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ABSTRACT. In this paper we propose the filtering of images based on the codebooks obtained from an 

Evolution-based Adaptation Strategy for Vector Quantization (VQ). This evolution based VQ Bayesian Filter 

(VQBF) is applied to noise removal and segmentation of a high-resolution Magnetic Resonance Image. We 

compare our approach with other more conventional smoothing filters. The results show that VQBF performs a 

smoothing that preserves region boundaries and small details. It does not show the strong boundary diffusion and 

displacement that are common to smoothing filters. Border detection on the filtered images is also presented. 
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1.- INTRODUCTION. 

Vector Quantization (VQ) [1, 2, 3] is the process of replacing the signal vectors by 

representatives chosen from a set named codebook. Its main application is in signal 

compression, although sometimes it is used as a feature extraction method for classification or 

as a signal filtering method [4]. The work proposed in this paper falls into this last family of VQ 

applications. We follow an uncommon approach in the way we decompose and process an 

image, which we name VQ Bayesian filter (VQBF). Given a codebook, VQBF consists in two 

steps: (1) we determine the codevector that encodes the vector given by a pixel and its 

neighborhood, and (2) we substitute the pixel by the central element in the codevector. The 

encoding process is a Maximum A Posteriori (MAP) classification and, thus, VQBF performs a 

kind of Bayesian image processing [5, 6]. In this context (1) the stochastic model and its 

estimation are, respectively, the codebook and the search for the optimal codebook; and (2) the 

process does not involve complex and lengthy relaxation procedures (i.e.: simulated annealing 

[5]), only the search for the nearest codevector.  

 

Our approach share the general problem of codebook design, which is a kind of clustering 

problem. Between the possible techniques that can be used to compute the codebook there are 
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some methods based on evolutionary algorithms [7-20]. The common approach of all these 

works is the mapping of complete clustering solutions to population individuals. The fitness 

function is the chosen ad-hoc clustering criterion function. The authors propose a wide variety 

of representations of clustering solutions as population individuals, ranging from the set of 

cluster representatives to the membership (hard or fuzzy) matrices of the clusters. Evolution 

operators, recombination and mutation, are defined suitably to be closed operators on the 

chosen representation. 

 

In this respect, our own contribution [21] consist in the proposition of an Evolution-based 

Adaptation Strategy which shows the following features: (1) vector real valued individuals, (2) 

the main genetic operator is mutation, and (3) mutation is based in individuals local 

information. We assume in our algorithm that the population is the codebook given by a set of 

codevectors, which induce a Voronoi partition over the input space, and a clustering of the 

sample. The mutation operator is guided by the estimated covariance matrices of the clusters. 

We have not defined any cross or recombination operators. The selection operator extracts the 

next generation population from the pool of parents and offspring generated by mutation. We 

have worked with two types of selection operators one that selects a fixed preset number of 

individuals for the next population, and other one that tries to determine the optimal number of 

individuals. 

 

In Section 2, we present the VQ Evolution-based Adaptation Strategy. Section 3 presents the 

VQBF more formally. Section 4 presents the results on the application to an image and 

comparison with other conventional approaches. Finally, Section 5 gives some concluding 

remarks. 

 

 

2.- THE EVOLUTION-BASED ADAPTATION STRATEGY. 

In this section we review the Evolution-based Adaptation Strategy proposed in [21] as will be 

used in this work. The main addition to the basic definition is the attempt to define the selection 

of an optimally sized population. A widely accepted [22] pseudocode representation of the 

general structure of the algorithm of Evolution Strategies is given in figure 1. The Evolution-

based Adaptation Strategy proposed is heavily influenced by the use of the Euclidean distance, 

the consideration of other clustering measures will imply that some algorithm elements must be 

redefined. We will start describing in detail the elements of the Evolution-based Adaptation 

Strategy. 
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t:= 0 

initialize P(t) 

evaluate P(t) 

while not terminate do 

 P'(t):= recombine P(t) 

 P''(t):= mutate P'(t) 

 evaluate P''(t) 

 P(t+1):= select (P''(t) U Q) 

 t:= t+1 

end while 

 

Figure 1. General structure of an Evolution-based Adaptation Strategy. 

