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 Defining an efficient training set Fundamental phase for classification 

 Active learning aims at building efficient training sets by iteratively improving the 
model performance through sampling. 

 A user-defined heuristic ranks the unlabeled pixels according to a function of the 
uncertainty 

 This paper reviews and tests the main families of active learning algorithms:  

1. committee,  

2. large margin,  

3. posterior probability-based 
 

 

 

 

 

 



1. CONCEPTS AND DEFINITIONS  
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2. COMMITTEE-BASED ACTIVE LEARNING 

The first family of active learning methods quantifies the uncertainty 
of a pixel by considering a committee of learners. 

1. Normalized Entropy Query-by-Bagging  

 K training sets built on a draw with replacement of the original data are defined. These 

draws account for a part of the available labeled pixels only. Then, each set is used to 
train a classifier and to predict the labels of the candidates. 
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2. COMMITTEE-BASED ACTIVE LEARNING 

2. Adaptive Maximum Disagreement (AMD) 

 When confronted to high dimensional data, it may be relevant to 
construct the committee by splitting the feature space into a 
number of subsets, or views. 
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3. LARGE-MARGIN-BASED ACTIVE LEARNING 

The second family of methods is specific to margin-based 
classifiers (SVM) 

The distance of a sample xi from the SVM hyperplane is given by 

 

 

1. Margin Sampling (MS) 
 

 

2. Multiclass Level Uncertainty (MCLU) 
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3. LARGE-MARGIN-BASED ACTIVE LEARNING 

3. Significance Space Construction (SSC) 
 The support vector coefficients are used to convert the multiclass classification 

problem into a binary support vector detection problem. This second classifier 
predicts which pixels are likely to become support vectors: 
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3. LARGE-MARGIN-BASED ACTIVE LEARNING 

4. On the Need for a Diversity Criterion 
 The heuristic, called “most ambiguous and orthogonal” (MAO) is iterative: starting from the 

samples selected by MS, , this heuristic iteratively chooses the samples minimizing the 
highest values between the candidates list and the samples already included in the batch . 

 

 

 

 

 the MAO criterion is combined with the MCLU uncertainty estimation in the “multiclass level 
uncertainty—angle based diversity” (MCLU-ABD) heuristic. 
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3. LARGE-MARGIN-BASED ACTIVE LEARNING 

4. On the Need for a Diversity Criterion 
 Constraining the MS solution to pixels associated to different closest support 

vectors 

 

 

 

 

 

 

 Finally, diversity can be ensured using clustering in the feature space 
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4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING 

 The third class of methods uses the estimation of posterior 
probabilities of class membership (i.e.,P(y∣x) ) to rank the 
candidates. 
 KL-Max 

 The first idea is to sample the pixels whose inclusion in the training set 
would maximize the changes in the posterior distribution. 
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4. POSTERIOR PROBABILITY BASED ACTIVE LEARNING 

 B. Breaking Ties (BT) 

 Another strategy, closer to the idea of EQB presented in Section III-A, 
consists of building a heuristic exploiting the conditional probability of 
predicting a given label for each candidate . 
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4. DATASETS 
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5. EXPERIMENTAL SETUP 

In the experiments, SVM classifiers with RBF kernel 
and LDA classifiers have been considered for the 
experiments. 

When using SVM, free parameters have been 
optimized by five-fold cross validation optimizing an 
accuracy criterion.  

The active learning algorithms have been run in two 
settings, adding N+5 and N+20 pixels per iteration. 
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6. NUMERICAL RESULTS 
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5. CONCLUSION 

A series of heuristics have been classified by their 
characteristics into three families. 

 

Active learning has a strong potential for remote 
sensing data processing. 

 

Some recent examples can be found in the active 
selection of unlabeled pixels for semi-supervised 
classification. 
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