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 Color Quantization of image sequences is a case of Non-stationary Clustering problem. The

approach we adopt to deal with this kind of problems is to propose adaptive algorithms to

compute the cluster representatives. We have studied the application of Competitive Neural

Networks and Evolution Strategies to the one-pass adaptive solution of this problem. One-pass

adaptation is imposed by the near real-time constraint that we try to achieve. In this paper we

propose a simple and effective Evolution Strategy for this task. Two kinds of Competitive

Neural Networks are also applied. Experimental results show that the proposed Evolution

Strategy can produce results comparable to that of Competitive Neural Networks.

Evolution Strategies [1, 2, 3] have been developed since the sixties. They belong to the broad

class of algorithms inspired by natural selection. The features most widely accepted as

characteristic of Evolution Strategies are: (1) vector real valued individuals, (2) the main genetic

operator is mutation2 , (3) individuals contain local information for mutation so that adaptive

strategies  can be formulated to self-regulate the mutation operator. However, it is widely

recognized [3] that a lot of hybrid algorithms can be defined, so that it is generally difficult to

assign a definitive "label" for a particular algorithm. Nevertheless, we classify the algorithm
                                                
1This work is being supported by a research grant from the Dpto de Economía of the Excma. Diputación de Guipuzcoa,
and a predoctoral grant and project UE96/9 of the Gobierno Vasco
2  This assertion can be subject to discussion. The least that can be asserted is that, in the context of Evolution
Strategies,  mutation has a more sensible definition than recombination. The generation of mutated individuals as
random (gaussian) perturbations of the parents has the clear meaning of a local search around the actual solutions,
whereas the definitions of recombination are less clear. In fact, most of the formal works on convergence and
adaptive autotuning of parameters focus on the role of mutation.For a recent revision see [24]
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proposed here as an Evolution Strategy because it fits better in the above characterization than in

the accepted characterizations of Genetic Algorithm or Genetic Programming. The population of

the proposed algorithm is the set of cluster representatives, each individual is a color

representative in the [0,1]3 real subspace that defines a cluster in the color space of the image

pixels via the Voronoi tesselation induced by the whole population. The main evolutive operator

is mutation. The mutation operator is based on the local cluster covariance matrices, which guide

and regulate its realization. We have not defined recombination operators.

Competitive Neural Networks [4, 5] are usually proposed as stochastic gradient descent

algorithms on distortion like functions and have been extensively applied to Vector Quantization

and Clustering problems. In this paper we will apply the basic Simple Competitive Learning

scheme which minimizes the within cluster scattering of the data, and the Soft Competition

algorithm [6, 7] that can be derived as a minimization of the Kullback-Leiber cross-entropy that

measure the fitness of the empirical distribution of the data by a mixture of Gaussians.

Non-stationary Clustering problems assume a time varying population sampled at discrete times.

Therefore the Clustering of the data must be recomputed at each time instant. A related problem

is that of Adaptive Vector Quantization [8]. The works reported here belong to the class of

shifting-mean Adaptive Vector Quantization [9]. Both the Evolution Strategy and the

Competitive Neural Networks are applied as adaptive algorithms for the computation of the

cluster representatives given by the cluster means at each time instant. Our work fits in the

original proposition of Holland [10] of evolution as a mechanism for adaptation to uncertain and

varying environment conditions

Both Evolution Strategies and Competitive Neural Networks fall in the broad family of

stochastic algorithms. These algorithms are characterized by slow convergence and large

computation times. As we are trying to apply them in a near real-time framework, we impose two

computational restrictions in their application: (1) One-pass adaptation and (2) we use

subsamples of the data to estimate the cluster representatives for the whole data set at each time



instant. For the Evolution Strategy, restriction (1) implies that only one generation is computed

at each time instant. For the Competitive Neural Networks, this restriction implies that the

sample data is presented only once, therefore the learning parameters must have a very fast

decrease.

Color Quantization [11, 12, 13, 14] is an instance of Vector Quantization (VQ) [8] in the space

of colors. Color Quantization has application in visualization, color image segmentation, data

compression and image retrieval [15]. In this paper we do not deal with the problem of finding

the natural number of colors. This is a more involved problem than looking for a fixed number

of color representatives, and some of the results discussed in section 5 recommend that it must

approached cautiously, and after being satisfied with the results of quantization to a fixed

number of colors. In summary, Color Quantization to a fixed number of colors of image

sequences [16] is a case of Non-stationary Clustering, that we deal with by performing Adaptive

Vector Quantization.