 

2.1. Individuals, Population and Fitness functions. 

We make each individual to correspond to a single cluster center. A single solution to the VQ 

problem is mapped into the entire population. The population at generation t is given by 

P(t) = yi (t) | yi (t)∈ℜd ;i =1...c{ } (1) 

The population size c corresponds to the number of clusters searched in the data. We have not 

included mutation parameters in the definition of the individuals, because we will use for this 

role the covariance matrices computed over the sample data. 

 

The local fitness of each individual is its local quantization error relative to the sample data. 

  
Fi t( )= x j − yi t( ) 2

j =1

n

∑ δ ij t( ) 
 

 (2) 

We used to compute this fitness a sample data ℵ= x1, ...,xn | xi ∈ℜd{ } extracted randomly from 
the original data set. As the individuals do not specify complete clustering solutions, we must 

consider a fitness function for the population as a whole. This population fitness corresponds to 

the objective function to be minimized, because it is the whole population, which specifies the 

clustering solution and can be evaluated as  

F t( ) = Fi t( )
i=1
c

∑  
 

(3) 

Our population fitness corresponds to the within cluster scatter of the clustering specified by the 

population SW = F(t). The well known equation relating the within and between cluster 

scattering [23]: S = SW + SB , can be written using (2) and (3) as: 



 4 

S = x j − y 
2

j=1

n

∑ = Fi t( )
i=1

c

∑ + yi t( )− y 2
i=1

c

∑  
 

(4) 

Where S remains constant for the same data sample, and y  denotes the centroid of the entire 

data sample ℵ. The constraint specified in (4) implies that the isolated minimization of 

individual fitness would lead to the population fitness minimization. 

 

2.2. The mutation operator. 

The recombination operators found in the literature of Evolution Strategies do not look as 

appropriate sources for new cluster representatives, therefore we have not defined any 

recombination operator. Only the mutation operator introduces evolutive changes. As is 

customary in Evolution Strategies, our mutation operator is a random perturbation that follows a 

zero-mean normal distribution. 

 

The set of mutation parents is composed of the individuals whose local fitness is greater than 

the mean of the local fitness in its generation. Formally, this set is given by: 

φ t( ) = i Fi t( ) ≥ F t( ){ }  where  F t( ) =
1

c
Fi t( )

i=1

c

∑  

 

(5) 

We will be allowed a number of mutations that we have decided to approach as much as 

possible to a fixed number of mutations m, so that the number of mutations per individual mi(t) 

will depend on the size of φ(t),  

mi t( ) =
m

φ t( )
 

 
 

 

 
  

 

(6) 

The information used to compute mutations is the local covariance matrices of the sample 

partition associated with each individual, so that the mutation operator is naturally adapted to 

each individual. The expression of the local covariance matrices is 

ˆ Σ i t( ) = n −1( )−1
x j − yi t( )( )x j − y i t( )( )tδ ij t( )

j=1

n

∑  
 

(7) 

Mutations are computed along the axes defined by the eigenvectors of the estimated local 

cluster covariance matrix. The number of mutations mij(t) along each eigenaxis is proportional 

to the relative magnitude of its eigenvalue. The width of mutation perturbations αk are subject 

to an annealing process C(t) that reduces its scale in each generation. We assume that there is a 

monotonic improvement in the solution. Let Λ i = diag λij , j = 1...d( )and Φ i = eij , j = 1...d[ ] 
denote, respectively, the eigenvalue and eigenvector matrices of ˆ Σ i t( ). Then the set of 
mutations generated along the axis defined by eigenvector eij is: 
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′ ′ P ij t( ) = yi ± α kλijeij k = 1..mij t( ), i ∈φ t( ){ } 
mij (t) = round

mi (t)λij

2 λill=1
d

∑

 

 

 
  

 

 

 
  ,αk =

C t( )k
mij t( )  

 

 
(8) 

The set of individuals generated by the mutation operator is  

  

′ ′ P t( )= ′ ′ P ij t( )
i, j

U   (9) 

 

2.3. The selection operator. 

The remaining operator to be defined is the selection operator, which determines the individuals 

of the population for the next generation. In the definition of this operator we have followed the 

so called (µ+λ)-strategy [24]. We pool together parents and children, so that  Q = P t( ). In our 

case, µ is the number of classes, and λ the number of generated mutations. 

 

We have defined two selector operators, one that selects a fixed number c of the best 

individuals for the next generation based on individual distortion functions. And a second one 

that also determines the number of individuals in the next generation. The later one employs a 

fitness function based on individual distortion and entropy. 

