,06 3,11 2,76
Glass 39,76 36,64 35,07 0,42 0,41 0,69
MAGIC 13,82 15,52 20,00 14,51 -3,98 -5,99
Yeast 1,8 15,53 17,92 9,32 -73,97 -65,47

Tab. IV Results of experiments. The first column presents dataset name, columns

labeled Oracle, FCCNV, FCCN show classification error of the Oracle, FCCNYV,

and FCCN respectively. Columns FCVP1, FCVP2, FCVPS3 present 10 Fold cv

Puaired t-statistics for FCCNV vs. FCCN, Oracle vs. FCNV, and Oracle vs. FCNN,
respectively.
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The following conclusions can be drawn on the basis of the results of the exper-
iments:

e (lassification errors of FCCNV and FCNN are smaller than Oracle classifier
for Connectionist dataset only.

e FCCNV outperformed FCNN for MAGIC and Yeast datasets.

e Oracle classifier achieved better quality of classification than FCCNV and
FCNN for MAGIC, Breast cancer, and Yeast datasets.

e For Glass dataset we cannot confirm that any classifier is statistically signif-
icantly better than the other.

The results of our experiments prove that proposed neural approach is an effi-
cient tool for solving optimization problem of establishing fuser weights. As stated
before, when weights depend on the classifier and the class number, it is possible to
achieve results that are better than the Oracle classifier. Unfortunately, we can not
formulate general conclusions on the basis of the experiments carried out because
we still do not know what conditions should be fulfilled to produce high quality
combining classifier used proposed fusion method. We would like to underline that
a fuser based on weights dependent on classifier and class number could outper-
form Oracle classifier but chosing such a fuser does not guarantee this property.
Proposed fusers (FCCNV and FCCN) outperformed Oracle in one case only, but
for the remaining experiments they achieved, except the Yeast dataset, pretty good
results.

4. Conclusions

Several methods of classifier fusion were discussed in this paper and two of them
were applied into the real decision problem. Obtained results justify the use of
weighted combination. As we mentioned above, we still have not discovered con-
ditions which should be fulfilled to produce desirable fuser. Probably it depends
on conditional probability distributions of classes for given classification problem,
which we have confirmed by our analytical research partly. Unfortunately, for the
practical cases as stated above, it is not possible to determine values of weights in
the analytical way, therefore, using heuristic methods like neural or evolutionary
approaches of optimization seems to be a promising direction of research.
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NEURAL CLASSIFIERS FOR
SCHIZOPHRENIA DIAGNOSTIC SUPPORT
ON DIFFUSION IMAGING DATA
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Abstract: Diagnostic support for psychiatric disorders is a very interesting goal
because of the lack of biological markers with sufficient sensitivity and specificity
in psychiatry. The approach consists of a feature extraction process based on the
results of Pearson correlation of known measures of white matter integrity obtained
from diffusion weighted images: fractional anisotropy (FA) and mean diffusivity
(MD), followed by a classification step performed by statistical support vector
machines (SVM), different implementations of artificial neural networks (ANN)
and learn vector quantization (LVQ) classifiers. The most discriminant voxels
were found in frontal and temporal white matter. A total of 100% classification
accuracy was achieved in almost every case, although the features extracted from
the FA data yielded the best results. The study has been performed on publicly
available diffusion weighted images of 20 male subjects.

Key words: DWI, schizofrenia, neural classifiers, fractional anisotropy, mean
diffusivity
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1. Introduction

There is growing research effort devoted to the development of automated diagnos-
tic support tools that may help clinicians perform their work with greater accuracy
and efficiency. In medicine, diseases are often diagnosed with the aid of biological
markers, including laboratory tests and radiologic imaging. The process of diag-
nosis becomes more difficult, however, when dealing with psychiatric disorders,
in which diagnosis relies primarily on the patient’s self-report of symptoms and
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the presence or absence of characteristic behavioral signs. Schizophrenia is a dis-
abling psychiatric disorder characterized by hallucinations, delusions, disordered
thought /speech, disorganized behavior, emotional withdrawal, and functional de-
cline [3]. Currently, diagnosis is made almost exclusively on subjective measures
like self-report, observation, and clinical history.

A large number of magnetic resonance imaging (MRI) morphological studies
have shown subtle brain abnormalities to be present in schizophrenia. Structural
studies have found enlargement of the lateral ventricles, particularly the temporal
horn of the lateral ventricles [30], reduced volumes of medial temporal structures
(hippocampus, amygdala, and parahippocampal gyrus) [5, 18, 31], superior tem-
poral gyrus [18], prefrontal cortex [16, 34], and inferior parietal lobule [29, 15]; and
reversal of normal left greater than right volume in male patients with schizophre-
nia [26, 13]. In 1984, Wernicke [37] proposed that schizophrenia might involve
altered connectivity of distributed brain networks that are diverse in function and
that work in concert to support various cognitive abilities and their constituent
operations. Consistent with the “dysconnectivity hypothesis”, studies have found
correlations between prefrontal and temporal lobe volumes [38, 8] and disruptions
of functional connectivity between frontal and temporal lobes in schizophrenia [24].
These findings strongly point to widespread problems of connectivity in schizophre-
nia.

Diffusion tensor imaging (DTT) is an MRI method that allows more direct inves-
tigation into the integrity of white matter (WM) fibers, and thus into the anatom-
ical connectivity of different brain regions. DTT depends upon the motion of water
molecules to provide structural information in vivo [27, 6], and yields measures
like fractional anisotropy (FA) and mean diffusivity (MD). The most commonly
demonstrated DTI abnormalities in schizophrenia are decreased FA in the unci-
nate fasciculus (a tract connecting temporal and frontal regions and involved in
decision-making, emotions, and episodic memory), the cingulum bundle (a tract
interconnecting limbic regions which are involved in attention, emotions, and mem-
ory), and the arcuate fasciculus (a tract connecting language regions) [22]. Lower
anisotropic diffusion within white matter may reflect loss of coherence of WM fiber
tracts, to changes in the number and/or density of interconnecting fiber tracts, or
to changes in myelination [20, 23, 2, 21].

The present paper will focus on the application of machine learning (ML) al-
gorithms for the computer aided diagnosis (CAD) of schizophrenia, on the basis of
feature vectors extracted from DTI measures of WM integrity, FA and MD. This
feature extraction method is based on Pearson correlation, and is simpler than
others found in the literature [14, 12]. These features will be the input for statis-
tical SVM and artificial neural networks (ANN) classifiers. We found literature on
the application of ML algorithms to the discrimination of schizophrenia patients
from healthy subjects. A minimum recognition error of 17,8% using geometry
features and FA of DTI from a database of 36 healthy subjects and 34 patients
with schizophrenia was reported in [36]. A study of the effect of principal compo-
nent analysis (PCA) and discriminant PCA (DPCA) was carried on FA volumes
reaching a minimum one-leave-out validation classification error 20% using Fisher
linear discriminant (FLD) in [10]. Good classification results were also obtained in
structural MRI (sMRI) studies [39, 12].
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Section 2 gives a summary of the classification algorithms used for this study.
Section 3 describes the materials and methods in the study: characteristics of the
subjects conforming the database for the study, the acquisition protocol, the pre-
processing steps of the MRI and DTT volumes, and the feature extraction process.
Section 4 gives the results of our computational experiments. Section 5 gives our
final comments and conclusions.

2. Neural Network and Statistical Classification
Algorithms

We deal with two class classification problems, given a collection of training/testing
input feature vectors X = {x; € R", i =1,...,1} and the corresponding labels
{y; € {-1,1}, i =1,...,1}, which sometimes can be better denoted in aggregated
form as a binary vector y € {—1,1}'. The algorithms described below build some
classifier systems based on this data. The simplest algorithm is the 1-nearest neigh-
bor (1-NN) which involves no adaptation and uses all the training data samples.
The classification rule is of the form:

¢ (x) = y; wherei* = argijxllin l {lIx =i},

that is, the assigned class is that of the closest training vector. To validate their
generalization power we use ten-fold cross-validation.

2.1 Support vector machines

The support vector machine (SVM) [35] approach to build a classifier system from
the given data consists in solving the following optimization problem:

l
1
min §WTW+C;&, (1)
subject to
yi(who(x;) +b) > (1=&), &0, i=1,2,....n. (2)
The minimization problem is solved via its dual optimization problem:
1
min iaTQa —ela, (3)
subject to
yla=0,0<a;<C,i=1,...,1 (4)

Where e is the vector of all ones, C' > 0 is the upper bound on the error, Q
is an | x [ positive semidefinite matrix, whose elements are given by the following
expression:

Qij = viy; K (x4, %5), (5)
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where

K(x;,x;) = ¢(Xi)T¢(Xg‘)a (6)

is the kernel function that describes the behavior of the support vectors. Here,
training vectors x; are mapped into a higher (maybe infinite) dimensional space
by the function ¢(x;). The decision function is:

!
sgn(z yioi K (x4,%) + b). (7)

The regularization parameter C' is used to balance the model complexity and
the training error. It was always set to 1 in this case study.

The chosen kernel function results in different kinds of SVM with different per-
formance levels, and the choice of the appropriate kernel for a specific application
is a difficult task. In this study we only needed to use a linear kernel, defined as:

K(x,%x;) = 1—|—xzrxj, (8)

this kernel shows good performance for linearly separable data.

