
5

On Content-Based Image Retrieval Systems For

Hyperspectral Remote Sensing Images

Miguel A. Veganzones, José Orlando Maldonado, Manuel Graña

Computational Intelligence Group, UPV/EHU,
www.ehu.es/ccwintco

Summary. This chapter includes a review of some key elements of Content Based Image Retrieval Sys-
tems (CBIR). We place into this context the the works found in the literature regarding remote sensing
images. Our own focus is on hyperspectral images. The approach we are pursuing is that of characterizing
the spectral content of the image through the set of endmembers induced from it. We describe some ideas
and numerical experiments for a system that would perform CBIR on hyperspectral remote sensing images
. We propose a spectral image similarity to guide the search to answer the queries.

5.1 Introduction

The interest in fast and intelligent information retrieval systems over collections of remote
sensing images is increasing as the volume of the available data grows exponentially. For instance
a single in-orbit Synthetic Aperture Radar (SAR) sensor collects about 10 − 100 Gbytes of data
per day, giving about 10 Tbytes of imagery data per year. New sensing instruments can produce
an information amount of one order of magnitude higher than this. Current retrieval systems
offer to their users raw images, thematic maps and ancilliary data in response to very precise
queries requiring a detailed knowledge of the structure of the stored information. However there
is a growing need for more flexible ways to access the information based on the image computed
intrinsic properties, i.e. texture and induced semantic contents. In CBIR systems, the images
stored in the database are labeled by feature vectors, which are extracted from the images by
means of computer vision and digital image processing techniques. In CBIR systems, the query to
a database is specified by an image. The query’s feature vector is computed and the closest items
in the database, according to a similarity metric or distance defined in feature space, are returned
as the answers to the query. This is the low level, semantic free, definition of the CBIR systems,
that does not take into account the semantic gap between the user expectations and the system
response. We are specially interested in hyperspectral images and the ways to characterize them
for CBIR tasks.

The fields of applicability are extensive, geoscience tools are demanded for disasters prevision,
enviromental analysis, security. The investigation of new tools capable of predict, monitor and
assist in preparation of strategies to minimize the damage produced by natural and human-made
disasters, would contribute to a better quality of life and to the reduction of economical losses.
The ability to perform automatic and intelligent searches is a key tool for these goals. The field
of CBIR is already a mature area of research [33]. Some facts, like the Semantic Gap between
low level representations and high level semantic world models, have been acknowledged leading
to new design and research paradigms. A fruitful track of research and source of innovative ap-
proaches introduces user interaction to obtain some retrieval feedback that allows the building
and refinement of user world models [3, 7, 8, 13, 14,15, 16, 18,19, 20, 24, 25, 31,34, 36].

The attempts to define CBIR strategies for remote sensing hyperspectral images are scarce
and partial. In [1] the authors use the spectral mean and variance, as well as a texture feature
vector, to characterize hyperspectral image tiles. The approach searches for specific phenomena in
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the images (hurricanes, fires, etc), using an interactive relevance strategy that allows the user to
refine the search. In [7] some of the texture features from the first spectral PCA image are used
as feature vectors.

We propose the characterization of the hyperspectral images by their so-called endmembers.
Endmembers are a set of spectra that are assumed as vertices of a convex hull covering the
image pixel points in the high dimensional spectral space. Endmembers may be defined by the
domain experts (geologists, biologists, etc.) selecting them from available spectral libraries, or
induced from the hyperspectral image data using machine learning techniques. In [10,11] we have
proposed an automated procedure that induces the set of endmembers from the image, using AMM
to detect the morphological independence property, which is a necessary condition for a collection
of endmembers. The goal in [10,11] was to obtain a method for unsupervised hyperspectral image
segmentation. There the abundance images were of interest. In this paper, the goal is to obtain a
characterization of the image that can be useful for CBIR. The collection of endmembers serves
as a summary of the spectral information in the image.

In section5.2 we introduce some ideas about the general structure of CBIR systems, referring
them to the systems found in the literature of remote sensing images. In section 5.3 we present
some ideas about the evaluation of CBIR systems, discussing how systems found in the literature
have been validated. In section 5.4 we discuss our own ideas and proposal for a CBIR system based
on the spectral characterization of the images.

