

ClassifierEnsembles: Select real-world applications

Nikunj C. Oza, Kagan Tumer

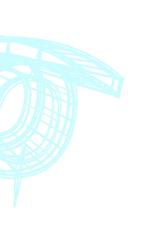
Eider Sánchez

Contenidos

- 1. Objective of the article
- 2. Introduction to classifier ensembles
- 3. Classifier ensemble methods
- 4. Real-World applications
- 5. Conclusions

Objective of the article

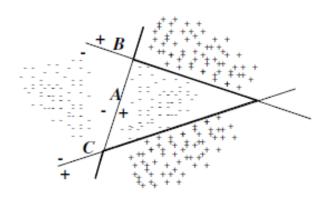
- * Introduce classifier ensembles
 - Definitions
 - Classifier ensembles
 - Bias/Variance tradeoff
 - Bayesian interpretation
 - ☐ Summarize leading ensemble methods
 - Simple averaging
 - Weighted averaging
 - Stacking
 - Bagging
 - Boosting
 - Order statistics
- Show real-word applications, in 4 different domains:
 - Remote sensing
 - Person recognition
 - ☐ One vs. all recognition
 - Medicine



- * Classification task:
 - Requires the construction of a statistical model that represents a mapping from input data to the appropriate outputs.
 - Model: intended to approximate the true mapping from the inputs to the outputs
 - Purpose: generate predictions of outputs for new, previously unseen inputs.
- * Single classifier to make predictions for new examples.
 - BUT: many decisions affect the performance of that classifier.
 - ☐ Option A: selecting the best available classifier
 - BUT: distribution over new examples that the classifier may encounter during operation may vary
 - BUT: many classifiers are generally tried before a single classifier is selected.
 Therefore, valuable information discarded by ignoring the performance of all the other classifiers.
 - ☐ Option B: Classifier ensembles

Classifier ensembles (combiners or committees)

- * Aggregations of several classifiers whose individual predictions are combined in some manner (e.g., averaging or voting) to form a final prediction.
- ★ Use all the available classifier information
 - ☐ Generally provide better and/or more robust solutions in most applications



Example:

An ensemble of linear classifiers (boldface line). Each line A, B, and C is a linear classifier.

Bias vs variance

- ☐ Bias = Difference between the true function that generated the data and the "average" function returned by the learning algorithm
 - Averaged over all possible training sets
 - Question: Average of {house, car, house, shoe, house, house} ?
- □ Variance over the possible training sets of the function returned by the learning algorithm
- Simpler model: bias \uparrow , variance \downarrow

- Bayesian interpretation
 - ☐ Ensemble learning: tractable approximation to full bayesian learning
 - Bayesian learning:
 - Final learned model is mixture of very large set of models (eg. All models in a given family):

$$P(Y|T) = \sum_{m=1}^{M} P(Y|h_m)P(h_m|T)$$

$$= \sum_{m=1}^{M} P(Y|h_m) \frac{P(T|h_m)P(h_m)}{P(T)}.$$

- Predict some quantity Y
- Set of models (large M) $h_m \ (m \in \{1, 2, \ldots, M\}$
- Training set T

Approximation: using mixture of a small set of models having

- **Highest** posterior probabilities $P(h_m|T)$
- **Highest** likelihoods $P(T|h_m)$

Classifier ensemble methods

- * Simple averaging
- ★ Weighted averaging
- * Stacking
- * Bagging
- * Boosting
- * Order statistics

Classifier ensemble methods - Simple averaging

If M classifiers $(h_i^m(x), m)$

 $\in \{1, 2, ..., M\}$) are available, the class C_i output of the averaging combiner is:

$$h_i^{\text{ave}}(x) = \frac{1}{N} \sum_{m=1}^M h_i^m(x)$$
 (1)

* Benefits

- Reduces the variance of the estimate of the output class posteriors
- ☐ Simple: widely applied to real-world problems
- ☐ Effective ensemble method, particularly in large complex data

* Problems

Reduces model error

$$E_{\text{model}}^{\text{ensemble}} = \frac{1 + \rho(M - 1)}{M} E_{\text{model}}$$

ho: Average correlation among the errors of the different classifiers

Classifier ensemble methods - Weighted averaging

★ Different classifier weight

$$h_i^{\text{ave}}(x) = \frac{1}{M} \sum_{m=1}^M w_m h_i^m(x)$$

- * But in practice
 - ☐ failed to provide improvement to justify its added complexity
 - When there is limited training data with which the weights can be properly estimated

Classifier ensemble methods - Stacking

- * Actively seeks to improve the performance of the ensemble by correcting the errors
- * Stacked generalization addresses the issue of classifier bias with respect to a training set, and aims at learning and using these biases to improve classification
- * The main concept is to use a new classifier to correct the errors of a previous classifier

Classifier ensemble methods - Bagging

- Bootstrapped Aggregating (Bagging)
 - □ Combines voting with a method for generating the classifiers that provide the votes
 - Allow each base classifier to be trained with a different random subset of the patterns with the goal of bringing about diversity in the base classifiers.
- improve upon their base models more if the base model learning algorithms are unstable (ej. Decision trees)
 - differences in their training sets tend to induce significant differences in the models

