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Abstract: In this paper we study the sensitivity of the Self Organizing Map to
several parameters in the context of the one-pass adaptive computation of
cluster representatives over non-stationary data. The paradigm of Non-
stationary Clustering is represented by the problem of Color Quantization of
image sequences.

O Introduction

Cluster analysis and Vector Quantization have applications in signal processing, pattern
recognition, machine learning and data analysis [1,2,3,4,5,6]. A vast number of approaches have
been proposed to solve these problems, among them Competitive Neural Networks [7,8,9].
Conventional formulations assume that the underlying stochastic process is stationary and that a
given set of sample vectors properly characterizes this process. Non-stationary processes are
dealed with applying a predictive approach to reduce the non-stationary problems to the
stationary framework [1]. This paper continues a line of work [10, 19] that consist in the
exploration of the efficiency of competitive neural networks as one-pass adaptive algorithms for
the computation of clustering representatives in the non-stationary case whithout knowledge of a
time dependence model. This paper and [19] focus on the Self Organizing Map (SOM) [9]. The
one-pass adaptation framework is not very common in the neural networks literature, in fact the
only related recent reference that we have found is [18]. This restriction imposes very strong
computational limitations. The effective scheduled sequences of the learning parameters applied
to meet the fast adaptation requirement fall far from the theoretical conditions for convergence. A
sensitivity analysis is justified in order to asses the behaviour of the SOM under a wide range of
conditions and parameter values.

We have found that Color Quantization of image sequences is a privileged instance of the Non-
stationary clustering problem. Nevertheless Color Quantization has a strong appealing by itself
for his practical applications in visualisation [11,12,13], color image segmentation [14], data
compression [15] and image retrieval [16]. In the context of Color Quantization of image
sequences, one-pass adaptation is naturally enforced by the real time constraints of the
processing of each image whithin the sequence.

Section 1 gives a review of the application of the SOM to the one-pass adaptive computation of
cluster representatives in the general Non-stationary Clustering problem Section 2 discusses the
experimental results obtained. Finally, section 3 gives some conclusions and further work

+ This work is being supported by the Dpto. de Economia of the Excma. Diputacion de
Guipuzcoa and the Dept. Educacion, Univ. e Inv. of the Gobierno Vasco, under projects P194-78,
UE96/9, and a predoctoral grant for A.l. Gonzalez



1 Adaptive application of SOM to Non-stationary Clustering

Conventional formulations of Cluster analysis assume that the data X = {Xl,..,Xn} is a sample of

an stationary stochastic process, whose statistical characteristics will not change in time. Our
approach to Non-stationary Clustering assume that the data come from a non-stationary
stochastic process that is sampled at diverse time instants. That is, the population can be

modelled by a discrete time stochastic process {Xt t=0, 1,..} of unknown joint probability

distribution. We do not assume any knowledge of the time dependencies that could allow a
predictive approach [1].
A working definition of the time varying Clustering problem could read as follows: Given a

sequence of samples R(¢) = {Xl(t), WX n(t)} of the population obtain a corresponding sequence of
partitions of each sample that consists of a sequence of sets of disjoint clusters
P {Nl yees R (t)} . This sequence of partitions minimizes a criterium function

C= E 120 . In the general statement of the problem the difinition of the criterium function is
based on the defrnrtron of an appropriate distance. We follow the conventional approach of using

the Euclidean distance. We consider a sequence of representatives Y(¢) = {yl(t), Yy C(t)} such
that the desired partitions are defined by the nearest (Euclidean) representative.

x;(1) EX(1) = i= a]rgm? {"X](f) - Yk(t)"z}

The criterium function that we will consider at each time step is, therefore, the so-called
distortion (or whithin cluster variance)
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The schema of the adaptive computation of the cluster representatives along time can be stated as
follows: At time t take as initial cluster representatives the ones already computed from the

sample of the process at time t-1. Use the sample vectors R(z {xl S ¢ } to perform an

adaptive computation leading to the new estimates of the cluster representatrves The adaptive
computation proposed in this paper is the Self Organizing Map (SOM).