5.2 CBIR Systems Anatomy

A CBIR system is a query resolving system over image collections that use the information
inherently contained in the image. The CBIR system has to be able to extract quantitative features
from the images that allow the system to index the image collection and to compute a distance
between images. The simplest typical use of CBIR systems is described in figure 5.1. The user
interacts with the system by a querying interface, usually a web page, where the query is defined
and sent to the CBIR engine. In the process described by figure 5.1 the query is represented by an
image provided by the users, asking the CBIR system for a list of the most similar images in the
database. To resolve the query, the CBIR engine computes the image features which correspond
to a point in the metric space defined by the system. Each image in database has a representative
in this metric space so a distance to the query image could be computed for each image, using a
similarity (or disimilarity) function. This produces a list ordered by similarity (or disimilarity) to
the query image, that is presented to the user as response. In real world applications, computing the
distance to each and every image in the database has an unbereable cost. Therefore, the database is
indexed grouping the images into clusters. Then heuristic algorithms are used to retrieve the group
of most similar images. The retrieved images are inspected by the user, selecting the ones that
are relevant to his target search and those that are irrelevant. The sets of relevant and irrelevant
images are used to redefine the query so the features quantifying the query information fits better
the target in the mind of the user. The search is iterated until the set of retrieved images satisfies
the user’s expectatives.

From the previous description, it is natural to say that a CBIR system is composed of three
subsystems: the query definition, the feature extraction and the image retrieval. Query definition
is the proccess by which the user defines the query. It could be a graphical design interface or a web
page. It can be as simple as selecting an image or it can be more sofisticated, i.e. the user can select
regions of interest on the query image and interact with the retrieval proccess in a more expert
mode. The feature extraction is the proccess of quantifying image information as a collection of
low level characteristics, denoted as the feature vector. Image Retrieval encompasses the methods
that use the feature vectors to select from the database the images that satisfy the query, in the
sense of being the most similar ones. To prevent the Semantic Gap, the image retrieval may involve
the interaction with the user to improve the query in any way. We review some ideas about CBIR
systems, while omitting others, like the visualization function [33], which are not relevant to the
work in this chapter.
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Figure 5.1. Typical use of a CBIR system

5.2.1 Query definition and interaction

In image information retrieval defining the query may be a critical design issue. The most
common query specification method in CBIR search engines is the Query By Example(s), where
the query is represented by an example image (or a set of images) related to the search target.
The Page Zero Problem [38] arises when the user has not any image to start querying. When the
user is only interested in an specific region of the images, he may specify the query by selecting
a region of interest (ROI), which is known as the Query By Region(s). In the Query By Sketch,
the user can draw an sketch of the desired target to specify the query. Conventional Query By
Text could be usefull in situations where relevant information about images is collected as textual
metadata, as for example, geografical coordinates, time of adquisition or sensor type. Text may
be used as a complement to the visual query, or may solve the Page Zero Problem.

Formally, the Query Space [33]is the goal dependent 4-Tuple {DQ, FQ, SQ, ZQ} where:
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• DQ is the subset of active images from dataset collection D within which the retrieval system is
going to perform the search. For example, the user could select a subset of images belonging to
an specific sensor in a concrete date of adquisition instead of querying the full image collection.

• FQ is a selection of the quantitative image features FQ ⊂ F . Usually the user doesn’t have
the knowledge to select the most relevant features for resolving the query, and the system
automatically decides what features are going to be used.

• SQ is the similarity function. This similarity function should be parameterized to allow adapta-
tion to diverse goals and data sets. Very often the user is not capable of decide which similarity
function is the most appropiate for the formulated query and SQ is selected automatically by
the system.

• ZQ is a collection labels to capture the goal dependent semantic concepts. For example, if the
user wants to retrieve images containing rivers, ZQ could be defined as ZQ = {�water�,� river�}.
Conventional CBIR systems have not the capacity of incorporate semantic concepts to the
query resolving system, so they use exclusively the Feature Vector information as the criteria
for searching the query’s answer.

Queries can be specified either in an exact or approximate way. The exact specification requires
that the answer A (q) ⊆ IQ to the query contains the images satisfying certain criteria, which can
be given by some relational equations or propositions. The approximate specification requires that
the answer A (q) to the query provides the images ordered relative to the query satisfaction. Exact
specification may consist of spatial, image or group predicates. The approximate specification may
consist of spatial relations (skeetches) or image examples.

The interaction of the user with the system can be formalized as a sequence of Query Spaces�
Q1, . . . , Qn

�
. The transition between those query spaces is the effect of the user interaction,

which can take several forms, from indicating the relevance of the answer images up to modifying
the distance between images.