The paper is organized as follows. Section 2 introduces the framework of Non-stationary

Clustering/VQ and the adaptive approach to solve it. Section 3 presents the Evolution strategy

that we propose. Section 4 reviews the definitions of the Competitive Neural Networks. Section

5 presents the experimental results, and section 6 gives our conclusions and lines for further

work.

2 ADAPTIVE APPROACH TO NON-STATIONARY CLUSTERING/VQ

Cluster analysis and Vector Quantization are useful techniques in many engineering and

scientific disciplines [8,17,18,19,20,21].  In their most usual formulation it is assumed that the

data is a sample of an stationary stochastic process, whose statistical characteristics will not

change in time. Non-stationary Clustering and Vector Quantization assume a time varying

population sampled at diverse time instants that can be modelled by a discrete time non-

stationary stochastic process Xt  t = 0,1,..{ } . If a model is known (or assumed), a predictive



approach [8] would reduce the problem to a stationary one. The general formulation of the Non-

stationary Clustering problem does not assume any model of the process.

A working definition of the Non-stationary Clustering problem could read as follows: Given a

sequence of samples ℵ(t) = {x1(t),...,xn (t)}obtain a corresponding sequence of partitions of

each sample given by a sequence of sets of disjoint clusters ℵ1 t( ), ..,ℵc t( ){ }   that minimizes a

criterium function C = C t( )t≥0∑  The similar Non-stationary Vector Quantization design

problem can be stated as the search for a sequence of representatives Y t( ) = y1 t( ), ..,yc t( ){ }  that

minimizes the error function (distortion) E = E t( )t≥ 0∑ .  The squared Euclidean distance is the

dissimilarity measure most widely used to define criterium/error functions. The Non-stationary

Clustering/VQ problem can be stated as an stochastic minimization problem:

min
Y t( ){ }

x j t( ) − yi t( )
2
δ i j t( )

i =1

c

∑
j =1

n

∑
t ≥0
∑

 δi j t( ) =
1 i = argmin

k=1,.., c
x j t( ) − yk t( )

2{ }
0 otherwise

 

 
 

 
 

The proposition of adaptive algorithms to solve this stochastic minimization problem is based in

two simplifying assumptions: (1) The minimization of the sequence of time dependent error

function can be done independently at each time step. (2) Smooth (bounded) variation of optimal

set of representatives at successive time steps. Then the set of representatives obtained after

adaptation in a time step can be used as the initial conditions for the next time step.

The adaptive application of Evolution Strategies, such as the one presented below, is done as

follows: At time t the initial population is given by the set of representatives/ codevectors

computed from the sample of the process at time t-1. A series of generations are computed

starting from this initial population to compute the representatives for the clusters of the sample

at time t. The fitness function is related to the distortion of the representatives, coded somehow

in the population, relative to the sample at time t. This process is repeated for the sample at time



t+1, and thereafter. A distinctive feature of our proposed Evolution Strategy is that only one

generation is computed to perform the adaptive step.

The adaptive application of the Competitive Neural Networks has been done as follows. The

initial cluster representatives are assumed to be the ones found for the previous data sample.

Sample vectors are randomly extracted from the sample data and used to compute the adaptation

rules. Only a small subsample is used once in the adaptation. In practice, we have extracted a

subsample of each image in the sequence and this has been used as the data samples for both the

Evolution Strategy and the Competitive Neural Networks.

3 THE EVOLUTION STRATEGY

A widely accepted pseudocode representation of the general structure of the algorithm of

Evolution Strategies is as follows [2]:

t:= 0

initialize P(t)

evaluate P(t)

while not terminate do
P'(t):= recombine P(t)

P''(t):= mutate P'(t)

evaluate P''(t)
P(t+1):= select (P''(t) U Q)

t:= t+1

end while

 We have defined each individual as a single cluster centre, so that the entire population gives a

single solution to the Clustering/VQ problem. From the discussion in the preceding section,

follows that the generation number coincide with the time instant at which the sample is taken.