2.2 Backpropagation

Backward propagation of errors, or backpropagation (BP), [28, 17] is a non-linear
generalization of the squared error gradient descent learning rule for updating the
weights of artificial neurons in a single-layer perceptron, generalized to feed-forward
networks, also called multi-Layer perceptron (MLP). Backpropagation requires that
the activation function used by the artificial neurons (or “nodes”) is differentiable
with its derivative being a simple function of itself. The backpropagation of the
error allows to compute the gradient of the error function relative to the hidden
units. It is analytically derived using the chain rule of calculus. During on-line
learning, the weights of the network are updated at each input data item presen-
tation. We have used the resilient backpropagation which uses only the derivative
sign to perform the weight updating.

We restrict our presentation of BP to train the weights of the MLP for the
current two class problem. Let the instantaneous error E, be defined as:

By (w) = 5 (p — 2 (), )

where y, is the p-th desired output y,, and zx (xp) is the network output when
the p-th training exemplar x,, is inputted to the MLP composed of K layers whose
weights are aggregated in the vector w. The output of the j-th node in layer k is
given by:

Ny _1

2 (%p) = F | D whgize—1i (%p) | (10)
=0
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where z;, ; is the output of node j in layer k, N is the number of nodes in layer &,
Wy, ;i is the weight which connects the i-th node in layer & — 1 to the j-th node in
layer k, and f () is the sigmoid nonlinear function, which has a simple derivative:

fe =T raya- sy, (1)

The convention is that zo; (xp) = x,,;. Let the total error Er be defined as
follows:

Er(w) =) Ey(w), (12)

where [ is the cardinality of X. Note that Fr is a function of both the training set
and the weights in the network. The backpropagation learning rule is defined as
follows:

OE, (w)
" ow

where 0 < 17 < 1, which is the learning rate, the momentum factor « is also a small
positive number, and w represents any single weight in the network. In the above
equation, Aw (t) is the change in the weight computed at time ¢. The momentum
term is sometimes used (« # 0) to improve the smooth convergence of the algo-
rithm. The algorithm defined by equation (13) is often termed as instantaneous
backpropagation because it computes the gradient based on a single training vec-
tor. Another variation is batch backpropagation which computes the weight update
using the gradient based on the total error Ep.

To implement this algorithm we must give an expression for the partial deriva-
tive of E, with respect to each weight in the network. For an arbitrary weight in
layer k this can be written using the Chain Rule:

Aw (t) = — +alAw (t—1), (13)

0E, (w)  0E,(w) Oz (Xp).

= 14
awkd,j azk.yj (Xp) awk7j7i ( )

Because the derivative of the activation function follows equation 11, we get:

8zk,- (X )
w2 () (1= 205 () 2115 (%) (15)
W, j,i
and
N1
O0E, (
m 1= zkt1,m m,js
82’” Z 8Zk+1 m xp) Dor o () 2 m (%) ( Zkt1,m (Xp)) Wht1,m,j

which at the output layer corresponds to the output error:

OE, (w)

m = zL (Xp) = Yp- (16)
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2.3 Radial basis function networks

Radial basis function networks (RBF) [11] are a type of ANN that use radial basis
functions as activation functions. RBFs consist of a two layer neural network, where
each hidden unit implements a radial activated function. The output units compute
a weighted sum of hidden unit outputs. Training consists of the unsupervised
training of the hidden units followed by the supervised training of the output units
weights. RBFs have their origin in the solution of a multivariate interpolation
problem [9]. Arbitrary function g (x) : R™ — R can be approximated by a map
defined by a RBF network with a single hidden layer of K units:

K

do (x) =Y _w;¢ (aj,x —cjll), (17)

j=1

where 6 is the vector of RBF parameters including w;,o; € R, and c¢; € R"; let us
denote w = (wy, wa, . .. wp)T then the vector of RBF parameters can be expressed
as 7 = (WT,O‘l, cl ok, CK) Each RBF is defined by its center ¢ € R™ and
width o; € R, and the contmbutlon of each RBF to the network output is weighted
by w;. The RBF function ¢ () is a nonlinear function that monotonically decreases
as X moves away from its center c;. The most common RBF used is the isotropic

Gaussian:
|x — C] &
E w; exp( 5 J .

The network can be thought as the composition of two functions gg (x) = W o
® (x), the first one implemented by the RBF units ® : R* — RX performs a data
space transformation which can be a dimensionality reduction or not, depending
on whether K > n. The second function corresponds to a single layer linear
Perceptron W : RX — R giving the map of the RBF transformed data into the
class labels. Training is accordingly decomposed into two phases. First a clustering
algorithm is used to estimate the Gaussian RBF parameters (centers and variances).
Afterwards, linear supervised training is used to estimate the weights from the
hidden RBF to the output. In order to obtain a binary class label output, a hard
limiter function is applied to the continuous output of the RBF network.

2.4 Probabilistic neural networks

A probabilistic neural network (PNN) [33] uses a kernel-based approximation to
form an estimate of the probability density function of categories in a classifica-
tion problem. In fact, it is a generalization of the Parzen windows distribution
estimation, and a filtered version of the 1-NN classifier. The distance of the input
feature vector x to the stored patterns is filtered by a RBF function. Let us de-
note the data sample partition as X = X; U X_y, where X; = {x},...,x} } and

n_i

X, = {xfl, x! } That is, superscripts denote the class of the feature vector

and n1 + n_1; = n. Each pattern xé- of training data sample is interpreted as the
weight of the j-th neuron of the i-th class. Therefore, the response of the neuron
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is computed as the probability of the input feature vector according to a Normal
distribution centered at the stored pattern:

D (x) = ”X_X”] . (18)

o  SXP
(2m) /2 gn [ 202

Therefore, the output of the neuron is inside [0, 1]. The tuning of a PNN network
depends on selecting the optimal sigma value of the spread o of the RBF functions
which can be different for each class. In this paper, an exhaustive search for the
optimal spread value in the range (0, 1) for each training set has been carried out.
The output of the PNN is an estimation of the likelihood of the input pattern x
being from class i € {—1, 1} by averaging the output of all neurons that belong to
the same class:

1 &
pi(z) = - Z D (x). (19)
Jj=1
The decision rule based on the output of all the output layer neurons is simply:

7(x) = arg max {p: (x)}, ie{-1,1}, (20)

where 7 (x) denotes the estimated class of the pattern x. If the a priori probabilities
for each class are the same, and the losses associated with making an incorrect
decision for each class are the same, the decision layer unit classifies the pattern x
in accordance with the optimal Bayes’ rule.

2.5 Learning vector quantization neural network

Learning vector quantization (LVQ), as introduced by Kohonen [19], represents
every class c € {—1,1} by aset W (¢) = {w; e R";i=1,..., N.} of weight vectors
(prototypes) which tessellate the input feature space. Let us denote W the union
of all prototypes, regardless of class. If we denote ¢; the class the weight vector
w; € W is associated with, the decision rule that classifies a feature vector x is as
follows:
c(x) = ¢,

where

it = argmiin{Hx —w;l||}.

The training algorithm of LV(Q aims at minimizing the classification error on
the given training set, i.e., B =3 (y; — ¢ (xj))z, modifying the weight vectors on
the presentation of input feature vectors. The heuristic weight updating rule is as
follows:

Aw. — €O mwe) e =y, (21)
—e(x; —w;+) otherwise

that is, the input’s closest weight is adapted either toward the input if their classes
match, or away from it if not. This rule is highly unstable, therefore, the practical
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approach consists in performing an initial clustering of each class data samples to
obtain an initial weight configuration using equation 21 to perform the fine tuning
of the classification boundaries. This equation corresponds to a LVQ1 approach.
The LVQ2 approach involves determining the two input vector’s closest weights.
They are moved toward or away from the input according to the matching of their
classes.

3. Materials and Methods

Structural MRI and DTI data from twenty men (aged 21-55 yr), ten patients and
ten controls, from a publicly available database from the National Alliance for Med-
ical Image Computing (NAMIC)! were the subjects of this study in this experiment.
The imaging parameters and demographic information about the subjects can be
obtained from the web site, we omit them for lack of space. A technical description
of the feature extraction method and the data will be available?, because many of
the difficulties found have no place in an academic paper, but are important for
the reproducibility of the results.

3.1 Scalar features of diffusion tensors

In DTI, a diffusion tensor at a voxel is a 3 X 3 positive-definite symmetric matrix D
which can be represented by its decomposition as D = A\1g1g7 + Aagogl + A3gsg?,
where Ay > Ay > A3 and g1, g2, g3 are the eigenvalues and eigenvectors of D,
respectively. Two scalar measures were extracted [7] from the voxels diffusion
tensors: the mean diffusivity (MD) and the fractional anisotropy (FA). The first
corresponds to the average eigenvalue:

TI‘(D) _)\1+)\2+)\3
3 3 ‘

The FA measures the fraction of the magnitude of D that can be related to
anisotropic diffusion in a mean-squared sense (i.e. the extent of deviation from
isotropic diffusivity in all direction). Its magnitude is also rotationally invariant,
and independent from sorting of the eigenvalues. The FA is calculated as follows:

M=) Mg =232+ (Mg =22
FA:fwl D'+ e o)+ Oy 0" o
2 VAT + A+ )3

Thus, isotropic diffusion is imaged as zero value and FA maximum value is one.
Fig. 1 show slices of FA and MD volumes of one study subject.