 

2.3.1 Selection of a fixed size population. 

Selection can not be based on the original individual fitness functions Fi t( ) because they do not 
carry information about the interaction effects introduced by new individuals generated by 

mutation. The optimal approach to the implementation of this selection operator consists in 

computing the fitness of all the possible populations of size c extracted from P' ' t( )∪ P t( ). The 
complexity of this approach is of the order of  

P' ' t( )∪ P t( )
c

 

 
  

 

 
   

computations of population fitness functions. This computational burden largely questions the 

feasibility of this approach in any practical application. Therefore, we have work with an 

alternative selection operator to reduce the complexity combinatorial growth. 

We pool together the parents and the individuals generated by mutation. Let us denote as Fs
t( )  

the fitness of the population P' ' t( )∪ P t( ). A way to measure the importance of a given 
individual is to compute the effect of removing it from the population. That is, we compute 

Fi
s
t( )  as the fitness of the population ′ ′ P (t)∪ P(t) − yi (t){ } for each y i(t)∈ ′ ′ P (t)∪ P(t). The 
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importance of the individual would be measured by Fi
s
t( )− F

s
t( ). As Fi

s
t( ) ≥ F

s
t( ) for all the 

individuals, it suffices to compute Fi
s
t( )  to measure the importance of the individual. Notice 

that for empty cluster representatives, which can be the case of some mutation generated 

individuals, their significance is null Fi
s
t( ) = F

s
t( ), so that they will be discarded 

automatically. It is trivial to verify that no empty cluster will be selected using this fitness 

function, unless there is someone in the original population and all the mutations generate 

empty cluster representatives. 

 

For notation simplicity, let λ = ′ ′ P t( )  be the number of individuals effectively generated by 
mutation. A formal definition of the individual fitness function used by the selection operator is 

as follows: 

Fi
s
t( )=  x j − yk t( ) 2δkj

s
t( )

j =1

n

∑
k =1
i≠k

c+λ

∑
 

δkj
s
t( ) =

1 k = argmin
l=1,..c+λ
l≠i

x j − y l t( ) 2{ }
0 otherwise

 

 
 

 
 

  

 

 

(10) 

The selection operator selects the c best individual’s fitness to obtain the next generation 

population. Formally: 

P t +1( ) = select ′ ′ P t( )∪Q( )  =   y i ∈P
*
t( ); i =1,...,c{ } 

P
*
t( )= yi1

, ...,yic +λ
 ij < ik ⇒ Fj

s
t( )> Fk

s
t( ){ } 

 

(11) 

 

We introduce an elitist criterion, to ensure convergence, as follows: the selected population is 

accepted if it is better than the previous one. 

 

The computation requirements of this selection operator are linear in the number of cluster 

representatives, and it can be easily speed up using the simple programming trick of 

precomputing the two nearest cluster representatives. Although, this selection operator is clearly 

suboptimal, the experimental works assess the positive balance between its suboptimality versus 

its computational efficiency. 

 

2.3.2 Selection of an optimally sized population. 

Like in the selection operator defined above, this variation of the selection can not be based on 

the original individual fitness functions Fi t( ); we need more information about the interaction 
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effects introduced by the mutation generated individuals and how to determine the number of 

individuals that will form the next population. The optimal approach to the implementation of 

this selection operator would consist in computing the fitness of all the possible populations of 

varying size k (k = 1,… , µ+λ) extracted from P' ' t( )∪ P t( ). The complexity of this process 
would be of the order of  

P' ' t( )∪ P t( )
k

 

 
  

 

 
  

k =1

µ+λ

∑  

computations of population fitness functions. Again, we work with an alternative selection 

operator of reduced complexity. 

