
Cooperative Multi-Agent Reinforcement
Learning for Multi-Component Robotic
Systems: guidelines for future research

Manuel Graña, Borja Fernandez-Gauna, Jose Manuel Lopez-Guede

July 2, 2011

Abstract

Reinforcement Learning (RL) paradigm aims to develop algorithms
that allow to train an agent to optimally achieve a goal with minimal
feedback information about the desired behavior, which is not precisely
specified. Scalar rewards are returned to the agent as response to its ac-
tions endorsing or opposing them. RL algorithms have been succesfully
applied to robot control design. The extension of the RL paradigm to cope
with the design of control systems for Multi-Component Robotic Systems
(MCRS) poses new challenges, maily related to coping with scaling com-
plexity up due to the exponential state space growth, coordination issues,
and the propagation of rewards among agents. In this paper, we identify
the main issues which offer oportunities to develop innovative solutions
towards fully-scalable cooperative multi-agent systems.

1 Introduction
Multi-Component Robotic Systems (MCRS) [22] are currently the focus of great
scientific interest because they are expected to provide solutions to the growing
set of applications that require groups of autonomous robots able to dynamically
adapt to changing environments and act in a coordinated way to perform tasks
that could not be performed by a single robot, or performing them in a more
efficient or economical way. Examples of such tasks are cooperative mapping
of an environment [2], establishing dynamic communication links, and driving
a hose to a goal [23, 24]. Among the desired properties of a MCRS control
algorithm, the most salient are:

• Resource scalability. Applications may require teams of robots of different
sizes depending on task specific parameters. The addition of new robots
must not degrade the operation of the whole system, implying that the
resources (memory and communication bandwidth) used by the control
algorithm must not grow exponentially.

1

• Automating system design. It is not desirable to rely the success of a
system on the expertise of the designer and it is preferable to develop tools
that can automatically tailor the system to new complex environments.
Automatic decomposition of complex tasks allows the definition of the
robot team coordination as workload distribution. .

• Heterogeneity. MCRS applications may include heterogeneous groups of
robots with different capabilities, including both sensors and actuators.
Thus, control algorithms should be able to deal with heterogeneous in-
puts and outputs, and also minimize the impact of less performing robot
individuals on the whole system’s performance.

• Decentralized control to obtain higher fault-tolerance than with central-
ized control. Decentralized control improves scalability because control
complexity grows linearly with the number of robots.

• Accurate control. Some mechanism is required to compensate for the
inherent delay introduced by the sensory-devices, control algorithm and
communications.

• Robustness to partial and noisy sensor data. In complex and noisy envi-
ronments it is a requirement that agents are able to carry on their tasks
even if they only have inaccurate and partial knowledge of the environ-
ment.

• Reasonable development time. Designing and fine-tuning the control al-
gorithm should require an affordable amount of time.

Often, developing control algorithms for MCRS cannot be approached analyt-
ically. Sometimes there is not even a proper model for the system to be con-
trolled and, even when such a model is available, system complexity hind their
analytical resolution. As an alternative to traditional control theory, Artificial
Intelligence techniques have been explored to provide robotic systems with tools
that enable them to learn by interacting with the environment, which can be
either the real world or a simulated one.

Reinforcement Learning (RL)[66] has been succesfully applied to develop
control policies for robotic systems in the recent past. RL algorithms deal
with learning how to maximize accumulated rewards received in a trial-and-
error fashion. This learning problem has mainly been approached using three
different families of algorithms: Dynamic Programming, Monte-Carlo and Time-
Difference methods. Agents are the subject of learning processes. Equating
agents to robots, training of decentralized control of MCRS can be viewed as
an instance of Multi-Agent Reinforcement Learning (MARL) systems. We will
consider, cooperative Multi-Agent systems designed to maximize the collective
utility of the system as a whole. On the other hand, competitive systems are
designed such that each agent only intends to maximize its individual utility[32,
50]. In fact, there is almost no literature on the application of MARL to learn

2

the control of MCRS-like systems, therefore the orientation of this paper is
towards the identification of promising lines of research.

Scalability refers to the ability of MARL to cope with growing size of the
system and environment. In MCRS this size is directly related to the number
of robots in the system. The need to provide a unified representation for the
states of the individual robots and their action policies implies a combinatorial
explosion of the state-action space which forbids some MARL approaches to
MCRS control learning.

This paper is structured as follows: we first give some background on RL
in Section 2. We review some of the main issues applying MARL methods to
the control of MCRS in Section 3. Section 4 identifies the main approaches
towards the development of scalable MARL systems that can lead to innovative
solutions of the MCRS control problem. Finally, Section 5 gives our thoughts
about some of the work yet to be done before they become a general solution
to real complex environments.