MD = (22)

3.2 Image preprocessing

Feature extraction requires that the diffusion related data is spatially normalized,
in order to compute the correlation measure and to extract the values of the feature
vectors. Our starting point was the nonlinear registration [4] of the T1-weighted

Thttp://www.insight-journal.org/midas/collection/view/190?path_navigation=17
2http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases

942



Savio A. et al.: Neural classifiers for schizofrenia diagnostic...

Fig. 1 FA and MD maps of one subject.

sMRI skull stripped volumes of each subject to the Montreal Neurological Institute
(MNI152) standard template, using the ANTS? nonlinear elastic registration algo-
rithm. For the elastic registration, a probabilistic correlation similarity metric was
chosen with window radius 4 and gradient step length 1. The optimization has been
performed over three resolutions with a maximum of 100 iterations at the coarsest
level, 100 at the next coarsest and 10 at the full resolution. The optimization stops
when either the distance between both images cannot be further minimized or the
maximum number of iterations is reached. We used a Gaussian regularization with
sigma parameter value 3 which operates only on the deformation field and not on
the similarity gradient. In addition, a previous histogram matching step has been
performed. The deformation fields of this registration were used afterwards for the
spatial deformation of the FA and MD volumes.

The DWI scans were already noise filtered and corrected for eddy currents
and head motion by the group that originally acquired the scans. A brain mask
was obtained for each DWI data volume to calculate the FA and MD maps of
each subject [7]. The FA and MD maps were linearly registered to the sMRI
skull stripped volumes [32] of each subject and then non-linearly registered to MNI
applying the deformation fields obtained from the sMRI data nonlinear registration.
All of the FA and MD volumes were then considered spatially normalized.

3.3 Feature extraction

Once the FA and MD maps were spatially normalized, we processed them inde-
pendently. We considered each voxel site independently, forming a vector at the
voxel site across all the subjects. Then, we computed the Pearson correlation co-
efficient between this vector and the control variable with the labels (patient=1,
control=—1). Thus we obtained for FA and MD data two independent volumes
containing correlation values at each voxel. For each volume we estimated the em-

Shttp://www.picsl.upenn.edu/ANTShttp://www.picsl.upenn.edu/ANTS
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pirical distribution of the absolute correlation values and determined a selection
threshold corresponding to a percentile of this absolute correlation distribution.
Voxel sites with absolute value of the correlation above this threshold were re-
tained, and the feature vector for each subject was composed of the FA or MD
values at these voxel sites. In Tab. I, we show the percentiles and the number of
voxels selected for each feature vector.

Database Percentile DT Measure Number of voxels

A 99.990% FA 241
MD 241
B 99.992% FA 193
MD 193
C 99.995% FA 121
MD 121
D 99.997% FA 72
MD 72
E 99.999% FA 24
MD 24

Tab. I Databases considered, percentile on the correlation distribution and size of
the feature vectors.

Although the voxel sites selected to build the feature vectors (the feature mask)
were localized in many different regions of the subject brains, we found that most
were concentrated in regions of characteristic abnormalities found for schizophre-
nia shown in the literature (see [20] for references). The features voxel locations?
were different for FA and MD maps. In the case of FA, the selected voxels were
localized mainly in parietal and temporal lobes, but also in the cerebellum and
occipital lobe. More specifically, in WM we found discriminant voxel values in the
cingulum bundle, superior and inferior longitudinal fasciculus and in the inferior
fronto-occipital fasciculus. On the other hand, in the MD maps, the most dis-
criminant voxel values were the ones localized in frontal and parietal lobes, more
specifically the cingulum bundle, inferior fronto-occipital and longitudinal fascicu-
lus, and superior longitudinal fasciculus.

3.4 Classifiers parameters

All classifiers were calculated with a maximum iteration number (epochs) of 100.
For the 1-NN classifier, we used the nearest neighbor rule with Euclidean distance.
In the SVM algorithm, a linear kernel function was used as well as a sequential min-
imal optimization for the separating hyperplane method. For BPNN, the number
of neurons in the hidden layer was 4, the learning rate was set to 0.05, tan-sigmoid
transfer function, and training and learning functions were gradient descent with

4This specification of the voxel locations was obtained with the “atlasquery” tool from FM-
RIB’s FSL (http://www.fmrib.ox.ac.uk/fsl/http://www.fmrib.ox.ac.uk/fsl/) using the “MNI
Structural Atlas” and the “JHU White-Matter Tractography Atlas”.

944



Savio A. et al.: Neural classifiers for schizofrenia diagnostic...

momentum. LVQ2 was trained with 2 hidden neurons, learning rate set to 0.01.
The training function used for RBF was according to resilient backpropagation
algorithm. In the case of PNN, random order incremental training was used. For
the last three algorithms (BPNN, LVQ2 and RBF) zeros were set as initial input
and layer delay conditions. These parameters have been selected after a sensitivity
analysis.

We tested several cross-validation strategies, because the small database size
may have an influence on the results obtained with each of these cross-validation
processes. Cross-validation partitions were computed 40 times, and we show aver-
age accuracy, sensitivity, and specificity for the 10-fold cross-validation procedure.

Database FA MD

A 1-NN  1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM  1.00 (1.00-1.00) 1.00 (1.00-1.00)

BP 0.75 (0.67-1.00) 0.78 (0.69-1.00)

RBF 0.98 (0.97-1.00) 1.00 (1.00-1.00)

PNN  1.00 (1.00-1.00) 0.54 (0.54-0.54)

LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

B 1-NN  1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM  1.00 (1.00-1.00) 1.00 (1.00-1.00)

BP 0.75 (0.66-1.00) 0.78 (0.70-1.00)

RBF  1.00 (1.00-1.00) 1.00 (1.00-1.00)

PNN 1.00 (1.00-1.00) 0.52 (0.52-0.52)

LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

C 1I-NN  1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM  1.00 (1.00-1.00) 1.00 (1.00-1.00)

BP 0.77 (0.68-1.00) 0.77 (0.68-1.00)

RBF 1.00 (1.00-1.00) 1.00 (1.00-1.00)

PNN  1.00 (1.00-1.00) 0.52 (0.52-0.52)

LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

D 1-NN  1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM  1.00 (1.00-1.00) 1.00 (1.00-1.00)

BP 0.77 (0.68-1.00) 0.77 (0.68-1.00)

RBF  1.00 (1.00-1.00) 0.84 (0.79-0.90)

PNN  0.99 (0.99-1.00) 0.55 (0.55-0.55)

LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

E 1-NN  0.94 (0.90-0.99) 1.00 (1.00-1.00)
SVM  0.95 (0.90-1.00) 1.00 (1.00-1.00)

BP 0.76 (0.67-1.00) 0.77 (0.68-1.00)

RBF 0.92 (0.90-0.94) 0.89 (0.91-0.88)

PNN  0.94 (0.90-0.99) 0.52 (0.52-0.52)

LVQ2 0.97 (0.94-1.00) 1.00 (1.00-1.00)

Tab. II 10-fold cross-validation results. Accuracy (Sensitivity, Specificity).
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4. Results

The results are presented in Tab. II. The most striking result is that we found op-
timal performance of almost all classifiers built from the provided feature vectors.
The only exceptions were the results of PNN on MD data; tuning of the Gaussian
kernel variance was more difficult than applying the training algorithm of other ap-
proaches. Also BP shows lower performance than the others. The second general
result is that MD features seem to perform slightly better than FA features, dis-
regarding the anomaly of PNN classifiers. In the experimental design, we wanted
to test if decreasing the size of the feature vectors had an impact on the classifiers
performance. We found that performance was not affected down to the smallest
feature vector (database E) where decreases in performance can be appreciated
in all the classifiers for the FA data, while 1-NN, SVM and LVQ2 maintain their
performance for MD data.