The population at generation t is given by  P t( ) = yi t( );i =1..c{ } . The local fitness of each

individual is, then, its local distortion  Fi t( ) = x j t( ) − yi t( )
2

j=1
n∑ δ ij t( )  relative to the sample

considered in this generation. The fitness of the population as a whole can be evaluated as
F t( ) = Fi t( )i=1

c∑  which corresponds to the objective function to be minimized. Our population



fitness corresponds to the within cluster scatter Sw  of the clustering specified by the population.

The well known equation relating the within cluster and between cluster scattering

S = SW + SB

can be interpreted in the context of the above Evolution Strategy as:

S t( ) = x j t( ) − y t( )
2
= Fi t( )
i=1

c

∑
j=1

n

∑ + y i t( ) − y t( ) 2
i=1

c

∑

where S t( )  remains constant as far as the same data sample is considered, and y t( )  denotes the

centroid of the entire data sample ℵ(t) = {x1(t),...,xn (t)}  considered at time t. What we expect

of the Evolution Strategy is that it will implicitly react through the above equation balancing the

minimization of the population fitness, from the local optimization of individual cluster

representatives, and the maximization of the between cluster scattering. This justifies our

working hypothesis that the local optimization of individual cluster distortions will eventually

lead to the global optimization of the entire set of cluster centres.

Our theoretical mutation operator is a random perturbation that follows a normal distribution of

zero mean and whose covariance matrix is estimated from the data in the cluster associated with

the individual to be mutated. There are three design questions to answer at this point: (1) Which

individuals will be mutated? (2) How many mutations will be allowed? and (3) what information

will be used to compute mutations?. Our proposed Evolution Strategy performs a guided

selection of the individuals subjected to mutation. The set of mutated parents is composed of the

individuals whose local distortion is greater than the mean of the local distortions in its

generation . More formally:

 S t( ) = i Fi t( ) ≥ F t( ){ }
As to the number of mutations we have decided to approach as much as possible to a fixed

number of mutations m, so that the number of mutations per individual mi(t) will depend on the

size of S(t), mi t( ) = m S t( )  . Regarding the information used to generate mutated individuals,

we have decided to use the local covariance matrices of the sample partition associated with each



individual. We apply a deterministic approximation to the theoretical random mutation operator

in order to avoid the variability introduced by random sampling. Mutations are computed along

the axes defined by the eigenvectors of the estimated local covariance matrix:

ˆ Σ i t( ) = n −1( )−1 x j t( ) − y i t( )( )j−1
n∑ x j t( ) − y i t( )( )t

δij t( )

Let Λi = diag λij, j = 1..3( )  and Φ i = eij, j =1..3[ ]  denote, respectively, the eigenvalue and

eigenvector matrices of ˆ Σ i t( ) . Then the set of mutations generated along the axis of eij is:

′ ′ P ij t( ) = yi ± α kλijeij k = 1..mij t( ), i ∈S t( ){ }
 mij t( ) = round mi t( )λij 2 λill=1

3∑( ) , αk =1.96k mij t( )
The set of individuals generated by mutation is

  

′ ′ P t( ) = ′ ′ P ij t( )
i,j
U

Finally, to define the selection of the next generation individuals we pool together parents and

children: Q = P t( )  Let ′ m = ′ ′ P t( )  be the number of individuals effectively generated by

mutation. The fitness function used for selection of an individual is the distortion when the

sample is codified with the codebook given by P' ' t( )∪Q − yi{ } , more formally:

Fi
s t( ) = x j t( ) − yk t( )j=1

n∑k =1;i≠k
c+ ′ m ∑

2
δkj

s t( )

δkj
s t( ) =

1 k = arg min
l=1,..,c+ ′ m ; l≠i

x j t( ) − y l t( )
2{ }

0 otherwise

 
 
 

The selection operator selects the c best individuals according to the above fitness:

P t + 1( ) = select ′ ′ P t( ) ∪Q( ) = y i ∈P * t( );  i =1..c{ }
P * t( ) = y i1 , .., y ic + ′ m 

 i j < ik ⇒ Fij

s t( ) > Fik

s t( ){ }
This definition of selection involves the fitness of the whole population with the addition of the

mutations generated. This makes the algorithm sensitive to the number of mutations generated.