2 Reinforcement Learning
Single-Agent RL methods model systems as Markov Decision Processes (MDPs),
defined by a tuple (S,A, P,R), where S is a finite set of states, A is a set of
actions from which the agent can choose, P : S × A × S →[0, 1] is a transi-
tion function P (s, a, s′) that defines the probability of observing state s′ after
executing action a in state s, and R : S → R is the expected reward after
taking action a in state s. The policy applied by the agent to select the action
performed at each state is modeled in stochastic environments as a probability
distribution π : S ×A → [0, 1] giving the probability of taking action a in state
s. The goal of the agent is to maximize the accumulated rewards received.

Almost all RL algorithms estimate the value of being in a state s (it can
alternatively be viewed as the value of taking action a in state s), as the expected
accumulated rewards received by the agent from that state following policy π.
This estimation of the state value, denoted V π (s), can be expressed as:

V π (s) = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s

}
,

where st and rt are the observed state and reward at time-step t, Eπ {.} de-
notes the expected value from time step t given that the agent follows policy π
thereafter, and γ ∈ [0, 1] is a discount-rate parameter that penalizes lengthy se-
quences of actions by weighting early rewards higher than later ones, dampening
the value returned from late actions. There exists always one or more optimal
policies π∗ that maximize the expected state value, and all share a common
optimal value function V ∗ satisfying:

V ∗ (s) = max
a∈A

{
∑

s′

P (s, a, s′) [R (s) + γV ∗ (s′)]

}
.

3

Similarly, the value of taking an action a in state s is usually estimated using
the state-action value function Qπ (s, a), which can be written as

Qπ (s, a) = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s, at = a

}
,

where at represents the action taken at time-step t. The optimal state-action
pair is, therefore,

Q∗ (s, a) =
∑

s′

P (s, a, s′)
[
R (s) + γmax

a′
Q∗ (s′, a′)

]
.

An action selection policy π must also be defined to realize an MDP. While
the straightforward approach (greedy action selection) involves always selecting
the action with the highest Q-value, thus exploiting all available knowledge,
this prevents the agent from exploring yet unknown action-state pairs and thus,
hinders it to discover potentially better actions. The compromise between explo-
ration and exploitation is solved using either a ε− greedy algorithm (a random
action is selected with probability ε while the best action is chosen with proba-
bility 1− ε) or a Soft Max action selection based on a Boltzmann distribution:

π (s, a) =
eQ(s,a)/τ

∑
a′∈A

eQ(s,a′)/τ
, (1)

where τ is a positive temperature parameter, low values of τ increase the prob-
ability of taking actions with high Q-values, high-temperatures yield random
action selections. Reinforcement Learning (RL) deals with the discovery of the
optimal policy from the interaction between the MDP and its environment by
means of the rewards that the MDP receives because of its actions.

Dynamic Programming-based RL algorithms require complete knowledge of
probability distributions of all possible state transitions, therefore this require-
ment limits their applicability to complex real environments. On the other
hand, Monte-Carlo and Time-Difference methods need only a model that pro-
vides sample state transitions making these algorithms able to learn on-line.
Moreover, while Monte-Carlo methods learn after a finite amount of experience
is finished, Time-Difference methods can learn on a single time-step basis.

One of the best understood and most widely used Time-Difference algorithms
is Q-Learning, discovered by Watkins [74]. The original tabular Q-Learning
algorithm estimates the value of a state s′ on a one-step look-ahead fashion:
max
a′

{Q(s′, a′)}, endowing the agent with the ability to learn on a one-step
basis. This table is updated according to the following expression:

Q(s, a) ← Q(s, a) + α

(
r + γ ∗max

a′
Q(s′, a′)−Q(s, a)

)
, (2)

where α ∈ [0, 1] is an step-size parameter indicating how fast the agent is desired
to learn. In [74] convergence of Q-learning in a stationary environment to an

4

optimal policy with probability 1 is proved, as long as all state-actions pairs
keep being updated. This is a theoretically sensible condition, but hard to
meet in practice because an agent may not be able to explore sufficient space
to guarantee convergence. To relax this condition, Greedy in the Limit with
Infinite Exploration (GLIE) policies were proposed [61].