5. Conclusion

The goal of this paper was to test the hypothesis that classification algorithms con-
structed using statistical and Neural Network approaches can discriminate between
schizophrenia patients and control subjects on the basis of features extracted from
DTI data. The way to build the feature vectors has been the direct selection of
voxels from the DTI-derived FA and MD scalar valued volumes that show a high
correlation with the control variable that labels the subjects. The selected voxels
roughly correspond to findings reported in the medical literature. Surprisingly, all
the classifiers obtain near perfect results. Despite the simplicity of our feature ex-
traction process, the results compare well with other results found in the literature
[10, 36]. We think that appropriate pre-processing of the data is of paramount im-
portance and cannot be disregarded, trusting that ensuing statistical or machine
learning processes may cope with the errors introduced by lack of appropriate
data normalization. Therefore, our main conclusion is that the proposed feature
extraction is very effective in providing a good discrimination between schizophre-
nia patients that can easily be exploited by the classifier construction algorithms.
The main limitation of this study is that the results come from a small database.
Therefore, more extensive testing will be needed to confirm our conclusions. Nev-
ertheless, we are making available® the actual data employed in the computational
experiments to allow for independent validation of our results.
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THE NEW UPPER BOUND ON THE
PROBABILITY OF ERROR IN A BINARY
TREE CLASSIFIER WITH FUZZY
INFORMATION
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Abstract: The paper considers the mixture of randomness and fuzziness in a
binary tree classifier. This model of classification is based on fuzzy observations,
the randomness of classes and the Bayes rule. In this work, we present a new upper
bound on the probability of error in a binary tree classifier. The obtained error
for fuzzy observations is compared with the case when observations are not fuzzy,
as a difference of errors. Additionally, the obtained results are compared with the
bound on the probability of error based on information energy of fuzzy events. For
interior nodes of decision tree, the new bound is twice as precise as the bound based
on information energy.
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1. Introduction

Many papers have previously covered the aspect of fuzzy and imprecise information
in pattern recognition [3], [4], [10], [11], [12]. In the real-world recognition and
classification problems we are faced with imprecise information that is connected
to diverse facets of human thinking. The origins of randomness and fuzziness
sources are related to labels expressed in feature space as well as to labels of classes
taken into account in classification procedures. There are many cases where the
available information is a mixture of randomness and fuzziness. In [7] the pattern
recognition problem with fuzzy classes and fuzzy information is formulated. This
paper considers the following three situations:

e fuzzy classes and exact information,
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e cxact classes and fuzzy information,
o fuzzy classes and fuzzy information.

In this paper, we consider the classification error problem for exact classes and
fuzzy information of object features. The classification error is the ultimate measure
of the classifier performance. Competing classifiers can also be evaluated based
on their error probabilities. Several studies have previously described the Bayes
probability of error for a single-stage classifier [1], [2], [13] and for a hierarchical
classifier [5], [6]. We consider the problem of classification for the case in which
observations of the features are represented by the fuzzy sets. Additionally, the a
priori probabilities of classes and class-conditional probability density functions are
random. For such assumptions we consider the binary tree classifier. The obtained
error for fuzzy observations is compared with the case where observations are not
fuzzy. The difference of errors for these two cases is the subject of this paper.
Additionally, the obtained results are compared with the bound on the probability
of error based on the information energy of fuzzy events.

The contents of the work are as follows: Section 2 introduces the necessary
background and describes the Bayes hierarchical classifier. In Section 3, the intro-
duction to fuzzy sets is presented. In Section 4, we present the difference between
the probability of misclassification of the fuzzy and crisp data in the binary tree
classifier. Section 5 contains a numerical example that shows the error for this
classifier. Section 6 concludes the work.

2. Bayes Hierarchical Classifier

In the paper [6], the Bayesian hierarchical classifier is presented. The synthesis of a
multistage classifier is a complex problem. It involves specification of the following
components:

e the decision logic, i.e. hierarchical ordering of classes,
e the feature used at each stage of decision,
e the decision rules (strategy) for performing the classification.

This paper focuses on the last problem. This means that we will only consider the
presentation of decision algorithms, assuming that both the tree structure and the
feature used at each non-terminal node have been previously specified.

The procedure in the Bayesian hierarchical classifier consists of the following
sequences of operations, as presented in Fig. 1. At the first stage, some specific
features xoy are measured. They are chosen from all accessible features x, which
describe the pattern that will be classified. These data constitute the basis for
making a decision ¢;. This decision, being the result of the recognition at the first
stage, defines a certain subset in the set of all classes and simultaneously indicates
features x;, (from x) which should be measured in order to make a decision at the
next stage.

Now, at the second stage, features x;, are measured, which together with i
constitute a basis for making the next decision i5. This decision — like ¢; — indicates
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Fig. 1 Block diagram of the hierarchical classifier.

features x;, that are necessary to make the next decision (at the third stage, as in
the previous stage) that in turn defines a certain subset of classes, not in the set
of all classes, but in the subset indicated by the decision i5, and so on. The whole
procedure ends at the N-th stage, where the decision made iy indicates a single
class, which is the final result of this multistage recognition.

2.1 Decision problem statement

Let us consider a pattern recognition problem, in which the number of classes
equals M. Let us assume that classes are organized in a (N + 1) horizontal decision
tree. Let us number all the nodes of the decision tree constructed with consecutive
numbers of 0,1,2, ..., reserving 0 for the root-node, and let us assign numbers of
classes from the M = {1,2,..., M} set to terminal nodes so that each of them
can be labeled with the class number connected to that node. This allows us to
introduce the following notation:

e M(n) — the set of nodes, whose distance from the root isn, n =0,1,2,...,N.
In particular M(0) = {0}, M(N) = M,

N-1
M= U M(n) — the set of internal nodes (non terminal),

n=0

M; € M(N) — the set of class labels attainable from the i-th node (i € M),
e M — the set of nodes of immediate descendant node i (i € M),
e m; — the node of direct predecessor of the i-th node (i # 0),

e 5(7) — the set of nodes on the path from the root-node to the i-th node, i # 0.
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We will continue to adopt the probabilistic model of the recognition problem, i.e.
we will assume that the class label of the pattern being recognised as jy € M(N)
and its observed features x are the realizations of a couple of random variables J
and X. The complete probabilistic information denotes the knowledge of a priori
probabilities of classes:

p(jn) = P(In =jn), Jn € M(N) (1)
and class-conditional probability density functions:

ng(CU)Zf(CU/]N), $€X7 JNEM(N) . (2)

Let
z; € X; CR%, d;<d, ieM (3)

denote the vector of features used at the i-th node, which have been selected from
the vector x.

Our aim now is to calculate the so-called multistage recognition strategy my =
{W;}, a7 which is the set of recognition algorithms in the form:

U, X; = M, ieM. (4)

Formula (4) is a decision rule (recognition algorithm) used at the i-th node that
maps observation subspace to the set of immediate descendant nodes of the i-th
node. Analogically, the decision rule (4) partitions observation subspace X, into
disjoint decision regions D’;i, k € M?, so that observation x; is allocated to the
node k if k; € Dlajm namely:

Our aim is to minimise the expected risk function (expected loss function
L(In,Jn)) denoted by:

R*(mn) = min R(my) = min E[L(In, JN)], (6)
TN TN

where 7y is the strategy of the decision tree classifier. The mwy is the set of
classifying rules used at a particular node 7 = {¥;}, 77

Globally optimal strategy ;. This strategy minimises the mean probability of
misclassification throughout the whole multistage recognition process and leads to
an optimal global decision strategy, whose recognition algorithm at the n-th stage
is as follows:

vl (xin) =ipy1 if (7)

in

int1 = arg max Pe(k)p(k) fi(zi,),

where Pc(k) is the empirical probability of correct classification at the next stages
if at the n-th stage decision i, is made.
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3. Basic Notions of Fuzzy Sets Theory

The concept of a fuzzy set was introduced in 1966 [14] as an extension of the classical
notion of a set. For any classical set, it is possible to define a characteristic function.
This function takes either the values 0 or 1. For a fuzzy set, the characteristic
function can take any value between 0 and 1. A fuzzy set A is defined by the set of
tuples A = (z, pa(x)|z € X), where pa(x) is a membership function of the fuzzy
set and may be continuous, or the set contains only discrete elements assessed by
membership values.

Fuzzy number A is a fuzzy set defined on the set of real numbers R charac-
terized by means of a membership function pa(z), pa : R — [0,1]. In this study,
special kinds of fuzzy numbers including triangular fuzzy numbers are employed.
Triangular fuzzy numbers can be defined by a triplet A = (a1, as, as).

Fuzzy information A, € R, k = 1,...,d (d is the dimension of the feature
vector) is a set of fuzzy events Ay, = {A}, A%, ..., Al*} characterized by membership
functions

Ae = {pay (@e), paz (Tx), s pame (zi) }- (8)
The value of index ny, defines the possible number of fuzzy events for x, (for the
k-th dimension of feature vector). In addition, assume that for each observation

subspace xy, the set of all available fuzzy observations (8) satisfies the orthogonality
constraint [7]:

S pag (n) = 1. ©)
=1

Let (2, F, P) be the probability space, where F is the o-field of Borel sets in R"
and P is a probability measure over R™. Then, a fuzzy event in R™ is a fuzzy set
A in R™ whose membership function p4(z) is Borel measurable. The probability
of the fuzzy event is defined by the integral [15]:

P(A) = / A (@) f (@) de. (10)

Rd

The probability P(A) of a fuzzy event A defined by (10) represents a crisp number
in the interval [0, 1].

