A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification

Devis Tuia, *Member, IEEE*, Michele Volpi, *Student Member, IEEE*, Loris Copa, Mikhail Kanevski, and Jordi Muñoz-Marí

Overview

- Defining an efficient **training set** → Fundamental phase for classification
- Active learning aims at building efficient training sets by iteratively improving the model performance through sampling.
- A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty
- This paper reviews and tests the main families of active learning algorithms:
 - 1. committee,
 - 2. large margin,
 - 3. posterior probability-based

1. CONCEPTS AND DEFINITIONS

Algorithm 1: General active learning algorithm

```
Inputs
```

- Initial training set $X^{\epsilon} = \{\mathbf{x}_i, y_i\}_{i=1}^l \ (X \in \mathcal{X}, \epsilon = 1).$ Pool of candidates $U^{\epsilon} = \{\mathbf{x}_i\}_{i=l+1}^{l+u} \ (U \in \mathcal{X}, \epsilon = 1).$
- Number of pixels q to add at each iteration (defining the batch of selected pixels S).
- 1: repeat
- 2: Train a model with current training set X^{ϵ} .
- 3: for each candidate in U^{ϵ} do
- Evaluate a user-defined *heuristic*
- 5: end for
- Rank the candidates in U^{ϵ} according to the score of the heuristic
- 7: Select the q most interesting pixels. $S^{\epsilon} = \{\mathbf{x}_k\}_{k=1}^q$
- The user assigns a label to the selected pixels. $S^{\epsilon} = \{\mathbf{x}_k, y_k\}_{k=1}^{T}$
- 9: Add the batch to the training set $X^{\epsilon+1} = X^{\epsilon} \cup S^{\epsilon}$.
- Remove the batch from the pool of candidates $U^{\epsilon+1} = U^\epsilon \backslash S^\epsilon$
- 11: $\epsilon = \epsilon + 1$
- until a stopping criterion is met.

2. COMMITTEE-BASED ACTIVE LEARNING

The first family of active learning methods quantifies the uncertainty of a pixel by considering a committee of learners.

1. Normalized Entropy Query-by-Bagging

K training sets built on a draw with replacement of the original data are defined. These draws account for a part of the available labeled pixels only. Then, each set is used to train a classifier and to predict the labels of the candidates.

$$\hat{\mathbf{x}}^{nEQB} = \arg\max_{\mathbf{x}_i \in U} \left\{ \frac{H^{BAG}(\mathbf{x}_i)}{\log(N_i)} \right\}$$
(1)

where

$$H^{\text{BAG}}(\mathbf{x}_i) = -\sum_{\omega=1}^{N_i} p^{\text{BAG}}(y_i^* = \omega \mid \mathbf{x}_i) \log \left[p^{\text{BAG}}(y_i^* = \omega \mid \mathbf{x}_i) \right]$$
(2)

where

$$p^{\text{BAG}}(y_i^* = \omega \mid \mathbf{x}_i) = \frac{\sum_{m=1}^k \delta(y_{i,m}^*, \omega)}{\sum_{m=1}^k \sum_{j=1}^{N_i} \delta(y_{i,m}^*, \omega_j)}.$$

2. COMMITTEE-BASED ACTIVE LEARNING

Adaptive Maximum Disagreement (AMD)

When confronted to high dimensional data, it may be relevant to construct the committee by splitting the feature space into a number of subsets, or *views*.

$$\hat{\mathbf{x}}^{\text{AMD}} = \arg \max_{\mathbf{x}_i \in U} H^{\text{MV}}(\mathbf{x}_i)$$
 (3)

where the multiview entropy H^{MV} is assessed over the predictions of classifiers using a specific view v:

$$H^{\text{MV}}(\mathbf{x}_i) = -\sum_{\omega=1}^{N_i} p^{\text{MV}} \left(y_{i,v}^* = \omega \mid \mathbf{x}_i^v \right) \times \log \left[p^{\text{MV}} \left(y_{i,v}^* = \omega \mid \mathbf{x}_i^v \right) \right]$$
(4)

where

$$p^{\text{MV}}(y_i^* = \omega \mid \mathbf{x}_i^v) = \frac{\sum_{v=1}^{V} W^{\epsilon - 1}(v, \omega) \delta(y_{i,v}^*, \omega)}{\sum_{v=1}^{V} \sum_{i=1}^{N_i} W^{\epsilon - 1}(v, \omega)}$$

The second family of methods is specific to margin-based classifiers (SVM)

The distance of a sample x_i from the SVM hyperplane is given by

$$f(\mathbf{x}_i) = \sum_{j=1}^{n} \alpha_j y_j K(\mathbf{x}_j, \mathbf{x}_i) + b$$

1. Margin Sampling (MS)

$$\hat{\mathbf{x}}^{\text{MS}} = \arg\min_{\mathbf{x}_i \in U} \left\{ \min_{\omega} |f(\mathbf{x}_i, \omega)| \right\}$$

2. Multiclass Level Uncertainty (MCLU)

$$\hat{\mathbf{x}}^{\text{MCLU}} = \arg\min_{\mathbf{x}_i \in U} \left\{ f(\mathbf{x}_i)^{\text{MC}} \right\}$$
 (8)

where

$$f(\mathbf{x}_i)^{\mathrm{MC}} = \max_{\omega \in N} f(\mathbf{x}_i, \omega) - \max_{\omega \in N \setminus \omega^+} f(\mathbf{x}_i, \omega)$$
(9)

3. Significance Space Construction (SSC)

The support vector coefficients are used to convert the multiclass classification problem into a binary support vector detection problem. This second classifier predicts which pixels are likely to become support vectors:

$$\hat{\mathbf{x}}^{\text{SSC}} = \arg_{\mathbf{x}_i \in U} f^{\text{SSC}}(\mathbf{x}_i) > 0. \tag{10}$$

Once the candidates more likely to become support vectors have been highlighted, a random selection among them is done.