 

We pool together the parents and the individuals generated by mutation. Let us denote as Fs
t( )  

the fitness of the population P' ' t( )∪ P t( ). Now, we define Fi
s
t( ) as a linear combination of 

local distortion and entropy increment for each individual i. We previously normalize into the 

interval [0, 1] both terms. Depending on the relative weight η, the selection operator gives more 

priority to the local distortion or to the entropy increment: 

Fi
s
t( )= Di

2
t( )− η ⋅ ∆Hi t( )  

(12) 

The computation of the local distortion Di
2
t( ) is identical to the individual fitness of the 

previous section, let λ = ′ ′ P t( ) : 

Di
2
t( ) =  x j − yk t( ) 2δkj

s
t( )

j=1

n

∑
k =1
i≠k

µ +λ

∑  

 

(13) 

δkj
s
t( ) =

1 k = argmin
l=1,..µ +λ
l≠i

x j − y l t( ) 2{ }
0 otherwise

 

 
 

 
 

 

 

 

The entropy of each individual H i t( ) is computed with the same strategy followed to compute 
the local distortion: we compute the entropy of the population ′ ′ P (t)∪ P(t) − yi (t){ } for each 
y i(t)∈ ′ ′ P (t)∪ P(t). The individual entropy increment would be measured by 

∆Hi t( ) = H t( )− Hi t( ) , where H t( ) is the entropy of the whole population. Let ni the number of 

data items classified into individual i, then we calculate Hi(t) as: 

Hi t( ) =
1

nik =1
i≠k

µ +λ

∑ log
1

ni

 

 

(14) 
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The selection operator iteratively adds the best individual until a stopping condition is met. This 

stopping condition is defined over the relative increment of the accumulated fitness functions of 

the selected individuals that can be above a predetermined threshold T: 

P t +1( ) = select ′ ′ P t( )∪ Q( )  = 

y i1
t( ), ...,yiz

t( ) i j < ij+1⇒ Fj
s
t( ) > Fj+1

s
t( )∧ Fm

s
t( )

m =1

j+1
∑ − Fn

s
t( )

n=1

j

∑( ) Fn
s
t( )

n=1

j

∑ < T
 
  

 
  

 
 
 

 

 

(15) 

 

 

3.- VECTOR QUANTIZATION FOR IMAGE FILTERING.  

Besides its known applications in compression VQ has been proposed for digital image 

processing [4]. It has been suggested that the encoding/decoding introduce some non-linear 

smoothing of the image that removes some kinds of noise, especially speckle noise. A 

conventional definition of Vector Quantization [1] is as follows: given a stochastic process {Xt ; 

t>0} whose state space is the d-dimensional (Euclidean) real space Rd, the Vector Quantizer is 

given by a set of codevectors that form a codebook Y={y1,…, yc} (c is the codebook size), the 

encoding operation ε:ℜd  → {1,..,c} that maps each vector in ℜd  to the nearest codevector in 

the sense of some defined distance (most usually the Euclidean distance); and the decoding 

operation ε-1: {1,..,c} → ℜd  that reconstructs the encoded signal using the codebook. The 

Vector Quantization design consists of the estimation of the codebook from a sample ℵℵℵℵ={x1,… 

, xn}. 

 

The Bayesian approach to image processing [5, 2] is one of the more versatile approaches. The 

observed image is the degraded image G and F is the original or desired image. The a posteriori 

conditional density given by Bayes’ rule 

p F = f G = g( )=
p G = gF = f( )p F = f( )

p G = g( )  
 

(16) 

has been used to find different types of estimates of the desired image F from the observed 

image G. The maximum a posteriori (MAP) and maximum likelihood (ML) are the modes of 

p(F = f | G = g) and p(G = g | F = f), respectively. In general, it is difficult to obtain the 

marginal density p(G = g), however, the MAP and ML estimates do not require it. Both 

estimation methods need to postulate models for the prior p(F = f) and conditional p(G = g | F = 

f) probabilities. The prior model specifies a broad class of images through the specification of 
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probabilistic relationships. The conditional probabilities can be postulated as a model of the 

image degradations or of the transformation between the observed and desired image. 

 

In the VQ Bayesian filter (VQBF) the codevectors are considered to be centered around their 

middle pixels, like the conventional definition of convolution masks They are, thus redefined 

asy i = yk ,l
i :− d 2 ≤ k,l ≤ d 2( ). The image is not decomposed into blocks, rather we consider 

for each pixel a neighborhood Fi , j = Fi+k, j +l : − d 2≤ k,l ≤ d 2{ }. The filtering process 
corresponds to exchange each pixel by the central pixel in the codevector that encodes its 

neighborhood, denoting ˜ F = ˜ F i, j : 1 ≤ i, j ≤ N[ ] the filtered image it can be formalized as follows: 
˜ F i , j = y0,0