4. The Bound on the Probability of Error in a
Binary Tree Classifier with Fuzzy Information

4.1 Exact difference between the probability of misclassifica-
tion for the fuzzy and non fuzzy observations of features

The decision algorithms for the zero-one loss function in the case of the global
optimal strategy of multistage recognition for non fuzzy observations of features
are as follows [6]:

\I’;‘n (131',") = Z'"_;,_l lf (11)
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inr = arg max Y p(N)G (v /R ) i (@)
fori, € M(n), n=20,1,2,..., N—1, where ¢*(jn /in+1,jn) denotes the probability
of accurate object classification of the class jy at further stages using 73 strategy
rules on condition that on the n-th stage the ¢,,41 decision has been made.
As a consequence of Bayes’ theorem, the probability of error Pe(n;) for non
fuzzy observations of features for globally optimal strategy w3 of multistage clas-
sifier is represented by [6]:

Pe(ry)=1- > p(n) ][] Pef(i), (12)
Iy EM(N)  i€s(n)—{in}
where
Pce(i) = / arg max P(wpgi )p(@pgi |wpqi ) da pgqi -
RM?
For fuzzy observation of features, where the A; denotes the fuzzy value of an
object feature observed in i, node, the decision algorithms for the zero-one loss

function in the case of the global optimal strategy of multistage recognition is as
follows [4]:

U (A ) =iy i (13)
int1 = arg max > p(jN)q*(jN/kJN)/MAin (@i, ) fin (@i, )dws,, .
jNEMk §Rd

Similarly, if (9) holds the probability of error Peg(7},) for multistage classifier
with fuzzy observations is as follows:

Pep(ry)=1- Y p(n) ][ Pep (i), (14)
Iy EM(N)  ies(n)—{in}
where
Per(i) = 3 argmax [, (o) Pt Jp@aes oaesdoae.
A€A; oM

When we use fuzzy information on object features instead of exact information, we
deteriorate the classification accuracy. The difference between the probability of
misclassification for the fuzzy Pep(7}) and the non fuzzy observation of features
Pe(r}y) for the globally optimal strategy of multistage recognition 7% is as follows:

Pep(ny) = Pe(ny) = > pGn) ] e (15)
Jy EM(N) i€s(in)—{in}

where

fi= 30 [ ales) s (o) b — max 4 [ uaei) o)

AEA; Roi Foi

This is the exact difference between the probability of misclassification for the
fuzzy Pep(my) and non fuzzy observations of features Pe(m}). This result is
received for full probabilistic information.
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4.2 Error bounds in terms of information energy

Some studies pertaining to bounds on the probability of error in fuzzy concepts are
presented in [9], [8]. They are based on information energy for fuzzy events. The
marginal probability distribution on fuzzy information A of the fuzzy event A is
given by:
Pm(A) = /,UA(x)p(x)dxa (16)
§Rd
where p(z) is the unconditional likelihood.

The conditional information energy (in node i) given by the fuzzy event A is as

follows: 4
Ei(P(M'|A)) = ) (P(k|4)))*, (17)
keM:
Pk) [ pa,; (zo)fr(zi)da,

where P(k|A;) = —

The conditional information energy (in node i) of M? given the fuzzy informa-
tion A; is as follows:

Bi(A;, MYy = Y Ei(P(M'|A))Pi(Ay). (18)
A€A;

For such a definition of conditional information energy, the upper and lower
bounds on probability of error for fuzzy data in node 4, similarly as in [8], are
represented by:

20— Bi(A M) < Pef(0) < (1 - Bi(A;, M), (19)

Hence, the upper bound on the probability of misclassification for the fuzzy
observations Peff(n%;) (in terms of information energy) for the globally optimal
strategy of multistage recognition 73 is as follows:

Pei(ry) <1— > p(n) ] Ei(A, M) (20)

Iy EM(N) i€s(jn)—{in}

4.3 The new upper bound on the probability of error in a
binary tree classifier

The upper bound on the probability of error represented by (20) is very inaccurate
and applies to every decision tree. Now we present a new upper bound on the
probability of error for a binary decision tree. The new bound is tighter than the
previous bound.

Theorem 1 For a binary tree classifier, the upper bound on the probability of
error for the fuzzy observations PeBT (1%) and for the globally optimal strategy of
multistage recognition wy; is as follows:

Pep'(mi) <1— > pGn) J[ (1= Peg"(i)), (21)

Jn EM(N) ies(in)—{in}
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where

A;) = Pa(wpgi

Pep” (i) =1-0.25(1 4 2E; (A, M) + Y ([P (wans A P (4))).

AEA;

In a binary tree classifier each of interior nodes has only two descendant nodes.
Then the Pj(wqi|A;) and Pa(wayi|A;) are a posteriori probabilities of the imme-
diate descendant node 3.

Proof. For a binary tree classifier the probability of error in the interior node
i can be expressed as:

PeBT (i) =1— Z max[ Py (waqi|As), Pa(wagi|Ai)] P (4s). (22)
AeA;

For two numbers a,b if a € [0, 1], b € [0, 1] the following inequalities occur:
max[a, b] > 0.25(2a + 26 + |a — b + a + b) > (a® + b?). (23)
The inequality max[a,b] > (a? + b?) is used in [9] to prove that PeBT(i) < 1 —

E;(A;; M%) holds. For the considered problem of pattern recognition from (22)
and (23) we received:

Peg"(i) <1-025 > (2P (wans
A;EA;

Ai)Q + QPQ(WMi

A+ (24)

HPr(wari|Ai) = Pawpgi|Ai)| + Pa(wagi[Ai) + Pa(wagi|Ai)) P (A).

From (18) and from ZAieAi Py (wpqi]4;) + Po(wpgi
probability of error in the node 7 is as follow:

A;) = 1 the upper bound on

PeBT(i) <1-0.25(1+ 2E;(A;, M)+
(25)
+ 2o a,ea, (1P1(wpai|Ai) — Pa(wani | Ai)|) P (Ai)-
The above estimation of error in the node i proves Theorem 1.

The bound represented by (21) is tighter than the previously introduced bound
based on information energy (20). In the interior node i it is twice as precise as
the previous bond. Now, we present the theorem for this relationship.

Theorem 2 For the interior node of binary decision tree the bound in (25) is
twice as precise as the bound in (19).

Proof. For a binary tree classifier the probability of error in the interior node
i can be expressed as:

Pep (i) = ) min[Py(wpg]Ai), Po(wpei|Ai)] P (As). (26)
A eA;

For two numbers a, b if a € [0,1], b € [0,1] the following inequality occurs:
minfa,b] = 0.5(a +b— |a — b|). (27)

From the last equality it follows that
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P@gT(Z) = 052ALEAL(P1(WMZ|A1)+P2(WM1‘A7/)_
(28)

A;) = Pa(wms

—| P (wpms Ai)) P (As).

It follows that

A€A; AEA;

Ai)Pn(4i) = 1. (29)

From the last expression we have

Peg" (i) =05-05 > (|Pr(wpe A )P (Ay). (30)

A;eA;

A;) — Po(wpe
The right side of inequality (25) equals:

1—-0.25(1 4 2E;(Ai, M*) + 37 4 ca, (| Pr(wags

Az) — PQ(WMi

Ai)) P (A;) =
= —0.5E;(A;, M) +1-0.25(1+ > 4 ca, (|Pr(wagi|Ai)—

AP (43)) = —0.5E;(A;, M) + 0.75 — 0.25%

—Pg(wMz‘

X (3o a,en, (IPr(wagi|Ai) = Pa(wagi|Ai)|) P (Ai)) = —0.5E;(Ai, M) + 0.5+

Ai) — Pg(u)Mi

+(0.25 = 0.25(1+ 3" 4 c 4, (1P (wgs AP (4))) =

= —0.5E;(A;, M%) + 0.5+ 0.5PeBT (i) = (1 — E;(A;, M%) + PeBT (i) /2.

This is the half value of the upper bound (19).

5. An Illustrative Example

Let us consider the two-stage binary tree classifier. Four classes have identical a
priori probabilities that equal 0.25. We use 3-dimensional data x = [:v(l), z?), x(3)]
where class-conditional probability density functions are normally distributed. For
performing the classification at the root-node 0, the first coordinate was used,
and components z(?) and z®) were used at the nodes 5 and 6 respectively. In

the data, covariance matrices are equal for every class ij = 1I, jo € M(2),
and the expected values are as follows: p; = [1, 1, 0], pe = [1, 2, 0], ps =
[3, 0, 1.5], pa = [3, 0, 3]. In experiments, the following sets of fuzzy numbers
were used:

A=Ay = Az = {A' = (=00, 0, 0.5), A2 =(0,0.5,1),...,A% = (3, 3.5, 00)}
Tab. I shows the error in the interior nodes of decision tree. This error is cal-

culated for non fuzzy observations of features 1 — Pc(i) and for fuzzy observations.
The bound of error for the fuzzy data presented in this paper Pe2T (i) is twice as
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node
0 5 6
1 — Pe(1) 0.159 0.309 0.227

1 — Pep(i) 0.168  0.315  0.228
1—-Ei(A;, M") 0231 0402 0.316
PeBT (1) 0.199  0.309  0.227

Tab. I The error in the interior nodes of decision tree.

Pe(my) 0.384
Pep(my)  0.394
PelE(m%)  0.507
PeBT(r%) 0451

Tab. II The probability of misclassification for the global optimal strategy.

precise as the bound based on information energy 1 — F;(A;, M?). Tab. II shows
the same error for the global optimal strategy of binary tree classifier. These results
are calculated for full probabilistic information.

The obtained results show deterioration in the classification quality when we
use fuzzy information on object features instead of exact information in a binary
tree classifier. The first series of rows in Tab. I and Tab. II relates to the precise
observation — not the fuzzy one. For these rows the calculated values of errors are
the smallest. The second series of rows shows the deterioration of the quality of
classification when we have fuzzy observations rather than the precise ones. These
values are accurate. In the next series of rows we estimate these exact values.
In the third series of rows, there is the estimation of error based on information
energy. The last series of rows contains the estimation discussed in this work.