A large number of mutations decrease the discriminatory power of Fi
s t( ) . The number of

allowed mutations must be carefully chosen. Our decision has been to allow as many mutations

as individuals in the population.



4 COMPETITIVE NEURAL NETWORKS

Competitive Neural Network algorithms are derived to solve the Clustering problem as adaptive

algorithms that perform stochastic gradient descent on a distortion like criterium function [4, 5].

The simplest algorithm, that we will call Simple Competitive Learning (SCL), can be stated as:

y i τ +1( ) = yi τ( ) + αi τ( ) δ i x τ( ),Y τ( )( ) x τ( ) − y i τ( )[ ]        ;x τ( ) ∈ℵ ;  i = 1,.. ,c

δi x,Y( ) =
1 i = argmin

k=1..c
x − yk

2{ }
0 otherwise

 

 
 

  

Where Y = y1, .., yc{ }  is the set of cluster representatives and τ is the adaptation step. This

expression is derived as the stochastic gradient search for the minimum distortion, that

corresponds to the instantaneous distortion in the framework of non-stationary Clustering

min
Y

x j − yi
2
δij

i =1

c

∑
j=1

n

∑

The αi τ( )  denotes the (local) learning rate, in order to guarantee theoretical convergence the
learning rate must cope with the conditions lim

τ→∞
α τ( ) = 0 , α τ( )τ=0

∞∑ = ∞ , and

α2 τ( )τ=0
∞∑ < ∞  . These conditions imply very lengthy adaptation processes, so that in practice

they are often overlooked. In the experiments below, the learning rate follows the expression:
αi τ( ) = 0.1 1 − τi n( )  where τi = δi x k( )( )k=1

τ∑  for the Simple Competitive

Another interesting competitive rule, often called Soft Competition [6, 7], can be derived from a

parametrical approach to the clustering problem. Let us consider ℵ = x1, .., xn{ }  as a sample of a

random vector X, and let us consider the hypothesis of its probability density function being a
mixture of Gaussian densities:PX x( ) = p ω i( )Ψx µ i,Σi( )i=1

c∑  where p(ωj) are the a priori

probabilities of the classes (clusters) and Ψ x µi ,Σ i( )  denotes a Gaussian density with mean µi

and variance-covariance matrix Σi that models the conditional density p xωi( ) . Then, the

clustering problem becomes a search for the parameters (µi ,Σi ) that provide the best fit to the

empirical distribution PX
* xi( ){ }  computed from the sample. This search can be performed as an



stochastic gradient minimization of the Kullback-Leiber cross-
entropy:CKL = PX

* xi( ) log PX
* xi( ) PX x( )( )i=1

n∑  In the simplest case, when the covariance

matrices are  of the form Σ i = σ i
2I  the adaptation rule derived as the stochastic gradient descent

of this measure has the shape of a Competitive Neural Network with a normalized Gaussian as

the neighboring function:

y i τ +1( ) = yi τ( ) + αi τ( ) ϑi x τ( ),Y τ( ),σ τ( )( ) x τ( ) − y i τ( )[ ]   x τ( )∈ℵ;i = 1..c

ϑi x,Y,σ( ) =
Ψx yi ,σ i

2I( )
σi

2 Ψx y j ,σ j
2I( )

j=1

c

∑

An interesting feature of the Soft-Competition approach is that, applying the same reasoning, an
adaptive rule can be derived equally for the assumed variance around the codevectors:

σ i τ +1( ) = σi τ( ) + βi τ( ) ϑi x τ( ),Y τ( ),σ τ( )( ) x τ( ) − yi τ( )
2
− dσi

2 τ( )
σ i

3 τ( )
   1 ≤ i ≤ c

The joint application of the adaptive rules for the cluster representatives and the variances is what

we have called Soft-Competition in the experiments reported below. We have found that this

algorithm is very sensitive to the learning rate β in the adaptation rule for the variances. The best

empirical results were found for βi τ( ) = 10
−7αi τ( ) .