Regarding the kind of search, the following types can be distinguished [33]:

1. Search by category: the user wants to retrieve images belonging the same class.
2. Search by target: the user wants to retrieve images containing an object.
3. Search by association: user has not an specific target in mind and its only aim is to browse
through the database.

In the context of remote sensing image databases, the proposed systems cover some of these
possibilities. In [1, 20] a basic relevance approach is applied to multispectral images. In [18] the
topology of the feature space is used for relevance feedback. In [31, 6, 7] a semantic model of the
cover type desired by the user is constructed as a bayesian network from the interaction with the
user.

5.2.2 Feature extraction

The feature extraction process produces the low dimensional (relative to image size) quantita-
tive description of the image which allows the computation of similarity measures, the definition of
an ordering of the images and their indexing for the search processess. For remote sensing images,
some approaches use the spectral information, while other emphasize the spatial features. Most
of the works reported in the literature have been performed on Landsat images, of similar sensor
images, whose number of bands is small compared to modern hyperspectral sensors.

In [12] the image features are computed as multispectral distribution invariants from a
physically-based image formation model. The result of dimensional reduction procedures, such
as the Orthogonal Subspace Projection [30] can be also used as fatures for classification and
search. Eigenviews are proposed by [29] for object recognition. A collection of image features is
computed offline in the system structure proposed in [6, 5]. These features are the parameters of
Gauss Markov Random Fields modelling texture and spatial fatures in the case of optical and SAR
images. In [31] a similar process is proposed to build up a vocabulary of image features, previous
to the interactive construction of a Bayesian semantic model of the user target. This vocabulary
is the result of a clustering performed over the parameter data from the texture model estimation.
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Unmixing algorithms

The hyperspectral imagery could be seen as mixing model where an hyperspectral image is
the result of the linear combination of the pure spectral signature of ground components, named
endmembers, with abundance matrices. Let E = [e1, . . . , en] be the pure endmember signatures
where each ei ∈ Rd is a d-dimensional vector. Then, the hyperspectral signature h(x, y) at the
pixel with coordinates (x, y) is defined by the expression:

h(x, y) =
n�

i=1

eiΦi(x, y) + ηi(x, y) (5.1)

where Φ(x, y) is the n-dimensional vector of fractional abundance at pixel (x, y) and η(x, y) is
the independent additive noise component. There are two constraints in the equation 5.1, the
abundance non-negatice constraint 5.2 and the abundance sum-to-one constraint 5.3, respectivily
defined as

Φi(x, y) ≥ 0, for all 1 ≤ i ≤ n (5.2)

n�

i=1

Φi = 1 (5.3)

These restrictions require careful numerical methods for the computation of the fractional
abundances [32] when the endmembers are known. The image spectral signatures could be a good
characterization of the image but, additionaly, the abundance matrices could be used as spatial
information about the image. The idea of using the spectral unmixing fractional abundances as a
kind of feature extraction for classification purposes was introduced in [9]. The feature vector for
each pixel (x, y) in the image is the vector [Φ1(x, y), ..., Φn(x, y)] which is the set convex coordinates
of the pixel relative to the enmembers. We extend this idea to the design of CBIR systems for
hyperspectral images. In fact, we will assume the set of endmembers E as the image features.
The key problem then is the definition of the set of endmember spectral signatures. A library of
known pure ground signatures or laboratory samples could be used. However this poses several
problems, such as the illumination invariance, the difference in sensor intrinsic parameters and
the a priori knowledge about the material composition of the scene. There are diverse approaches
in the literature for the estimation of endmembers from the image data. Early approaches [37]
searched for the minimum simplex covering the image data. A method based on morphological
operators is proposed in [26,27]. In [2]an statistical approach is proposed. In [10,11] we proposed a
method based on morphological independence and the use of Associative Morphological Memories
(AMM). Recently, [4] proposed a fast Pixel Purity Index procedure. An approach based on ICA
is proposed in [23].