ε Fi,j( )
. The codevectors become the probabilistic models of the pixel neighborhood. To 

put the VQBF in the framework of Bayesian image processing, the filtering application of the 

codebook must be interpreted as realizing the following approximation of the posterior 

probabilities 

p Fi, j = y0,0
k
Gi, j = g( )= δk,ε g( )     1≤ i, j ≤ N  and  1 ≤ k ≤ c  (17) 

We recall the probabilistic model embodied by the codebook. In our works we do consider 

that the codebook design by the Evolutive Strategy intends to minimize the Euclidean 

distortion. The method employed is not relevant now as long as it minimizes 

D = x i − yε x i( )
i=1

n

∑
2

 

 

(18) 

A well-known interpretation [23], in terms of statistical decision theory, of the minimization 

of the Euclidean distortion beside is as follows: given a number of classes, i.e. c, and feature 

vectors whose probability density follows a mixture of conditional densities 

p x( ) = p ω j( )
j=1

c

∑ p xω j( ). If we assume that the conditional densities are Gaussian with 
identical unit covariance matrices p xω j( )≈ N y j ,I( ), and that the classes are equiprobable, then 
the minimization of the Euclidean distortion is equivalent to maximum log-likelihood 

estimation of the parameters of the model, the class means. Based on these parameters the MAP 

decision max
j

p ω j  x( ) is the Bayesian minimum risk decision. Thus, the filtering realized by 
VQBF corresponds to a MAP image process, in which the classes are the gray levels of the 

central pixel in the representative neighborhoods extracted from the image. . We can state the 

model of the dependencies of each pixel to its neighborhood as: 

p Fij = f0,0 Fi, j = f( )=
1

c

1

2π( )d / 2 e
− 1
2
f−y j

2

j=1

c

∑  

 

(19) 

Where f0 ,0  is the central pixel of an image block f . 
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The case for Bayesian analysis of VQBF properties is that of deducing from the statement of the 

posterior probabilities (19) the prior p(F = f) and conditional p(G = g | F = f) models. This 

analysis will support the VQBF approach and will be dealt with elsewhere. 

 

 

4. - EXPERIMENTS AND RESULTS. 

In this section we present the visual results of the application of the VQBF based on the 

codebooks computed by our Evolution-based Adaptation Strategy over an image. The sample 

size was the 10% of the original image. When we work with a of fixed number of classes the 

number of generations is set to 30 and the number of classes is set to µ = c = 16. When we work 

with the selection that tries to determine the optimal number of classes the number of 

generations is set to 20 and the initial number of classes is the same as before. Other parameters 

for the evolution strategy are set to T = 0.03 (selection threshold) and η = 0.5 (more priority to 

local distortion than to entropy increment).  

 

As the end interest of these images is for medical-biological inspection, the visual evaluation is 

the prime concern. Therefore, we present the visual results of the application of VQBF and 

several conventional approaches: the Median filter, the Gaussian smoothing, Gray level 

Morphological filters and the Wiener filter with noise self-estimation. To highlight the 

differences of the different filtering approaches, we show in the figure the equalization of the 

images after filtering. In all the cases we have considered neighborhoods of size 3, 5 and 7.  

 

The approach has been tested over a Magnetic Resonance image obtained by the Unit of 

Magnetic Resonance of the Universidad Complutense. The original image is of 718x717 pixels 

and is shown in fig. 2a. The objective of the work is to enhance the image with some denoising 

algorithm and to detect the infected region enclosed by a white square in fig. 2a. The processing 

of the image must therefore, eliminate the Gaussian noise while preserving most of the structure 

of the image, specially in the interest region. To appreciate the denoising effects of the 

algorithms we perform the equalization of the original image (fig. 2b) and of the images after 

filtering figs. 3 to 9. To give a better impression of the preservation of the image structure we 

show the borders detected by applying a Laplacian operator on the filtered image and 

thresholding it.  

 

The usual method to process noisy images before segmentation, when there is no known model 

of the distortion and the noise, is the application of smoothing filters. The results obtained by 
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the application of the median filter, Gaussian smoothing, gray level morphological filters and 

the Wiener filter appear, respectively, in figures 3 to 7. The results of our VQBF with fixed 

number of classes are shown in figure 8 and with variable number of classes in figure 9. Figures 

10 to 16 shows the borders detected in the filtered images. 