For notational simplicity, let us denote X = {xl,. . n} the sample of the process at a given time
instant. The SOMis a particular case of the general Competitive Neural Network algorithm: :

yi(t+1) = ¥;(0) + () 9,(x(0), Y(v)) [x(v) - yi(0)] : x()EXI=i=c 2

where T is the order of presentation of the sample vectors. One-pass adaptation means that each
sample vector will only appear once in the sequence of presentations implied by (2). In their
general statement, Competitive Neural Networks are designed to perform stochastic gradient
minimisation of a distortion-like function. In order to guarantee theoretical convergence, the

(local) learning rate o;(t) must cope with the conditions:

lim a(t) =0, Eioa(r)= o, and E:zoocz(r)< % 3)

T—>0

However, these conditions imply very lengthy adaptation processes, which do not agree with the
"one pass" adaptation constraint. In the experiments, the learning rate follows the expression :



3 8(x(k). Y (k)

n

ai(r)=0.1[1— 4)

were 8.,(x,Y) follows the definition given in (1). This expression implies that the learning rate

decreases proportionally to the number of times that a codevector "wins" the competition. The
adaptation induced by the neighbouring function does not alter the local learning rate. The
expression (4) also implies that a local learning rate only reaches the zero value if the codevector
"wins" for all the sample vectors. This expression of the learning rate is the best we have found
that fits in the one-pass adaptation framework. Obviously the sequences of the learning rate
parameters given by (4) do not comply with the conditions (3) that ensure the theoretical
convergence of the stochastic gradient minimization algorithm.

The function &,(x,Y) is the so-called neighbouring function . According to its definition, the
shape of the minimized distortion function and, therefore, the qualitative properties of the
learning rule equilibria can be very different. In the case of the SOM the neighbouring function is
defined over the space of the neuron (cluster) indices. In our works we have assumed a 1D
topology of the cluster indices. The neighbourhoods considered decay exponentially following
the expression:

1 |w-i= ’-(Uo + 1)exp(U(0)r lOg(I/(U(, + 1))/11)" .

d=<isc

0 otherwise 5)

9, (x(1). Y(7)) =

w= argmin{lx(r) -y, (17)||2k - 1,..,c}

The size of the sample considered at each time instant is n. The initial neighbourhood radius is
v,. The expression ensures that the neighbouring function reduces to the simple competitive case

(null neighbourhood) after the presentation of the first 1/ v vectors of the sample. Along the
experiments we have called v the neighbourhood reduction rate. .

2 Experimental results on the Color Quantization of an image
sequence

The sequence of images used for the computational experiments is a panning of the laboratory
taken with an electronic camera. Original images have an spatial resolution of 480x640 pixels.
Each two consecutive images overlap 50% of the scene. Figure 1 shows the distribution of the
pixels in the RGB unit cube for each image in the sequence and gives an straight impression of
the non-stationary nature of the data we are dealing with.

As a benchmark non adaptive algorithm we have used a variation of the algorithm proposed by
Heckbert [11] as implemented in MATLAB. This algorithm has been applied to the entire images
in the sequence under stationary and non-stationary assumptions. Figure 2 shows the distortion
results of the Color Quantization of the experimental sequence to 16 and 256 colors based on

both applications of the Heckbert algorithm. The curve {C "(t)t=1,.., 24}, named Time Varying
Min Var in the figure, is produced assuming the non-stationary nature of the data and applying
the algorithm to each image independently. The curve {C T(t)t=1,.., 24} , named Time Invariant

Min Var in the figure, comes from the assumption of stationarity of the data: the color
representatives obtained for the first image are used for the Color Quantization of the remaining
images in the sequence. The gap between those curves gives another indication of the non



stationarity of the data. Also this gap defines the response space left for truly adaptive
algorithms. All the figures giving distortion results for the experimental sequence will include
these two curves as a reference frame.

The adaptive application of the SOM assumes that the adaptation process starts with the second
image, taking as initial cluster representatives the assumed color representatives for the first
image. In the two first experiments the initial codebook was the Heckbert palette for the first
image. The adaptation is performed over a random sample of the pixels of each image. In the
experiments that foloow, we have tried to explore the sensitivity of the SOM to the following
parameters: number of clusters (codebook size), size of the sample taken from each image,
neighbouring function parameters: neighbourhood initial size and reduction rate, and, finally, the
initial color representatives of the whole process (the assumed color representatives of the first
image). The scheduling of the learning rate remains the same through all the experiments.