5.2.3 The similarity function

The retrieval process provides a subset of images answering the query on the basis of the
similarity between the images, computed over the feature vector extracted from each image. There
are two basic strategies to compute the answer AQ, either an ε-similarity or an KNN -similarity
retrieval. In ε-similarity retrieval, the system selects only those images in DQ whose similarity to
the query criteria falls below a given threshold ε. In KNN -similarity retrieval, the system ranks
DQ according to the similarity to the query given a similarity function, SQ, and retrieves the first
K images. These retrieval strategies are similar to the exact and approximate searches described
above. There are two essentially different retrieval paradigms: the metric and the probabilistic.
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Metric paradigm

Most of the retrieval systems found in the literature are based in the metric paradigm. The
image information is quantified as low level feature vectors in a high dimensional metric space.
F : I → �r. Therefore, an image is described as a point in a r-dimensional space. The distance in
feature space corresponds to the image similarity function S : IxI → �+.

The equation 5.4 expresses the similarity function between two images S(I1, I2) as a function
of the distance d(F1, F2) between their corresponding feature vectors. The function Ψ is a positive,
monotonically nonincresing function.

S(I1, I2) = Ψ(d(F1, F2)) (5.4)

The Euclidean distance (eq. 5.5) is the simplest and most used distance function. Other useful
metrics are the Manhattan (eq. 5.6) and the Maximum (eq. 5.7) distances.

dE(F1, F2) =

�
�
�
�

r−1�

i=0

(F1i − F2i)2 (5.5)

dM (F1, F2) =

r−1�

i=0

|F1i − F2i| (5.6)

dMax(F1, F2) = max
i
{|F1i − F2i|} (5.7)

where F1i, F2i are the i-th feature of the respective feature vectors. When scale invariance is
needed, the Correlation-Based distance (eq. 5.8) can be used.

dCorr(F1, F2) =

�r−1
i=0 F1iF2i

��r−1
i=0 F 2

1i

��r−1
i=0 F 2

2i

(5.8)

In a relevance-guided iterative retrieval proccess [1,8,14,15,19,20] the user feedback is specified
through the identification of a set of relevant and irrelevant images in the answer set A (q), aiming
to better approach the target that the user has in mind. In the metric paradigm this goal can be
reached from two different points of view. The first modifies the query definition while second one
modifies the similarity function. Redefining the query is equivalent to move the query point across
the feature vector space. One way of doing that is the following one: in each iteration the user
identifies the relevant images and their relevance degree; then the query is redefined as the weighted
centroid of the set of relevant images weighted by their relevance degree. Let ηj be the relevance
degree of the j-th relevant image. Each component of the new feature vector corresponding to the
redefined query, F �

i , is given by the following equation:

F �

i =

�
j ηjFji

�
j ηj

Another kind of query redefinition is based in both the relevant and irrelevant set of images
selected by the user. In [31] the relevance feedback guides the estimation of a Bayesian Network
parameters. Let Fji be the i-th feature of the j-th image on relevant set. Let F̄ki be the i-th feature
of the k-th image on irrelevant set. Let NF and NF̄ be the number of images in the relevant and
irrelevant set respectively, and α, β, γ are suitable constants; the following equation defines the
query movement along the feature space at each retrieval feedback iteration.

F �

i = αFi + β



 1

NF

NF−1�

j=0

Fji



 + γ

�
1

NF̄

NF̄−1�

k=0

Fki

�
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The second relevance feedback class of methods works with the similarity function, updating
it at each relevance feedback iteration having into account the user preferences. Weighting the
Euclidean distance so the user’s information could be incorporated into the retrieval proccess can
be achieved in two different ways, depending on whether there is any interdependency among the
feature vector components or not. If the feature vector components are mutually independent,
the relevance of each feature element is modelled by a diagonal matrix, Λ = diag · (λ1, λ2, . . . , λr)
where λi represents the individual relevance of the i-th feature component. TheWeighted Euclidean
Distance (WED) is defined by equation 5.9. If the feature components are not independent, we
have a Generalized Euclidean Distance (GED), defined by equation 5.10, where W is a symetric
matrix representing the mutual dependent of the feature components.

dWED(F1, F2) = (F1 − F2)
TΛ(F1 − F2) (5.9)

dGED(F1, F2) = (F1 − F2)
TW (F1 − F2) (5.10)

Both WED and GED are instances of the Mahalanobis distance. The values of Λ’s diago-
nal can be estimated as λi = 1

σi
, where σi is the feature vector component standard deviation

computed over the relevant set of images selected by the user in the answer to the query. If the
standard deviation for the i-th component is high, this feature component has not information
about the user target. Other approach to set Λ is trying to maximize the likelihood of the an-
swer to the query, minimizing the distance between the previous query feature vector and the
feature vectors of the selected relevant images. The minimized objective function is defined by
J(Λ) =