 

If we consider the results in terms of denoising and region segmentation, the general effect of 

conventional smoothing filters (Gaussian, Morphological, Median and Wiener) is a diffusion 

that distorts the region definition, blurring its boundaries. This negative effect increases as the 

size of the kernel increases. However, the VQBF shows a good denoising response while 

preserving the region definitions. Focussing into the infected region highlighted in fig. 2a, it can 

be appreciated that it is heavily blurred in figs. 3 to 7 while it is well preserved in figs. 8 and 9. 

Besides, VQBF shows no degradation by over blurring as the kernel size grows. The effect of 

our strategy to determine the optimal number of clusters can be appreciated comparing figs. 8 

and 9, with figs. 16 and 17. Although the number of classes found is greater than in the constant 

size case, the visual results show some improvement, especially in the images of the detected 

borders. The search for the optimal number of classes produces the disappearance of the darker 

tissues in the image. However the infected region is well preserved in all the circumstances.  

 

Focusing on the borders detected before and after filtering the image, the excellent properties of 

the VQBF are more clearly exhibited. Fig. 10 shows the borders detected in the original image. 

The smoothing decreases the magnitude of the detected borders, displaces and diffuses them. 

The extreme bad result is for the Gaussian smoothing with kernel 7x7 whose detected borders 

have a very small magnitude that needs a very low threshold. Conventional filters either loose 

the interest region or preserve many noisy borders. As the codevector dimension increases, the 

VQBF border detection improves. The detection of the optimal number of classes gives the best 

results in terms of isolating interesting regions. Both instances of the 7x7 VQBF preserve the 

main boundaries, especially in the interest region. 

 

 

5.- CONCLUSIONS. 

We have proposed the application of an Evolution-based Adaptation Strategy to estimate a 

vector quantizer with fixed and variable number of classes that is applied as filtering 

mechanisms. We have shown the results of those approaches against the results obtained by 

other conventional filtering and smoothing techniques widely used for noise removal. Ours 

approaches do not blur the image as the neighborhood size increases, and at the same time the 
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noise is removed more efficiently as the neighborhood size increases. This is more evident in 

the parts of the image that correspond to empty space, where our approach removes almost all 

the noise. The border detection also shown that VQBF defined regions of interest with 

accuracy.  

 

Future work will be addressed to the improved optimal determination of the number of classes, 

that already gives very promising results. 
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Figure 2. Original image (a). After equalization (b). 
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Figure 3. The equalization of images filtered with Median Filter method and several 

neighborhood/radius sizes. 
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Figure 4. The equalization of images filtered with Gaussian Filter method and several 

neighborhood/radius sizes. 
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Figure 5. The equalization of images filtered with Opening+Closing Morphological Filter method 

and several neighborhood/radius sizes. 
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Figure 6. The equalization of images filtered with Closing+Opening Morphological Filter method 

and several neighborhood/radius sizes. 
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Figure 7. The equalization of images filtered with Wiener Filter method and several 

neighborhood/radius sizes. 
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Figure 8. The equalization of images filtered with ES + VQBF method and several 

neighborhood/radius sizes. The number of classes is constant (c=16). 
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Figure 9. The equalization of images filtered with ES + VQBF method and several neighborhood 

/ radius sizes. The number of classes is determined automatically by the Evolution Strategy 

(number of classes obtained from left to right: 24, 21, and 22). 

 

 
Figure 10. Borders detected in the original image (threshold 32). 
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Figure 11. Borders of images filtered with Median Filter method and several neighborhood/radius 

sizes (threshold 16). 
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Figure 12. Borders detected in the images filtered with Gaussian Filter method and several 

neighborhood/radius sizes (threshold 12). 
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Figure 13. Borders detected in the images filtered with Opening+Closing Morphological Filter 

method and several neighborhood/radius sizes (threshold 32). 
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Figure 14. Borders detected in the images filtered with Closing+Opening Morphological Filter 

method and several neighborhood/radius sizes (threshold 32). 
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Figure 15. Borders detected in the images filtered with Wienner Filter method and several 

neighborhood/radius sizes (threshold 12). 

 

   
3x3 5x5 7x7 

Figure 16. Borders detected in the images filtered with ES + VQBF method and several 

neighborhood/radius sizes. The number of classes is constant c=16 (threshold 32). 
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Figure 17. Borders detected in the images filtered with ES + VQBF method and several 

neighborhood / radius sizes. The number of classes determined by the Evolution Strategy 

(threshold 32). 

 

 