The first experiment tries to evaluate the sensitivity of the SOM to the sample size and the
number of cluster representatives (codebook size) searched. Two codebook sizes have been
considered 16 and 256 colors. The neighbouring function parameters were reasonably set to:

v,=1 and v =4 for 16 colors, and v, =8 and v = 4 for 256 colors. Figure 3 shows the

results of the SOM for several sample sizes. These results consist of the sequence of distortions
over the image sequence of the Color Quantization using the color representatives computed
adaptively by the SOM over the image samples. The first general conclussion that can be drawn
from this figure is that the SOM performs adaptively under a wide variety of conditions, but that
it is clearly sensitive to the sample size. A closer inspection of the figure leads to the conclussion
that the SOM is highly sensitive to the number of color representatives (clusters) searched. The
sample sizes 100 for 16 colors and 1600 for 256 have the same ratio of sample size to codebook
size (roughly 6:1). However, the response of the SOM in either case is qualitatively very
different, it is clearly worse in the 256 colors codebook case. In the case of the the 16 color
codebook, as the sample size grows, the distortion curves overlap very fast in near optimal
results. In the case of 256 colors this convergence to near optimal results (as the sample size
grows) is very smooth. The influence of the sample size seems to be stronger in the 256 colors
codebook case. Finally, if we consider the highest sample:codebook ratio that appears in both
figures (100:1), we note that the response in the 16 colors codebook case is qualitatively better
than in the 256 colors codebook case. Our main conclussion from this first experiment is that the
codebook size is the prime factor in the performance of the SOM. Once the codebook size is
fixed, the size of the sample used for the one-pass adaptation can be a very sensitive performance
factor.

The second experiment was intended to explore the sensitivity of the SOM to the neighbouring

function parameters: the initial neighbourhood v, and the neighbourhood reduction rate v,

Not all the combinations of codebook and sample size tested in fig 3 are retried in this
experiment. The measure of the behaviour of the color quantizers computed by the SOM is the
accumulated distortion along the entire image sequence. This measure was computed from the
samples instead of the entire images (the magnitudes of the errors can not be compared between
surfaces). This simplification is justified because we are interested in the qualitative shape of the
response surface, and because we have observed that the distortion of the color quantization of
the entire image is proportional to that of the of the sample. The values of the neighbouring
reduction factor tested were {1,2,3,4,5,8} and {1.25,1.3,1.5,2,3,4} in the case of 16 and 256
colors, respectively. The initial neighbourhoods considered were {1,2,3,4,5,8} and
{2,8,16,32,64,128} in the case of 16 and 256 colors, respectively. Figures 4 and 5 show the
results, and table 1 summarizes the experimental design. Shown in the figures are both the
response surfaces (figs 4a,4c,4e,5a,5¢) and the projections on the experiment axes (figs
4b,4d,4£,5b,5d).

Sample size




codebook 100 400 1600 | 4096 | 6400 [ 12800 [ 25600
16 surface | figda | figdc | figde
project. | figdb | figdd | fig4f -- -- -—- --
256 surface fig Sa fig5c
project. -- -- fig 5b -- -- -- fig 5d

Table 1. Summary of the neighbouring function sensitivity experiment results

The study of figures 4 and 5 confirm the previous assertion of the importance of codebook and
sample size. The sensitivity of the SOM to the setting of the neighbouring function parameters
varies strongly with them. In the case of the smaller sample:codebook ratio (6:1) (figs 4a, 5a) the
response surface has a counter intuitive shape. It appears that for this ratio the best results are
obtained with the smaller initial neighbourhoods. This result may be due to fluctuations produced
during the reordering phase of the SOM by the combined effect of the sparse distribution of the
small sample and the relatively big initial neighbourhood. For a more sensible ratio (100:1),
whose results are shown in figs 4e and Sc, the response surface has a more natural shape giving
the best results for the largest initial neighbourhood. The comparison of figs 4c and 4e confirms
the quick convergence of the SOM to the optimal behaviour as the sample:codebook ratio grows,
in the case of 16 colors. The examination in both figures 4 and 5 of the projections of the
surfaces reveals a very clear trend for the neighbourhood reduction rate. In general, a reduction
factor such that the neighbourhood disappears after presentation of one quarter of the sample
gives the best results in all the cases. After codebook and sample size, the neighbouring reduction
rate seems to be the next significant performance factor. With all the other performance factors
set to appropriate values, the optimal values of the initial neighbourhood are the largest ones.