6. Conclusion

In this present paper, we have concentrated on the binary tree classifier. Assuming
full probabilistic information, we have presented the difference between the proba-
bility of misclassification for fuzzy and crisp data. In the paper we presented a new
upper bound on the probability of error in the binary tree classifier. The obtained
results are compared with the bound based on the information energy of fuzzy
events. For interior nodes of decision tree, the new bound is twice as precise as the
bound based on information energy. The obtained results were demonstrated on
a numerical example. The performance of Bayes classifiers is expressed in terms
of the probability of error. In this work we showed how to improve the estima-
tion of error, which concerns the binary tree classifier with exact classes and fuzzy
information on object features.
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Abstract: This work proposes an approach to tag recommendation based on a
learning system. The goal of this method is to support users of current social
network systems by providing a rank of new meaningful tags for a resource. This
system provides a ranked tag set and it feeds on different posts depending on the
resource for which the user requests the recommendation. This research studies
different approaches depending on both the posts selected to form the training
set and the features with which they are represented. The performance of these
approaches are tested according to several evaluation measures; one of them is
proposed in this paper F;" which takes into account the positions where the system
has ranked the positive tags at the same time that it considers the cases where
positive tags could not be ranked. These experiments show that this learning
system outperforms certain benchmark recommenders.

Key words: Recommendation systems, logistic regression, ranking systems
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1. Introduction and Related Work

Tagging can be defined as the process of assigning short textual descriptions, called
tags, to information resources, which allows the user to organize the content. This
becomes very popular and helpful for large-scale systems such as Folksonomies. A
Folksonomy [8] is a collection of resources entered by users in posts. Each post
consists of a resource and set of keywords (tags), attached by a user. Generally,
the resource is specific to the user who added it to the system, but all users are
invited to label it with tags. These systems can be distinguished according to
the kind of resources they support. Flickr, for instance, allows sharing photos,
Del.icio.us shares bookmarks, and Bibsonomy allows to share both bookmarks
and bibtex entries.
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This paper proposes an approach to tag recommendation based on a learning
process. The work starts from the hypothesis that a learning process improves
the performance of the recommendation task. In this sense, the learner is fed on
several examples. It also analyzes the usefulness and suitability of recent posts in
recommending new tags.

Different approaches have been proposed to support users during the tagging
process depending on the purpose for which they were built. Some of them make
recommendations by analyzing content [1], analyzing tag co-occurrences [17] or
studying graph-based approaches [10].

Brooks et al. [4] analyze the effectiveness of tags for classifying blog entries
by measuring the similarity of all articles that share a tag. Jéschke et al. [10]
adapt a user-based collaborative filtering as well as a graph-based recommender
built on top of FolkRank. Basile et al. [3] propose a smart TRS able to learn
from past user interaction as well from as the content of the resources to annotate.
Katakis et al. [12] model the automated tag suggestion problem as a multi-label
text classification task. Sigurbjornsson et al. [17] present the results by means
of a tag characterization focusing on how users tags photos of Flickr and what
information is contained in the tagging.

Most of these systems require information associated with the content of the
resource itself [3]. Others simply suggest a set of tags as a consequence of a clas-
sification rather than providing a ranking of them [12]. Some of them require a
large quantitative of supporting data [17]. The proposal of this work avoids these
drawbacks through a novel approach which ranks the tags using a machine learning
approach based on Logistic Regression.

The remainder of the paper is structured as follows. Our approach is put in
context in Section 2, while the proposed method is provided in Section 3. Sec-
tion 4 details some novel performance evaluation metrics. The results conducted
on public data sets are presented and analyzed in Section 5. Finally, Section 6
draws conclusions and points out some possible challenges to address in the near
future.

2. Tag Recommender Systems (TRS)

A folksonomy is a tuple F: = (U, 7,R,)) where U, 7 and R are finite sets, whose
elements are respectively called users, tags and resources, and ) is a ternary relation
between them, i. e., Y CU x T x R, whose elements are tag assignments (posts).
When a user adds a new or existing resource to a folksonomy, it could be helpful
to recommend him/her relevant tags.

TRS usually take the users, resources and the ratings of tags into account to
suggest a list of tags to the user. According to [14] a TRS can briefly be formulated
as a system that takes as input a given user u € U and a resource 7 € R and
produces a set 7 (u,r) C T of tags as output.

Jaschke et al. in [10] defines a post of a folksonomy as a user, a resource and all
tags that this user has assigned to that resource. This work slightly modifies this
definition in the sense that it restricts the set of tags to the tags used simultaneously
to tag a resource by a user.
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There exist some simple but frequently used TRS [10] based on providing a list of
ranked tags extracted from the set of posts connected with the current annotation.

e MPT (Most Popular Tags): For each tag ¢;, the posts with ¢, are counted and
the top tags (ranked by occurrence count) are utilized as recommendations.

e MPTR (Most Popular Tags by Resource): For a resource r; it is counted
for every tag in how many posts they occur together with r;. The tags that
occurred most often together with r; are then proposed as recommendations.

e MPTU (Most Popular Tags by User): For a user u; the amount of posts in
which they occur together with w; is counted. The tags occurring most often
together with u; are taken as recommendations.

e MPTRU (Most Popular Tags by Resource or User): For a resource r; the
number of posts in which they occur together with r; is counted. In addition,
for a user u; the amount of posts in which they occur together with wu; is
counted as well. The tags occurring most often together with either r; or u;
are taken as recommendations.

The introduction of a learning system is expected to improve their performance.

3. Learning to Recommend

This section depicts the whole procedure followed for providing a set of ranked
tags for a user and a resource. Such recommendations are based on a learning
process which leans upon how everyone has tagged resources before. The core of
the method is a supervised learning algorithm based on SVM with probabilistic
output [5]. This paper studies different training sets built according to the user
and resource for which the recommendations are provided.

The key points of the system are the following:

e The test set is not fixed. Instead it is randomly built.

e The training set depends on each test set and it is built specifically for each
test set.

e Several training sets are built according to different criteria and afterwards
compared and evaluated.

e The learning system adopted was LIBLINEAR [5], which provides a proba-
bilistic distribution before the classification. This probability distribution is
exerted to rank the tags, taking as most suitable tag the one with highest
probability value.

e The tags of the ranking will be all that were in the categories of the training
set. This entails that some positive tags of a test set might not be ranked.

3.1 Definition of the test set

Several works follow the traditional splitting data into training and test sets. Thus,
they learn from a fixed training set and recommend a tag set for each post in test
set [12]. The approach adopted in this paper is quite different in the sense that
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several test posts are randomly selected from the original data set, and an ad hoc
training set is provided to each test set.

A folksonomy is composed of a set of posts. Each post is formed by a user, a
resource and a set of tags, i.e.,

pi = (U,’,T‘,‘, {ti17~ .. 7tik})-

Each post of a folksonomy is a candidate to become a test post. Each test post
is then turned into as many examples as tags used to label the resource. Therefore,
post p; is split into k test examples

€1 = (u’ia r’iatil)
(1)

er = (Wi, Tistiy ).
Example 1 Suppose the following folksonomy

post date User Resource Tags

D1 dy U1 71 1

D2 do Uy T2 to

p3  ds3 Uy T t

ps dy u3 81 t3 (2)
Ds ds Ug T2 ty

Do dg Uz 71 t2,t3

pr  dy Uz T2 ta,ts5

pg  ds u3 T2 t

Let p7 = (ug, 72, {t2,t5}) be a randomly selected test post at instant dy. There-
fore, the test set is formed by

example date User Resource Tags
€1 d7 U ] to (3)
€2 dr Uz T2 ts

3.2 Definition of the training set

Whichever learning system strongly depends on the training set used to learn. In
fact, the ideal situation is that the distribution of the categories in both training
and test sets are as similar as possible to guarantee a better learning. Therefore,
the selection of an adequate training set is not a trivial task that must be carefully
carried out.

Once the test set is randomly selected, an ad hoc training set is dynamically
selected from the posts posted before the test post. The proposal selects the training
set from the N most recent posts. The parameter N is experimentally fixed.

This characteristic makes the TRS to suggest the on-fashion folksonomy tags
and it produces a more scalable system, since the number of posts in the training
set does not increase according to the number of posts posted before the test post.
This characteristic makes feasible the problem by the learning system.
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Therefore, the selection of the training set for a given test post is reduced to
define the criterion the posts must satisfy to be included in the training set. This
work studies different approaches criteria.

Approach 1. TR Let p; = (u;, 74, {ts,, .., i, }) be a test post. Let Ry, be the
subset of posts associated to a resource r; and

R!. ={pi/pi € Ri and it was posted be fore t}.

TR approach selects as training set the N most modern posts of ng, being d;
the date when p; was posted.

Approach 2. TU Let p; = (uj,r4,{ti,,--,t;, }) be a test post. Let P,, be the
personomy (the subset of posts posted by a user constitutes the so-called person-
omy) associated to a user u; and

P, = {pi/pi € Pu, and it was posted be fore t}.

TU approach selects as training set the N most modern posts of 7?3;, being d;
the date when p; was posted.

Approach 3. TRU The above training sets do not take into account that the
learned model is used after a resource is presented to the user. Hence, this approach
proposes to go further and to add as training examples those concerning with the
resource for which the recommendations are demanded.