�K−1
j=0 dWED(FQ, Fj), where FQ is the feature vector of the previous query definition and

Fj the feature vector of each one of the images in the relevant set. The
�r−1

i=0 λ2
i = 1 constraint is

imposed to avoid the trivial all zeros solution, and the estimation problem is stated as the mini-
mization problem, Λ̂ = argminJ(Λ). The estimation of the parameters of the matrix W for the
GED is similar to the optimal estimation of the WED parameters. In this case, the minimization

problem is defined by Ŵ = argminJ(W ) = argmin
��K−1

j=0 dGED(FQ, Fj)
�
under the constraint

det(W ) = 1. All these ideas can be extended to Correlation Based distances, which we will not
elaborate here.

Probabilistic paradigm

In the probabilistic paradigm [31] the user target or semantic interpretation of the search is
modelled by a probability distribution defined on the feature space. According to that, the process
of image retrieval is an inference proccess that asigns a probability value to each image in database.
The retrieval user feedback aims to fit the best probalibity distribution for the query, using the
positive and negative relevance sets of images. Then, this probability distribution is used to asign
a posteriori probability for each image in the database, which will be used as the distance measure
for the query answer retrieval. Although in many cases the same strategy is used for positive and
negative examples, is known that the negative images are not related to the target distribution,
but they are isolated and independent, so different methodologies appear to treat the negative set
of images product of the retrieval feedback iterations.

The Gaussian distribution for the semantic target features, F → N(µF , ΣF ), the probability
density function is given by:

g(F ) =
1

(2π)d/2 |ΣF |
1/2

e−
1

2
(F−µF )T Σ−1

F
(F−µF )

where d is the feature vector dimension, µF is the average feature vector for the Gaussian
distribution and ΣF is the covariance matrix whose determinant|ΣF | is used to normalize. Using
the bayesian aproximation, the log posterior probability of image I denoted by its feature vector
F belonging to target model M is defined by:
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pM (F ) = lnP (M |F ) ∝ ln p(F |M) + lnP (M)

= −
1

2

(F − µF )
T

ΣF
+ lnP (M) + constant

and the distance function can be defined by:

d(I,M) = −pM (FI)

The estimation of the log posterior probability needs the estimation of µF , ΣF and the a priori

probability of the target model, P (M). Using only the set of positive images, let Fj be the feature
vector of the j-th image on relevant set and NF the number of relevant images in the set. To
estimate the parameters needed to value pM (F ) the following conventional equations are used:

µF =
1

NF

�

j

Fj

ΣF =
1

NF − 1

�

j

(F j − µF )(F j − µF )T

If the features are supposed to be mutually independent the covariance matrix can be sim-
plicited as a diagonal matrix of standard deviations, σ2

F = diag · (σ2
1 , σ

2
2 , . . . , σ

2
r). The a priori

probability, P (M), is assumed to be equal for all the possible classes in database son it remainds
constant all along the retrieval proccess.

Instead of computing the parameters in each iteration using all the positive images, these can
be estimated using the parameters of the previous iteration and the features of the new positive
images in relevant set. Supposing features are mutually independent, let FU

j be the feature vector
of the j-th new positive image on the present iteration, UF the number of new relevant images
in the current iteration, N �

F the number of positive images in previous iteration and µ�F , σ
�2
F the

parameters of the previous gaussian distribution. The new parameters µF and σ2
F are estimated

using:

NF = N �

F + UF

µF =
N �

Fµ
�

F +
�

U FU
j

NF

σ2
F = N �

Fσ
�2
F +

N �

FUFµ
�2
F − 2N �

Fµ
�

F

�
U FU

j − (
�

UF
U
j )2

NF
+

�

U

(F
U
j )2

If the irrelevat set of images is used to estimate the distribution parameters, this can be seen
as the difference of two distribution, the one estimated with the positive examples and the one
with the negatives, been the resultant distribution, in the case of the Gaussian distribution, as
an hyperbolic in the future space instead of the hiperelypsoid resultant if only the relevant set is
used. Instead of using the negative examples to estimate the distribution parameters, the set can
be used as a penalization for the distance image. For this, the final distance measure is:

d(I,M) = −pM (FI) +
�

V

pV (d(FI , FV ))

where the first term is the distance explained above and the second one is a penalization
function where each image, V , in the irrelevant set is modelled as a gaussian distribution, and
pV (d(FI , FV )) is the log posterior probability of feature vectors distance, euclidean for example.