The last experiment conducted was the exploration of the sensitivity to the initial codebooks. As
said before, the previous experiments were conducted starting the adaptive process in the second
image of the sequence, assuming the initial codebook to be the Heckbert palette (Matlab) for the
first image. In figures 6 and 7 it is shown the response of the SOM to other settings of the initial
codebook: a threshold based selection of the sample of image #1 (Thresh), random points in the
RGB cube (RGBbox) and a random selection of the sample of image #1 (Sample). For 16 colors

the SOM parameters were: sample size 1600, v, =1, and v = 4 . For 256 colors sample size

was 25600, v, =128, and v-4. Figures 6a,7a,7c show the distortion along the image
sequence of experimental images together with the benchmark results. Let us denote

{C M) t=1,.., 24} the sequence of distortion values obtained from the color quantizers

computed by the SOM starting from a given initial codebook. Figures 6b,7b,7d show these
sequences relative to the error committed when assuming stationarity, that is for each initial

condition we plot:
(@) -c™)c()-c (0)ir=1...24}

Figure 6 shows that the SOM is quite insensitive to initial conditions for small codebooks.
However figs 7a,b show a rather high sensitivity to the initial codebook. The obvious hypothesis
for this degradation is that our one-pass implementation of the SOM can not perform properly the
self-organization phase when the codebook size is relatively large. To test this idea, we have
applied a simple ordering by components to the codebooks before starting the adaptation with the
SOM. The results are shown in figs 7c,d. Given a good ordering of the initial cluster
representatives, the SOM becomes insensitive to initial conditions regardless of codebook size.
We can conclude that the our one-pass SOM is capable of performing fast self-organization in
the case of small codebooks, but as the size of the codebook grows it becomes very sensitive to
the bad ordering of the initial cluster representatives. The strong influence of the network size
(the number of clusters) extends to the ability of our one-pass SOM to recover from bad initial
topological orderings of the neurons that incorporate the cluster representatives.

4 Conclusions and further work



This work has explored the sensitivity of the Self Organizing Map as a one-pass adaptive
algorithm for the computation of cluster representatives in the framework of Non stationary
Clustering problems. From an experimental point of view, we have found that the paradigm of
Non-stationary Clustering is summarized in the problem of Color Quantization of image
sequences. The experiments show that the SOM is a very robust algorithm for the one-pass
adaptive computation of cluster representatives in the non-stationary case.The detailed sensitivity
experiments reported here are motivated by the fact that the SOM has given the best results so far
for this task. In the sensitivity experiments, we have found that the SOM is highly sensitive to
the number of clusters searched, that is, to the size of the network to be adapted. The number of
clusters searched impose restrictions on the size of the sample used. These two problem
parameters condition the response of the SOM to changes in the neighbouring function
parameters. Finally, when the SOM is quite insensitive to initial conditions, for small codebook
sizes. For larger codebooks, our one-pass SOM is sensitive to the topological ordering of the
initial cluster representatives. An extensive and comprehensive report on the application of
several neural network and evolutionary approaches to one-pass adaptive Color Quantization of
image sequences is on the way.
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Figure 1 Distribution of pixel color for the images in experimental sequence
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Figure 2. Benchmark distortion values obtained with the application of the Matlab
implementation of the Heckbert algorithm to compute the color quantizers of 16 (2a) and 256
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Figure 4- Sensitivity to the neighbouring function parameters v and ”U(O) of the SOM applied to

compute the color quantizers of 16 colors. (see table 1), measured by the accumulated distortion
along the experimental sequence
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Figure 6 Distortion of the color quantizers of 16 colors computed by the adaptive application of
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Figure 7 Distortion of the color quantizers of 256 colors computed by the adaptive application of
the SOM starting from several intial cluster representatives (sensitivity to initial conditions) 7a,b
unprocessed initial cluster representatives, 7c,d the same initial cluster representatives ordered
before starting the adaptation process