5 EXPERIMENTAL RESULTS

The sequence of images used for the experiment is a panning of the laboratory taken with an

electronic camera. Original images have an spatial resolution of 480x640 pixels. Each two

consecutive images overlap 50% of the scene. In figure 1 we represent each image in the

experimental sequence as a set of points in the RGB unit cube. Each point corresponds to a

pixel in  the image, and the point coordinates are given by the pixel color components in the

RGB color representation. This figure illustrates the unpredictable time varying nature of the

pixel color population that justifies the categorization of the problem as Non-stationary

Clustering. Most of the works dealing with image sequences are performed on the so-called

“talking heads” that consist of recordings of the face of a talking person. These image

sequences show very little, if any, variation of the color distribution and, despite their dynamic

nature, their Color Qunatization is better categorized as an Stationary Clustering problem. The

experimental data represented in figure 1 has been carefully designed to show a variability not

found in “talking heads” image sequences.

As a bechmark non adaptive Clustering algorithm we have used a variation of the one proposed

by Heckbert [11] as implemented in MATLAB following [22]. This algorithm partitions the

RGB cube using an exhaustive minimum variance search. It is almost optimal, and its

complexity is proportional to the discretization of the color space [22]. It has been applied to the

entire images in the sequence in two ways. Figure 2 shows the distortion results of the Color

Quantization of the experimental sequence to 16 and 256 colors based on both applications of

the Heckbert algorithm. The curves denoted Time Varying Min Var are produced assuming the

non-stationary nature of the data and applying the algorithm to each image independently. The

curves denoted Time Invariant Min Var come from the assumption of stationarity of the data:

the color representatives obtained for the first image are used for the Color Quantization of the

remaining images in the sequence. The gap between those curves gives an indication of the non

stationarity of the data. Also this gap defines the response space left for truly adaptive

algorithms. To accept an algorithm as an adaptive solution its response could not be worse than



the Time Invariant Min Var  curve. The Time Varying Min Var  defines the best response that

we expect. These two curves are shown in the remaing figures as the reference responses that

give an indication of the quality of the results obained with the adaptive algorithms.

In the experiments reported in this paper we have used samples of 1600 pixels to perform the

adaptive computations, and, unless stated otherwise, the distortion results correspond to the

Color Quantization of the whole images. We have selected the task of Color Quantization to 16

colors as representative of the general class of image segmentation tasks based on the color

information. Color Quantization to 256 colors is representative of compression tasks. The

experimentation with these two number of color representatives shows that the algorithms are

sensitive to the number of clusters searched. As a general inspection of figures 3 to 6 will

confirm, the qualitative performance of the algorithms (their error relative to the optimal

application of the Heckbert algorithm) decreases as the number of clusters searched increases.

This result must be hold in mind when trying to design adaptive algorithms that look for the

natural number of clusters (color representatives).

The first set of results refer to the application of the Evolution Strategy with the theoretical

random mutation operator. These results are shown in figure 3, and consist of the distortion of

the Color Quantization of the  1600 pixels image samples. We have performed 30 replicas of the

adaptive application of the Evolution Strategy. We give in the figure the average and 95%

confidence interval of the results of these replicas. It can be seen that the random mutation

operator introduces a high uncertainty on the quantization results. This uncertainty is greater in

the images that show the greater distribution variation relative to their predecessor in the

sequence. It can be also appreciated that the confidence intervals are more large in the case of 16

colors than in the case of 256 colors.

The random mutation operator produces some very bad results, sometimes much worse than the

Time Invariant applicaton of the Heckbert algorithm. That is, the random mutation operator

gives a significative probablity of having responses well far from the desired adaptive one. We



propose the deterministic formulation of the mutation operator to avoid this uncertainty. The

results of the application of the Evolution Strategy with the deterministic mutation operator on

the experimental sequence are shown in figure 4 given by the curves of asterisks (*). Also

shown in the figure are the results of the best replica found with the application of the random

mutation operator, denoted by the curve of zeroes (o). In this and subsequent figures, the

distortion results refer to the Color Quantization of the whole images. The figure shows that the

deterministic operator gives a good approximation while reducing greatly the computational

requirements. The Evolution Strategy with the deterinistic mutation operator performs adaptively

almost all the time. As can be expected from the one generation schedule, it is not able to adapt

to very big variations in the pixel distributions, such as it is the case in the transition from images

#10 to #11. However it shows a quick recover after this sudden transition of distributions.