Classifier ensemble methods - Bagging

Bootstrapped Aggregating (Bagging)

```
\begin{aligned} \mathbf{Bagging}(T, M) \\ & \text{For each } m = 1, 2, \dots, M, \\ & T_m = Sample\_With\_Replacement(T, |T|) \\ & h_m = L_b(T_m) \\ & \text{Return } h_{fin}(x) = \operatorname{argmax}_{y \in Y} \sum_{m=1}^M I(h_m(x) = y) \end{aligned}
\begin{aligned} \mathbf{Sample\_With\_Replacement}(T, N) \\ & S = \emptyset \\ & \text{For } i = 1, 2, \dots, N, \\ & r = random\_integer(1, N) \\ & \text{Add } T[r] \text{ to } S. \end{aligned}
\text{Return } S.
```


Classifier ensemble methods - Boosting

- ★ AdaBoost algoritm
 - ☐ Generates a sequence of base models with different weight distributions over the training set

AdaBoost(
$$\{(x_1, y_1), \dots, (x_N, y_N)\}, L_b, M$$
)
Initialize $D_1(n) = 1/N$ for all $n \in \{1, 2, \dots, N\}$.
For $m = 1, 2, \dots, M$:
 $h_m = L_b(\{(x_1, y_1), \dots, (x_N, y_N)\}, D_m)$.
Calculate the error of $h_m : \epsilon_m = \sum_{n:h_m(x_n) \neq y_n} D_m(n)$.
If $\epsilon_m \geq 1/2$ then,
set $M = m - 1$ and abort this loop.
Update distribution D_m :

$$D_{m+1}(n) = D_m(n) \times \begin{cases} \frac{1}{2(1-\epsilon_m)} & \text{if } h_m(x_n) = y_n \\ \frac{1}{2\epsilon_m} & \text{otherwise} \end{cases}$$

Output the final model:

$$h_{fin}(x) = \operatorname{argmax}_{y \in Y} \sum_{m:h_m(x)=y} log \frac{1-\epsilon_m}{\epsilon_m}$$
.

Classifier ensemble methods - Order statistics

- Order statistics combiners that selectively pick a classifier on a per sample basis
- * Model error

$$E_{\text{model}}^{\text{ensemble}} = \alpha E_{\text{model}}$$

□ Alpha is a factor that depends on the number of classifiers M and the order statistic chosen and the error model

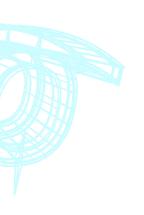
M	OS combiners	
	min/max	med
1	1.000	1.000
2	0.682	0.532
3	0.560	0.449
4	0.492	0.305
5	0.448	0.287
10	0.344	0.139
15	0.301	0.102
20	0.276	0.074

Real-world applications

- * Remote sensing
- * Person recognition
- * One vs. all recognition
- * Medicine

Real-world applications - Remote sensing

- * Classification algorithms needs
 - □ large number of inputs
 - patterns collected repeatedly for large spaces
 - □ large number of features
 - data is collected across hundreds of bands
 - □ large number of outputs
 - classes cover many types of terrain (forest, agricultural area, water) and manmade objects (houses, streets)
 - missing or corrupted data
 - different bands or satellites may fail to collect data at certain times
 - poorly labeled (or unlabeled) data
 - data needs to be post-processed and assigned to classes



Real-world applications - Remote sensing

- * Example applications
 - Random forests and mountainous terrain
 - Majority voting for agricultural land
 - Hierarchical classification of wetlands
 - Information fusion for Urban areas

Real-world applications – Person recognition

- * Person recognition is the problem of verifying the identity of a person using characteristics of that person, typically for security applications
 - Iris recognition
 - fingerprint recognition
 - ☐ face recognition
 - behavior recognition
 - such as speech and handwriting
 - recognizing characteristics of a person, as opposed to depending upon specific knowledge that the person may have (such as usernames and passwords for computer account access)
- * Problems
 - ☐ Involve multiple types of features
 - Difficulty in collecting good data
 - Different misclassification costs
 - Example, denying system access to a legitimate user vs. allowing access to an illegitimate user

Real-world applications - Person recognition

- * Example applications
 - ☐ Unobtrusive person identification
 - ☐ Face recognition
 - Multi-modal person recognition
 - User-specific speech recognition

Real-world applications - One vs. all recognition

★ Different types

- Anomaly detection
 - problem of detecting unusual patterns
 - i.e. what does not fit into the set of identified patterns
- Target recognition
 - finding what fits into an identified pattern
- Intrusion detection
 - solved both ways:
 - A. target recognition: look for one of a set of known types of attacks
 - B. anomaly detection: look for anomalies in the usage patterns

Real-world applications - One vs. all recognition

- * Example applications
 - Modular intrusion detection
 - Hierarchical intrusion detection
 - Intrusion detection in mobile ad-hoc networks

Real-world applications - Medicine

- * Different applications:
 - analyzing X-ray images, human genome analysis, and examining sets of medical test data to look for anomalies.
 - Root of all these problems: assessing the health of human beings
- Characteristics
 - ☐ limited training and test examples
 - i.e., few training examples due to the nature of problem and privacy concerns
 - imbalanced datasets
 - ie., very few anomalies or examples of patients with a disease
 - too many attributes
 - i.e., often many more than the number of training and test examples
 - different misclassification costs
 - i.e., false negatives significantly worse than false positives.

Real-world applications - Medicine

- * Example applications
 - Pharmaceutical molecule classification
 - MRI classification
 - ECG classification

Conclusions

* Each ensemble method has different properties that make it better suited to particular types of classifiers and applications

- New applications, domains with complex and rich data
- * Research areas:
 - Ensemble methods oriented at handling large amounts of diverse data
 - Clustering algorithms
 - Distributed classifier ensembles using active/agent-based methods

Gracias