Since it makes no sense to recommend to a user those tags that he has previously
used to label the resource, the examples whose tags have been previously assigned
to the resource by the user to whom the recommendations are provided have been
removed.

Therefore, the training set associated to p; is formed by

Example 2 Let us show an example of each training set for the test set of
Example 1.
e Approach 1. TR. Firstly the set Rf; = {p2,ps} is computed. Therefore, the

training set is

example date User Resource Tags
€ do Uuq ro Lo (4)
es ds U ro ty

e Approach 2. TU
Pu, = {3, 5. p6,p7} and P7 = {p3,ps, pe}
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since these posts were posted by user us before pr.

example date User Resource Tags

e3 ds U T t
€5 d5 U2 T2 t4 (5)
€6, dg Ug (&1 ta
€6, dg U r1 t3

e Approach 3. TRU. In this case, the training set is computed as follows.

URﬁ;rg = {P;Z U Rg;}\{pj/pj = (uiv T4, {tl’ XS tn})} =
{{ps,p5,p6} U {p2,p5} }\{ps} = {p2,p3,p6}-
Therefore, the training set is defined as follows.

example date User Resource Tags

€2 d> Uy T2 to
€3 d3 U T1 tl (6)
€6, de U 1 to
€6, de Uz r1 i3

3.3 Example representation

Once both the training and test sets are defined, it is necessary to transform them
into a computable form understandable for a machine learning system. Therefore,
we have to define the features characterizing the examples as well as the class of
each example.

The features which characterize the examples are the tags previously used to
tag the resource in the folksonomy. Hence, each example will be represented by
a Boolean vector V of size M (the number of tags of the folksonomy), where
v; = 1 if and only if ¢; was used to tag the resource before and 0 otherwise, where
j€1l,...,M. The class of an example will be the tag with which the user has
tagged the resource in this moment.

Example 3 As an illustration of how to represent a example, let us represent
example eg, of Example 2. The class of eg, is t2, which is its corresponding tag.
The features are ¢; and t3, since the resource 2 of eg, was also tagged before by t;
in e; and e3 and by t3 in ey.

The representation of example eg, is then {1,0,1,0}.

Approach 4. Feature Selection (TRUTR) Removing redundant or non-
useful features which add noise to the system is usually helpful to increase both
the effectiveness and efficiency of the classifiers. The example representation based
on tags as features makes it possible to perform a simple feature selection in the
training set consisting of just keeping those tags which represent the test.
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Obviously, this is possible just in case the information about the resource of
the test post is considered for building the training set, that is, for TR and TRU
approaches. This approach is based on the fact that in a linear system, as the
one adopted here, the weights of the features neither represent the test post nor
contribute to obtain the ranking for this post. Therefore, they could be considered
as irrelevant features beforehand. This fact can be assumed only for a particular
test post. So this is another advantage of building a training set particularly for
each test post. Let us consider the test post of Example 1 and the training set of
Approach 3 in Example 2.

Example 4 The features for the test post are t; and t4, hence, the training set
of Approach 3 in Example 2 will be reduced to be represented at most with these
two tags. Originally, that training set has the following representation:

example date resource features category

€9 d2 ) @ t2
€3 d3 T1 tl tl (7)
€6, de 81 t1,t3 t2
€6, de T t1,t2,13 i3

In the folksonomy represented in Example 1, resource ro does not have any
tag assigned before instant ds, then its representation is an empty set of features.
Analogously, resource r; has only be tagged before instant d3 with ¢1, particularly
in instant dy by user up, then it is represented only by feature ¢;. Special attention
has been paid to resource r; tagged in instant dg. Since, this resource has been
tagged before dg with ¢; and t3, then both tags are included in its representation.
Besides, in example eg, when the category is to, the tag t3 is also added because
it is a tag assigned in the same instant. In the same way, in example eg, when the
category is t3, the tag t5 is included, since it is a tag assigned in the same instant.

Reducing such representation to the tags of the test post, the results of this
new approach are

example date resource features category

€2 d () 0 to
€3 d3 1 @ ty (8)
€6, dg r1 0 12
€6, dg r1 t2 i3

3.4 Learning system

The key point of this paper is to provide a ranked set of tags adapted to a user
and to a resource. Therefore, it could be beneficial to have a learning system able
to rank the tags, indicating to the user which tag is the best and which one is the
worst for the resource. Taking into account this fact, a preference learning system
can not be applied, since that kind of methods yield a ranking of the examples
(posts), rather than a ranking of categories (tags) [11]. As the input data are
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multi-category, a multi-category system is expected to be used. However, these
systems do not provide a ranking.

The system we need must provide a global ranking of labels. Therefore, a multi-
label system could be used, but again they need an adaptation to deal with ranking
problems. In fact, some multi-label classification systems perform a ranking and
then they obtain the multi-label classification [18]. Hence, it is possible to obtain
from them a ranking directly. Elisseeff and Weston [6] propose a multi-label system
based on SVM, which generates a ranking of categories. The drawback is that the
complexity is cubic and although they perform an optimization to reduce the order
to be quadratic, they admit that such complexity is too high to apply to real data
sets. Platt [16] uses SVM to obtain a probabilistic output, but just for a binary
classification and not for multi-category.

With regard to the problem of tag recommendation, Godbole and Sarawagi in
[7] present an evolution of SVM based on extending the original data set with extra
features containing the predictions of each binary classifier and on modifying the
margin of SVMs in multi-label classification problems. The main drawback is that
they perform a classification rather than a ranking.

In this framework, LIBLINEAR [5] is an open source library® based on SVM
which is a recent alternative able to accomplish multi-category classification through
logistic regression, providing a probabilistic distribution before the classification.
This probability distribution is exerted to rank the tags, taking as most suitable
tag the one with highest probability value. In the same sense, the most discordant
tag will be the one with lowest probability.

This work uses the default LIBLINEAR configuration after a slight modification
of the output. The evaluation in this case takes place when a resource is presented
to the user. Then, a ranking of tags (the tags of the ranking will be all that were in
the categories of the training set) is provided by the learning model, and afterwards
the tags that such user has been previously posted to such resource are removed,
since it has no sense to recommend a tag for a resource to a user who has previously
tagged this resource with this tag.

If such resource has not been previously tagged, the ranking is generated ac-
cording to a priori probability distribution, which consists of ranking the tags of
the user according to the frequency this user has used with them before. So, no
learning process is performed in this last case.

4. Performance Evaluation

So far, no consensus about an adequate metric to evaluate a recommender is stated
[10]. Some works do not include quantitative evaluation [19] or they include it
partially [15]. However, the so called LeavePostOut or LeaveTagsOut proposed in
[14] and [10] sheds light on this issue. They pick up a random post for each user
and they provide a set of tags for this post based on the whole folksonomy except

Lavailable at http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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such post. Then, they compute the precision and recall ([12]) as follows

|TF (u,m) N T (u,7)|
T+ (1) )

recall(T) = Dl Z
(u,r)€D

. 1 T (u,r) N T (u, 7))
precision(T) = Dl Z T ()] ,

where D is the test set, 71 (u,r) are the set of tags user u has assigned to resource
r (positive tags) and 7 (u,r) are the set of tags the system has recommended to
user u to assign resource r. The F; measure could be computed from them as

(10)
(u,r)€D

P - 1| Z 2|7 (u,r) N T (u,r)|

— . (11)
DI 2=, T n) + T (w,7)

The main drawback of this process of evaluation is that it just evaluates the
performance of a classification rather that the performance of a ranking, since the
positions where the system has ranked the positive tags are not considered. But, a
TRS able to return the positive tags at the top of the ranking is obviously preferred
than one that returns the positive tags at the bottom of the ranking. Hence,
defining an evaluation metric able to quantify both the tags a TRS recommends
and the order in which it ranks them is an expected challenge to cope with.

The Area Under the ROC Curve (AUC) [13] and Average Precision (AP) [2]
are measures to evaluate a ranking a priori. AUC is the probability of a correct
ranking; in other words, it is the probability that a randomly chosen subject of
class +1 is (correctly) ranked with greater output than a randomly chosen subject
of class -1. AP is the average of the precision computed in the positions where a
positive tag is ranked.

The Normalized Discounting Cumulative Gain (NDCG) [9] is another evalua-
tion measure for Information Retrieval (IR) systems that compute the cumulative
gain a user obtains by examining the retrieval result up to a given ranked position.

It has two particularities. Firstly, it applies a discount factor on the relevance
in order to devaluate late-retrieved documents. Secondly, it computes a relative
score with regard to the ideal cumulative gain.

But, both of them present some drawbacks in tag recommendation because the
rankings to compare could not have the same number of tags, and it is possible
that some tags of the test never appear in the training. In fact, all of them are
thought to compare permutations of a predefined set of tags.