In [31] a fully Bayesian framework is proposed, that starts from the low level parameter infer-
ence (the Markov Random Field texture model) up to the labeling of the cover types in the image,
and the labeling of the whole image, where the interaction process helps building a Bayesian model
of the image semantics.
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5.3 Evaluating CBIR Systems

In CBIR systems, the approapriate evaluation methodology is is an open question [33, 22, 5,
8, 35]. Most of the methods used in CBIR evaluation come from the Information Retrieval (IR)
field where the researchers have great experience evaluating information retrieval systems. From
this area of knowledge appears two standar methods, the Precision and Recall measures (below
defined), that are long used over CBIR systems. But working with image collections instead of
textual databases has some inherited difficulties that made IR methods insufficient. First of them
is that there is not a standar image collection researchers could work with, so there is not a way
to compare the results of different investigations.

Suppose an image database D and a query Q are given and that the database can be divided
in two groups, the relevant set of images for the query Q, RQ, and its complement, the set of
irrelevant images RQ. Suppose the CBIR System retrieves a set of images in D for the query Q,
AQ. The Precision measure, denoted p, is defined as the fraction of the set of images retrieved by
the system that are relevant for the query. Another point of view is the Error measure, denoted e,
assumed to be the fraction of the set of images retrieved by the system that are irrelevant for the
query. The Recall measure, denoted r, is the fraction of relevant images returned by the query.
Usually this information is presented as a Precision (or Error) versus Recall graph, PR (or ER)
graphs.

p =
|AQ ∩RQ)|

AQ
e =

|AQ ∩RQ|

AQ
r =

|RQ ∩AQ|

RQ

But PR graphs have limitations and other analyses based on precision and recall measures are
used too as, for example, the recall measure where the precision falls below 0.5, the non-interpolated
mean average precision or the precision after the firstNK relevant images are retrieved whereNK is
the number of relevant images in a K-NN based query. Moreover, the precision and recall measures
may be misleading due to the great difficulty of defining the relevant set of images. Because of
these limitations other measures have been defined for evaluating CBIR systems. One of them is

the First Rank, rank1, and the Average Rank, �rank, being respectively, the rank at which the
first relevant image is retrieved and the normalized average rank of relevant images defined by
equation 5.11 where ND is the number of images in dataset, NR is the number of images in the

relevant set RQ and ranki is the rank at which the ith relevant image is retrieved. A �rank = 0

indicates a perfect performance, while the performance goes worst as �rank approximates 1. A

random retrieval would give a evaluation of �rank = 0.5.

�rank =
1

NDNR

�
NR�

i=1

ranki −
NR(NR − 1)

2

�

(5.11)

Another point of view is not to use any query answer relevant image set. Given a query Q for
the database D, an ideal ordering of the database Z = [z1, . . . , zk] is assumed. An ideal retrieval
systems will provide a relevance measure S(Ij) ∈ [0, 1] for each image. The system under evaluation
will retrieve for query Q an ordering ZQ = [zπ1

, . . . , zπk
], where [π1, . . . , πk] is a permutation of

[1, . . . , k]. The weighted displacement, denoted ω, can be computed by equation 5.12 and can be
used as a measure of system performance without the need of defining a relevant set, althought
the problem of obtaining an ideal ordering Z remains open.

ω =
�

j

S(Ij) |j − πj | (5.12)

5.3.1 Evaluation in the literature of remote sensing

Early works, such as [12] contain as evaluation processes the gathering of a collection of images
and the counting of relevant positive answers by the observer. The works of Datcu and colleagues
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have been quite influential in the last years. In [31] the evaluation consists on the exploration
of a database of some aerial images and a Landsat TM image through a web site. The authors
suggest some statistical measures of the labellling process, such as the variance of the labelling
probabilities for a given class, or the information divergence. In [5] a complete evaluation protocol
is proposed that includes the quality of the queried results by precision and recall values, as well
as the probability to overretrieve and forget. They also analyze man-machine interaction. The
Human Centered Concepts for remote sensing image database exploration [7], are tested over a
collection of heterogeneous data from different sensor types, performing complicated tasks, such
as risk analysis in mined areas and detection of objects and structures.