4. On the Need for a Diversity Criterion

■ The heuristic, called "most ambiguous and orthogonal" (MAO) is iterative: starting from the samples selected by MS, , this heuristic iteratively chooses the samples minimizing the highest values between the candidates list and the samples already included in the batch .

$$\hat{\mathbf{x}}^{\text{MAO}} = \arg\min_{\mathbf{x}_i \in U^{\text{MS}}} \left\{ \max_{\mathbf{x}_j \in S} K(\mathbf{x}_i, \mathbf{x}_j) \right\}.$$

the MAO criterion is combined with the MCLU uncertainty estimation in the "multiclass level uncertainty—angle based diversity" (MCLU-ABD) heuristic.

$$\hat{\mathbf{x}}^{\text{MCLU-ABD}} = \arg\min_{\mathbf{x}_i \in U^{\text{MCLU}}} \left\{ \lambda f(\mathbf{x}_i)^{\text{MC}} + (1 - \lambda) \max_{\mathbf{x}_j \in S} \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{\sqrt{K(\mathbf{x}_i, \mathbf{x}_i)K(\mathbf{x}_j, \mathbf{x}_j)}} \right\}$$
(12)

where $f(\mathbf{x}_i)^{\text{MC}}$ is the multiclass uncertainty function defined by (9).

4. On the Need for a Diversity Criterion

Constraining the MS solution to pixels associated to different closest support

$$\hat{\mathbf{x}}^{\text{cSV}} = \arg\min_{\mathbf{x}_i \in U^{\text{MS}}} \{ |f(\mathbf{x}_i, \omega)| | cSV_i \not\in cSV_{\theta} \}$$
 (13)

where $\theta = [1, \dots, q-1]$ are the indices of the already selected candidates and cSV is the set of selected closest support vectors.

Finally, diversity can be ensured using clustering in the feature space

$$\hat{\mathbf{x}}^{\text{MCLU-ECBD}} = \arg\min_{\mathbf{x}_i \in c_m} \{ f(\mathbf{x}_i)^{\text{MC}} \},$$

$$m = [1, \dots q], \quad \mathbf{x}_i \in U^{\text{MCLU}} \quad (14)$$

where c_m is one among the q clusters defined with kernel k-means.

4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING

- ☐ The third class of methods uses the estimation of posterior probabilities of class membership (i.e.,P(y|x)) to rank the candidates.
 - KL-Max

The first idea is to sample the pixels whose inclusion in the training set

$$\hat{\mathbf{x}}^{\text{KL-max}} = \arg \max_{\mathbf{x}_i \in U} \left\{ \sum_{\omega \in N} \frac{1}{(u-1)} \times \text{KL} \left(p^+(\omega \mid \mathbf{x}) \middle| \left| p(\omega \mid \mathbf{x}) \right) p(y_i^* = \omega \mid \mathbf{x}_i) \right\} \right.$$
(16)

where the condition $n_{c_m}^{bSV}=0$ ensures that the cluster queried does not contain any bounded support vector sampled at the previous iteration

4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING

B. Breaking Ties (BT)

Another strategy, closer to the idea of EQB presented in Section III-A, consists of building a heuristic exploiting the conditional probability of predicting a given label for each candidate.

In this case, the per-class posterior probability is assessed fitting a sigmoid function to the SVM decision function [50]:

$$p(y_i^* = \omega \mid \mathbf{x}_i) = \frac{1}{1 + e^{(Af(\mathbf{x}_i, \omega) + B)}}$$
(18)

$$\hat{\mathbf{x}}^{\text{BT}} = \arg\min_{\mathbf{x}_i \in U} \left\{ \max_{\omega \in N} \left\{ p(y_i^* = \omega \mid \mathbf{x}_i) \right\} - \max_{\omega \in N \setminus \omega^+} \left\{ p(y_i^* = \omega \mid \mathbf{x}_i) \right\} \right\}$$
(19)

4. DATASETS

Fig. 2. Images considered in the experiments: (top) ROSIS image of the city of Pavia, Italy (bands [56-31-6] and corresponding ground survey); (middle) AVIRIS Indian Pines hyperspectral data (bands [40-30-20] and corresponding ground survey); (bottom) QuickBird multispectral image of a suburb of the city of Zurich, Switzerland (bands [3-2-1] and corresponding ground survey).

Grupo de Inteligencia Computacional

5. EXPERIMENTAL SETUP

- ☐ In the experiments, **SVM classifiers with RBF kernel** and LDA classifiers have been considered for the experiments.
- ☐ When using SVM, free parameters have been optimized by **five-fold cross validation** optimizing an accuracy criterion.
- ☐ The active learning algorithms have been run in two settings, adding N+5 and N+20 pixels per iteration.

6. NUMERICAL RESULTS

5. CONCLUSION

☐ A series of heuristics have been classified by their characteristics into three families.

- ☐ Active learning has a strong potential for remote sensing data processing.
- ☐ Some recent examples can be found in the active selection of unlabeled pixels for semi-supervised classification.