Let us illustrate these statements presenting some situations. Imagine that the
number of positive tags is g and a ranking R of length [ a sequence of positive (p)
and negative (n) tags.

e Situation 1. Let us compare rankings of the form [n?p®] with @ > 0 and b > 1.
Then, for a given value of b, the better the ranking the greater the value of
a. In this situation, both AP and NDCG satisfy that condition, but AUC is
always zero, since all positive tags are not correctly ranked since there is at
least one negative tag in the first position.
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e Situation 2. Let us compare rankings of the form [p®n’] with @ > 1 and
b > 0. Then, for a given value of b, the better the ranking the greater the
value of a. NDCG satisfies it, but both AUC and AP take value to 1. This
happens because all positive tags are ranked correctly without any negative
tag in between. Hence, they do not differ a ranking that contains all positive
tags than other which only contains a few.

e Situation 3. Let us compare now the ranking R; = [p] with the ranking
Ry = [pn®p®] with @ > 1 and b > 1. In this situation, it is necessary to
establish a trade-off between precision and recall, and it is not easy to state
a simple rule. AUC and AP always grant greater value to R; and NDCG to
R, independently of the values of a and b. Hence, an ideal measure would
establish a limit to b from which R; would be better ranking than R,.

This paper proposes an alternative which tries to overcome those drawbacks.
It is similar to the LeavePostOut mentioned above since several pairs of user and
resource are randomly chosen, but it takes into account the positions the TRS
provides the positive tags. It consists of computing the F} measure for all possible
cutoffs of the ranking for which a positive tag is returned and for choosing the
highest one. It will be denoted by Fl+ and it is defined by

R =, max (R (12)

where 7 is the size of the ranking, that is, the number of tags returned by the
system, (F}); is the Fy of the classification assuming that the system has classified
the first 7 tags as positive ones, and the rest as negative ones. Notice that ¢ ranges
from 0 (which means that the system has not returned any tag as positive) to r
(which means that the system has returned all the tags as positive).

Since a negative tag in the ranking does not lead to an improvement of the
Fy, only computing F;" for the cutoffs where a positive tag is placed is required.
Hence, this metric gives an optimal position of the ranking. Notice that it does not
vary if negative tags are added to the tail of the ranking, as it happens to AP. But,
it takes into account all positive tags and not just the positive tags which appear
on the top of the ranking, as AUC also does. Let us take up again the situations
discussed above and find out what F; establishes.

e Situation 1. In this situation, Fj" = - _félg and it satisfies that for a given

value of b the better the ranking the greater the value of a.

e Situation 2. In this situation, the better cutoff takes place just before the
first negative tag is ranked, hence FfL = ffag, and it also satisfies that for a

given value of b the better the ranking the greater the value of a.

e Situation 3. In this situation, F}" = % for Ry and F}" = rnax{li—q7 %}
for Ry depending on where the cutoff is performed. Hence, R, is preferred

to Ry if a < gb.
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5. Experiments

5.1 Data sets

The experiments were carried out over the collections bm08 and bt08, which is
a dataset formed respectively by bookmarks bibtex posts extracted from ECML
PKDD Discovery Challenge 2008 (extracted from Bibsonomy bookmarking) and
publication-sharing system that enables users to tag web documents as well as
bibtex entries of scientific publications.

A user may store and organize bookmarks (web pages) and bibtex entries. The
main tool provided for content management in Bibsonomy is tagging. Users can
freely assign tags to bookmark or bibtex resources when they submit them to the
system.

Before using the data sets, tag cleaning was made according to PKDD Discov-
ery Challenge 2008. The preprocessing phase included removing useless tags (e.g.,
system:unfiled), changing all letters to lower case and removing non-alphabetical
and non-numerical characters from tags. After this preprocessing, some tags be-
come empty, hence all the posts with such tags are removed from the data set.
Finally, the number of users, tags, resources and posts of both collections have
been counted and shown in Tab. I.

Dataset  users tags  resources posts
bm08 1,953 42,302 177,387 563,990
bt08 1,206 29,739 96,616 278,008

Tab. I Statistics of data sets.

5.2 Discussion of results

This section deals with the experiments carried out. To test the methods, 1000 test
posts were randomly selected. For each one, several ranked tag sets are provided
depending on: the approach that builds the training set, which leads to four possible
TRS: TR, TU, TRU and TRUTR, and on the cardinality (N) of the training set (N =
i %500 with ¢ = 1,2,...,10). Therefore, the size of the training set is also tested.
Hence, each recommender has been trained with N examples posted immediately
before the post for which the recommendation has been demanded. Thus, the
conditions of each way of building the training set are satisfied.

Tab. II shows the behavior of the benchmark TRSs according to the evaluation
metrics detailed in 4. It seems that both MPTU and MPTRU are considerably better
than the rest benchmark TRSs for both data sets, although the latter is better.
Hence, MPTRU is a good choice to consider as reference from now on to check if,
indeed, a learning process helps to recommend tags more efficiently.

Fig. 1 (Fig. 2) shows the F,", the AUC, the AP and the NDCG evaluation
measures for the collection bst08 (bmst08). Clearly, all the evaluation measures
enhance the performance when the training set is formed by the posts added by

973



Neural Network World 7/10, 963-977

F1 AUC
0. 0.
. B—e 5 & & & & £ & | R S W I — £ i
) L
0.
03
0. 0.
o 03
0.2
0.
0.1
o 0.1
500 1 1500 2 2500 3 3500 4000 4500 5000 5 1000 1500 2000 2500 3000 3500 A 4500 S
TR —6— TU - TRU —@— TRUTR —5 R -6~  TU M  TRU —@— TRUTR —1—
AP NDCG
04— o
—f—+1 - = 8] = - - 1 —f R £ - S
0.
03 "
— 0.45
0. [0
0.
0.25
0.3
0.
0.
0.15 o
0.15
0.
0.
S0 1 50 2300 3000 330 4000 4500 5000 E 1000 1500 2000 230 300 3500 4 0 s
R —O— U —— TRU —@— TRUTR —— R —O— U —— TRU —@— TRUTR ——
Fig. 1 F1, AUC, AP and NDCG for btst08 data set.
Fl AUC
0.4[3\E 0.7 g EE— F
—i— . —e—*
033 T s O-GE?
) — ) —
03 0A5"/I
! |
0.25 0.4
02 0.3
0.15 0.2
0.1 0.1
0.05 q
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 00 1000 1500 2000 2500 3000 3500 4000 4500 5000
TR —©— TU —l— TRU —@— TRUTR —— TR —©— TU —— TRU —@— TRUTR —F—
AP NDCG
0.35 0.45[% = =  m— = = = L
0.3~ 0'4:H
3 — .
\E;\—EB\B\B\Q‘n = 0.35
£ B—a—p
0.25
e 03
f — o -
l\| — o
02 0.25
. ——
0.2
0.15
0.15
0.1
0.1
0.05 0.05
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
TR =©— TU —— TRU —@— TRUTR —}— TR —©— TU —— TRU —@—TRUTR ——

974

Fig. 2 F1, AUC, AP and NDCG for bmst08 data set.



Quevedo J. R. et al.: Ranked tag recommendation systems. ..

F  AUC AP  NDCG
bmoO8
MPT 7.0%  5.9%  3.8% 6.7%
MPTR 52%  3.7%  3.5% 5.0%
MPTU  23.4% 65.7% 15.7% 31.4%
MPTRU 23.7% 66.7% 16.0% 32.0%
bt08
MPT 6.7% 58%  4.6% 6.6%
MPTR 78%  52% 5% 7.7%
MPTU  37.2% 56.3% 28.8%  42.5%
MPTRU 38.2% 57.9% 29.7% 43.7%

Tab. IT Performance of the benchmark TRSs for all post collections.

the user of the test post. In addition, the effectiveness of the recommender is also
improved if the posts related to the resource of the test post are included in the
training set (described according to the test representation).

Let us analyze now the influence of the size of the training set (N): All evalu-
ation metrics keep more or less steady for bt08 collection. However, F;" and AP
slightly decrease as N increases, while AUC keeps steady when N is over 2500 in
case of bm08. This peculiar behavior of AUC might be because it increases at the
same time the negative posts that are ranked on the tail of the ranking. In any
case, a steady situation is probably easy to reach.

6. Conclusions and Future Work

This work proposes a TRS based on a novel approach which learns to rank tags
from previous posts in a folksonomy using a SVM with probabilistic output. This
TRS is trained with three different sets, obtaining three different versions. This
system feeds on different posts depending on the strategy used. They were tested
over 2 different data sets and then compared to other TRSs.

In addition, a new evaluation measure is proposed, namely Fl+ . It takes into
account the positions where the system has ranked the positive tags at the same
time that it considers the cases where positive tags could not be ranked. In this
way, it overcomes the drawbacks of other ranking evaluation metrics, such as AUC,
AP and NDCG.

The TRSs proposed are compared to the best benchmark TRS (MPTRU). The
results show a significant improvement of all the TRSs with regard to MPTRU, being
the one which takes into account test representation (TRUTR) of the best of the four
versions.

On the other hand, the cardinality of the training was ranged from 500 to
5000. The results show that the size of the training set hardly has effect on the
performance. Only AUC seems to be sensitive for low values. In any case, it is
possible to keep the performance without making the learning process slow down
so much, since it is not necessary to add a huge amount of training examples.
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Therefore, the introduction of a learning system becomes beneficial for recom-
mending tags. Additionally, it is possible to state that for recommending suitable
and useful tags, the training set should contain both the posts related to the test
user or resource. However, what is really helpful is to represent the post only with
tags that also represent the resource of the post for which the recommendations
are provided. Since example and feature selection improves the performance of
a learning based TRS, it would be interesting to explore new approaches in that
direction as future work.
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