5.4 A case of hyperespectral image retrieval

In this section we will present some ideas about hyperspectral image retrieval which have
been already introduced in [21]. The idea is that the endmembers induced from the image by any
suitable method are to be used as the image features for image indexing and retrieval. For our
own computational experiments we use the method proposed in [10, 11]. This is an appropriate
characterization of the spectral image content. We propose an image similarity function defined
on the basis of the distance between endmembers. In the next subsection we present this image
similarity function, before commenting some computational results over a database of synthetic
images.

5.4.1 Endmember based image similarity

Let Ek = [ek
1 , . . . , e

k
nk

] be the image endmembers obtained applying any of the methods dis-
cussed in section 5.2.2 over the k -th image fk (x, y) in the database. Given two hyperspectral
images, fk (x, y) and fl (x, y), their endmember sets E

k and El may have different number of end-
members, i.e. nk �= nl. That implies that the feature spaces of the images are different, whithout
any functional relation between them. The computation of the similarity between the images
starts with the computation of the matrix of Euclidean distances between all the possible pairs of
endmembers from each image:

Dk,l = [di,j ; i = 1, ..., nk; j = 1, .., nl]

where
dij =

�
�ek

i − el
j

�
� .

We compute the vector of row minimum values

mk =
�
mk

i = minj {dij}
�
,

and column minimum values
ml =

�
ml

j = mini {dij}
�
.

We compute the similarity between the hyperspectral images as follows:

d (fk, fl) = (�mk�+ �ml�) (|nk − nl|+ 1) . (5.13)

The endmember induction procedure may give different number of endmembers and endmember
features for two hyperspectral images. The similarity measure of eq. 5.13 is a composition of two
asymmetrical views: each vector of minimal distances measures how close are the endmembers of
one image to some endmember of the other image.

The worst case is when all the endmembers Ek of image fk are very near to a subset E
l
∗
of the

endmembers El of the image fl. Then the magnitude of the vector of row minimum distances will
be very small, because all the rows will have a very low minimum value. However, the magnitude of
the vector of column minimum distances will be much greater, because the columns corresponding
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to the subset of endmembers El−El
∗
will have a relatively large minimum value. Thus the similarity

measure of eq. 5.13 can cope with the asymmetry of the situation. Besides, the formulation of eq.
5.13 avoids the combinatorial problem of deciding the optimal matching of endmembers. When the
number of endmembers is different from one image to the other, their difference is introduced as
an amplifying factor. The measure is independent of image size and, as the endmember induction
algorithm described in [10,11] is very fast, it can be computed in acceptable time. The endmember
set poses no storage problem. Our approach does not use spatial features, but the endmembers
give a rich characterization of the spectral content of the image. A further work on our approach
may be the study of spatial features computed on the abundance images produced by the spectral
unmixing, solving the question of band selection or dimension reduction prior to spatial feature
computation.

5.4.2 Experimental results

Figure 5.2. Endmembers from the USGS repository used to synthesize an image.

The hyperspectral images used for the experimental results are generated as linear mixtures
of a set of spectra (the ground truth endmembers) applying synthesized abundance images. The
ground truth endmembers were randomly selected from a subset of the USGS spectral libraries
corresponding to the AVIRIS flights. Figure 5.4.2 show some spectra in used in 5 endmember
images. The synthetic ground truth abundance images were generated in a two step procedure,
first we simulate each as an gaussian random field with Mattern correlation function of parameters
varying between 2 and 20. We applied the procedures proposed by [17] for the efficient generation
of big domain gaussian random fields. Second to ensure that there are regions of almost pure
endmembers we selected for each pixel the abundance coefficient with the greater value and we
normalize the remaining to ensure that the abundance coefficients in this pixel sum up to one. It
can be appreciated on the abundance images that each endmember has several region of almost
pure pixels, that appear as almost white regions when visualizing the abundance images. Image
size is 256x256 pixels of 224 spectral bands . We have generated collections of images with 2 to 5
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ground truth endmember/abundances, for total number of 400 images, 100 images for each number
of predefined endmembers. This is the biggest synthetic hyperspectral image database we know
of.

The experiment performed on these images consists on the following steps:

1. Compute the distances between the images in the database, on the basis of eq. 5.13, using
the ground truth endmembers. The distances are computed between images with the same
number of ground truth endmembers, and with all the remaining images.

2. Extract the endmembers from the images using the approach described in [10,11]The value of
the noise gain was set to a=0.5.