Figure 5 shows the results for the Competitive Neural Networks. They also show a good

adaptive behavior. Surprisingly the Simple Competitive Learning algorithm seems to perform

better than the Soft Competition. The difference between both algorithms decrease as the

number of clusters searched increase, suggesting that the bad response in fig 5a of the Soft

Competition is due to the fact that the empirical distribution is badly adjusted by a mixture of

Gaussians in this case.

Finally, figure 6 compares the results obtained with the Simple Competitive Learning (SCL) and

the Evolution Strategy (ES) with a deterministic mutation operator. For the case of 16 colors it

can be seen that their behavior is quite similar. However the Evolutionary Strategy shows a

quicker recover after sudden changes, improving over the Simple Competitive Learning after

them (frames #12 and #13). The response of the SCL  is smoother and has a kind of momentum

that gives a slower but better recovery (frames #14 and #15). In the case of the 256 colors the

responses are similar. Both approaches seem to be sensitive to the quality of the response

(relative to that of the Heckbert algorithm) when the number of color representatives (clusters)

increases. Both of them seem to behave adaptively most of the time, if the population changes

are smooth enough.



6 CONCLUSIONS AND FURTHER WORK

We have proposed an Evolution Strategy for the adaptive computation of color representatives

for Color Quantization that can be very efficiently implemented and reach almost real time

performance for highly variable color populations. We have tested it  on an experimental

sequence of images. We have also tested two Competitive Neural Network algorithms against

this data. Some general conclussions can be drawn from our experiments. The first is that the

algorithms tested perform as desired. They profit on the previous time solutions to compute fast

adaptations to the present time data. The second is the sensitivity of the adaptive algorithms to

the number of clusters or color representatives searched. This sensitivity is demonstrated by the

relative degradation (in front of the optimal application of the Heckbert algorithm) of the

responses. This sensitivity must be taken into account when trying to design adaptive algorithms

that look for the natural number of color representatives.

We have been able to propose a deterministic mutation operator that retain the adaptive nature of

the Evolution Strategy proposed, while avoiding the uncertainty introduced by the random

mutation operator. Our Evolution Strategy performance is comparable to that of some well

known Competitive Neural Networks, validating it as an appropriate adaptive algorithm.

We are currently working on improving the Evolution Strategy looking for alternative definitions

of the fitness function used in the selection operator, that could be as fast in their implementation

as the currently used and give more optimal results. Also we are applying other Competitive

Neural Networks architectures, such as the Kohonen Self Organizing Map to our data. We think

that an interesting feature of our Evolution Strategy is that it can be easily extended to the search

for the natural number of clusters through small modifications of the selection operator.

However, these modifications must take into account the above mentioned sensitivity to the

number of clusters. A sensible approach would be to include the desired order of magnitude of

the number of color representatives in the selection operator.
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#1 #2 #3 #4

#5 #6 #7 #8

#9 #10 #11 #12

#13 #14 #15 #16

#17 #18 #19 #20

#21 #22 #23 #24

Figure 1 Representation of the pixels of the images in experimental sequence as points inside
the RGB unit cube. The sequence shows a smooth but unpredictable variation  of the
distribution of the pixel colors that illustrates the case of Non-Stationary Clustering.
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Figure 2. Benchmark distortion values obtained with the application of the Matlab
implementation of the Heckbert algorithm to compute the color quantizers of (a) 16 and (b) 256
colors of the images in the experimental sequence.
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Figure 3: Mean distortion results and 95% confidence intervals of the application of the
Evolution Strategy with the random mutation operator upon image samples of size n=1600 (a)
with c=16, m=16,. (b) with c=256, m=256,
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Figure 4. Distortion results on the image sequence from the Color Representatives computed

by the Evolution Strategy with the best coddebooks found after 30 replica of the application
using the random mutation operator, and the ones found with the deterministic operator. (a)
c=16 and (b) c=256
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Figure 5 . Distortion results on the image sequence from the Color Representatives computed

by the Simple Competitive Learning (SCL) and Soft Competition over image samples of size
n=1600. (a) c=16 and (b) c=256
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Figure 6. Distortion results on the image sequence from the Color Representatives computed

by the Simple Competitive Learning (SCL) and the Evolution Strategy with a deterministic
mutation operator over image samples of size n=1600. (a) c=16 and (b) c=256


