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Overview

= Defining an efficient training set 2 Fundamental phase for classification

= Active learning aims at building efficient training sets by iteratively improving the
model performance through sampling.

= A user-defined heuristic ranks the unlabeled pixels according to a function of the
uncertainty

= This paper reviews and tests the main families of active learning algorithms:
1. committee,
2. large margin,

3. posterior probability-based



Algorithm 1: General active learning algorithm

Inputs
— Initial training set X¢ = {}{g,g{g L (XeX. e=1).
— Pool of candidates U* = {x;},'}', | (T € X, e = 1).
— Number of tpixﬂls g to add at each iteration (defining
the batch of selected pixels S).

repeat
rain a model with current training set X*.
for each candidate in /¢ do
Evaluate a user-defined heuristic
end for
Rank the candidates in [* according to the score
of the heuristic
Select the g most interesting pixels. S¢ = {x; }7_,;
The user assigns a label to the selected pixels.
5% = {Xps Yr tiey
9:  Add the batch to the training set X*! = X* U §°.
10:  Remove the batch from the pool of candidates
[7E+l — [);rvz'g.l QE
11: e=¢c+1
12: until a stopping criterion is met.

e Skl
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2. COMMITTEE-BASED ACTIVE LEARNING

The first family of active learning methods quantifies the uncertainty
of a pixel by considering a committee of learners.

1. Normalized Entropy Query-by-Bagging

K training sets built on a draw with replacement of the original data are defined. These

draws account for a part of the available labeled pixels only. Then, each set is used to
train a classifier and to predict the labels of the candidates.

BAG (.
)A{nEQB _ H (X?«) } (1)

— SN { log(N;)

where

HBAG (X%)
N;
= — pBAC' (y:‘ =w | xi)log [pBAC'(yf —w | Xz)} (2)
w=l1
where
k
\ 4 0(yr, w
pB;—\G (y: = w | Xz’) — Z'm_‘_l (Jz:m )
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2. COMMITTEE-BASED ACTIVE LEARNING

2. Adaptive Maximum Disagreement (AMD)

When confronted to high dimensional data, it may be relevant to
construct the committee by splitting the feature space into a
number of subsets, or views.

%MD — arg max H™W (x;) (3)
X, el

. I\ - .
where the multiview entropy H™V is assessed over the predic-
tions of classifiers using a specific view v:

N;
B () = =3 0™ (i, =w | x7)

w=1

xlog [ (yi, =w|x()] @

where

\% re_
qu:]_ Wet ('Ua w)é(yiv ’ w)
Vv N; Te—
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3. LARGE-MARGIN-BASED ACTIVE LEARNING

The second family of methods is specific to margin-based
classifiers (SVM)

The distance of a sample x; from the SVM hyperplane is given by

f(xi) =) gy K(x;,%i) +b

7=l

1. Margin Sampling (MS)

4MS _ 1 1 ;
08 sy 0]

2. Multiclass Level Uncertainty (MCLU)
*MCLU _ arg }Icllé]f[l {f(xi)MC} (8)

where

MC
i = W) — i (9
f(xi) max f(x;,w) L f(xi;w) )



3. LARGE-MARGIN-BASED ACTIVE LEARNING

3. Significance Space Construction (SSC)

The support vector coefficients are used to convert the multiclass classification
problem into a binary support vector detection problem. This second classifier
predicts which pixels are likely to become support vectors:

x35€ = argy, cv f »C(x;) > 0. (10)

Once the candidates more likely to become support vectors
have been highlighted, a random selection among them is done.



3. LARGE-MARGIN-BASED ACTIVE LEARNING

4. On the Need for a Diversity Criterion

The heuristic, called “most ambiguous and orthogonal” (MAO) is iterative: starting from the
samples selected by MS, , this heuristic iteratively chooses the samples minimizing the
highest values between the candidates list and the samples already included in the batch .

£MAQ — arg min  { max K(x;,X;) ¢ .
X € UMS | x 7 £S5

the MAO criterion is combined with the MCLU uncertainty estimation in the “multiclass level
uncertainty—angle based diversity” (MCLU-ABD) heuristic.

ﬁf\-‘IC;LL —ABD = arg min A\ f(xz ):\-'IC,- +
x, EU/MCLU

y

(1 — A)max K, %)) (12)
X;ES \/f((}{iﬁ Xi)K(Xj!' X;f)

where f (xi)}‘ic is the multiclass uncertainty function defined
by (9).



3. LARGE-MARGIN-BASED ACTIVE LEARNING

4. On the Need for a Diversity Criterion

=  Constraining the MS solution to pixels associated to different closest support

XV =arg min {|f(x;,w)||eSV; & ¢SVp} (13)

X E L.'_ Mz

where @ = [1,...,q — 1] are the indices of the already selected
candidates and ¢SV is the set of selected closest support vectors.

=  Finally, diversity can be ensured using clustering in the feature space

il’IC?LU—EC?BD = arg Hglﬂ {f(x?;)l’m},,
XiZCm

m=1[1,...q], x;€UMLU (14

where ¢, 1S one among the ¢ clusters defined with kernel
k-means.
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4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING

[ The third class of methods uses the estimation of posterior
probabilities of class membership (i.e.,P(y/x) ) to rank the
candidates.

= KL-Max
The first idea is to sample the pixels whose inclusion in the training set
1
sKL—max
X = arg max <
S x.er ; (u—1)

xKL (p*(w X)||p(w|x))p(y§‘—w|xi)} (16)

where the condition ngi V' = 0 ensures that the cluster queried

does not contain any bounded support vector sampled at the
previous iteration



4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING

= B. Breaking Ties (BT)

Another strategy, closer to the idea of EQB presented in Section IlI-A,
consists of building a heuristic exploiting the conditional probability of

predicting a given label for each candidate .

In this case. the per-class pos-
terior probability is assessed fitting a sigmoid function to the
SVM decision function [50]:

1

Py =w| %) = T i B (18)

7 = ans iy {00 = |0}

— dax {ply; =w | xi)}} (19)



4. DATASETS

o

Quic

Fig.2. Images considered in the experiments: (top) ROSIS image of the city of
Pavia, Italy (bands |56 — 31 — 6] and corresponding ground survey): (middle)
AVIRIS Indian Pines hyperspectral data (bands [10 — 30 — 20| and corre-
sponding ground survey): (bottom) QuickBird multispectral image of a suburb
of the city of Zurich, Switzerland (bands [} — 2 — 1| and corresponding ground
survey).
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5. EXPERIMENTAL SETUP

dIn the experiments, SVM classifiers with RBF kernel
and LDA classifiers have been considered for the
experiments.

JWhen using SVM, free parameters have been
optimized by five-fold cross validation optimizing an
accuracy criterion.

JThe active learning algorithms have been run in two
settings, adding N+5 and N+20 pixels per iteration.
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5. CONCLUSION

A series of heuristics have been classified by their
characteristics into three families.

J Active learning has a strong potential for remote
sensing data processing.

JSome recent examples can be found in the active
selection of unlabeled pixels for semi-supervised
classification.