3. Compute the distances between the images in the database, on the basis of eq. 5.13, using
the morphologically independent induced endmembers. The distances are computed between
images with the same number of ground truth endmembers, and with all the remaining images.

4. We consider the R closer images to each image in each case (ground truth and morphologically
independent induced endmembers) as the responses to a potential query represented by the
image.

5. The images that appear in both responses (based on the ground truth and the morphologi-
cally independent induced endmembers) are considered as relevant response images, or correct
responses.

In table 5.5 we present the results from the experiment with the 400 images, in terms of the average
number of correct responses. First row presents the results when we pool together all the images,
regardless of the number of ground truth endmembers. The next rows present the results when
we only restrict the search to the subcollection of images with the same number of endmembers
as the query image. Each entry in the table corresponds to the average number of relevant (as
defined before) images obtained in the response to the query.

In table 5.5 it can be appreciated that the consideration of all the images as responses to the
query introduces some confusion and reduce the average number of relevant images obtained in
the query. This effect can be due to the fact that the morphological independence algorithm may
find a number of endmembers different from the ground truth number of endmembers, making it
possible for the image to match with images outside its natural collection of images. Then images
with different ground truth numbers of endmembers may become similar enough to enter in their
respective response sets.

When we restrict the search to the collections with the same number of ground truth end-
members as the query, all the results improve, except when R=1. We have that near 50% of
the responses are significative when R>1. The case R=1 can be interpreted as the probability of
obtaining the closest image in the database according to the distance defined in eq. 5.13 or the
probability of classification success. It can be seen that it is very high, close to 1 for all search
instances, except for the case of 2 ground truth endmembers.

5.5 Conclusions and further work

We have proposed an approach to CBIR in homogeneous databases of hyperspectral images
based on the collection of endmembers induced by an algorithms that searches for morphologically
independent vectors. We have performed an experiment of exhaustive search on a collection of
simulated hyperespectral images. The results are encouraging: almost 100% success in providing
the closest image in terms of the ground truth endmembers.

However these results only confirm the ability of the AMM based algorithm to find a good ap-
proximation to the ground truth endmembers. We have still to test the effect of additive noise on
the results, and maybe to perform comparison with other endmember extraction algorithms. Pre-
vious experiments comparing the AMM based algorithm with Independent Component Analysis
(ICA) and other algorithms have been favourable to the AMM algorithm [10,11].

It is possible to define other distances based on the endmembers extracted by the AMM (or
any alternative algorithm). For example, the Euclidean distance between individual endmembers
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Figure 5.3. An instance of the hyperspectral CBIR interface: a query and its closest image according to
the set of induced endmembers.
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may be substituted by max/min distances. The whole set of endmbembers may be evaluated
according to the Haussdorf distance. There are also diverse ways to evaluate the diverse number
of endmembers found in the images, introducing penalization terms.

We have not included yet any spatial element in the distance. One of the obvious ways to do
it is to compute the correlation between the abundance images, matched according to the relative
match of their corresponding endmembers. The distance between images would include a spatial
correlation term, with an specific weight that must be tuned. If the images are homogeneous in
their definition of the image domain, this correlation can be computed in the straightforward
manner. However if they are of different sizes and/or the original capture can not be assumed to
be exactly registered, there is a combinatorial problem to be solved, that of finding the optimal
image domain transformation (translation, rotation, scaling) to register the two images being
spatially matched. The cost of this operation may be prohibitive in the context of large database
indexing. Additional information, such as image georeferencing coordinates, will serve to reduce
this computational problem. The spatial information may also serve as the basis for user relevance
feedback. Relevance may be easier to specify for the user on the abundance images, because she
can focus on spatial structures.

Assuming that the image collection is homogenous we have avoided the problem of matching
images from different sensors or images with different frequency bands missing due to image
preprocessing and noise. This is a main difficulty for our algorithm, because we can not deal at
present with missing data. The only available way is to interpolate assuming local continuity of
the observed spectra. However, this solution may be hardly accepted by the remote sensing user
(geologist, agriculture engineer, biologist, etc).

R=1 R=3 R=5 R=10

All images 0.94 1.21 1.61 2.96

2 endmembers 0.81 1.55 2.27 4.67

3 endmembers 0.98 1.44 2.21 4.96

4 endmembers 0.99 1.53 2.36 4.81

5 endmembers 1.00 1.57 2.37 4.74

Table 5.1. Relevance results of the experimentation retrieving images from the synthetics image database
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