Initial approaches considered learning in a MCRS with n units as a unique
learning process (a single agent) that had access to all environment variables and
could control all robots applying simultaneous joint actions An ≡ {a1, . . . , an},
where ai ∈ A denotes the action applied by the ith robot. This kind of learn-
ing systems are known as team learning [50] and are not scalable to big robot
teams for obvious reasons: the size needed to store the Q-table grows exponen-
tially with the number of agents, even if we consider that the state space does
not grow, because the action-state space size order is O (| S ×An |). Besides,
centralized control is less fault-tolerant than distributed control. Concurrent
learning considers the presence of multiple agents implying that each of them
is entitled to select its own actions and learn for itself how to maximize its local
reward function. We have then an instance of Multi-Agent RL (MARL) [11].
In the cooperative MARL, a shared global reward is used as a quality assess-
ment of the whole system behavior. A naive approach to reduce the storage
requirements is limiting the environment information available to each agent,
expecting that maximizing local rewards will maximize the global reward, but
additional coordination mechanisms are usually required.

3 Issues of Multi-Agent Reinforcement Learning
for MCRS control

The main advantage of adopting the MARL framework for the development
of MCRS control algorithms is that the definition of the MDP modeling the
system whose control is to be learnt is a systematic way to deal with the prob-
lem, compared with ad-hoc designing and developing a control algorithm (even
using supervised learning methods). However, applying MARL algorithms to
MCRS raises several strong issues. Coordination-related issues are specific to
MARL algorithms, others are inherited from the basic single-agent RL methods,
which only may get worse in multi-agent configurations because of the added
complexity of the system.

• Resource scalability: The intractable growth of memory requirements is
the most serious limitation of the tabular representation of Q-matrices. In
single-agent problems the size order of the table is O (| S ×A |) and this
gets even worse in most MARL algorithms, growing exponentially as the
number of agents increase: | S×An |. This problem is known as the curse
of dimensionality and is the most serious limit to scale up the single agent
RL Q-Learning. Besides, communication resources needed for RL also
scale up combinatorially with the number of robots/agents. Hierarchical
solutions [26] can be considered to face this problem. Single-agent RL

5

requires chosen actions to be transmitted to all agents at each time-step
and multi-agent explicit-coordination mechanisms require even a bigger
communication bandwidth for the agents to agree on a joint action.

• Action Heterogeneity: In standard RL formulation all actions span the
same fixed amount of time. This is not a very realistic assumption in
MCRS. Action are abstractions of operations performed with different
electronic devices which usually require different amounts of time to per-
form equivalent actions. For example, if an action consists in the motion
across a length of space, heterogeneous robotic units could require differ-
ent amounts of time to complete the action. Furthermore, different actions
may require wide differences in time in the same robotic unit, i.e. moving
versus switching on/off a LED. Dealing with this time dimension means
adding the complexity of synchronization on top of coordination.

• Decentralized control: A major issue towards achieving multi-agent coor-
dination through MARL is that the environment becomes non-stationary
from the individual agent point of view because other agents’ policies will
change during the learning process. This is likely to produce oscillations
and unexpected behaviors. This problem has been extensively studied as
an Stochastic Game, leading to the concept of Nash Equilibrium [11]. If
each agent follows an optimal policy relative to other agents’ optimal poli-
cies, then the system is said to have reached Nash Equilibrium. However,
there may exist more than one optimal policy achieving Nash equilibrium.

• Control delay: All on-line RL algorithms follow the same iterative pattern:
observe the state, select an action and then issue the appropriate command
to the actuators. This is completely safe in an ideal scenario where acquir-
ing the state, executing the action selected and transmitting the command
introduces no time delay, but in real life observation, communication and
decision consume time and add complexity to the synchronization issue.
I.e. coordination algorithms [29, 39] introduce complex communication
protocols to agree on a joint action to be taken.

• Robustness to partial and noisy sensor data: Most approaches assume om-
niscient agents aware of all the sensed information, but this approach is
unrealistic in complex environments facing serious limitations , i.e. physi-
cally limited and error-prone communications, sensor physical limitations
and/or obstacles. Furthermore, noisy measurements are likely to be per-
ceived as different states in multi-agent environments. Therefore, algo-
rithms that maximize the success possibilities in the presence of incom-
plete and noisy data are desired.

• Convergence time: Before the MCRS can be effectively controlled, the RL
algorithm must explore the state-action space. The time required for this
learning process can be unaffordable in real applications with large state-
action spaces and thus, methods for a faster on-line learning are desirable.

6

MARL systems may require even greater learning time because of the
coordination requirements introduced.

4 Avenues for research
In this section we identify approaches found in the literature that may be sources
of innovative solutions for the MCRS control problem, overcoming the complex-
ity explosion of such systems. The main categories of these approaches deal with
alternative system models, valuation functions, task decomposition and ways to
structure the learning process.

4.1 Alternative System Models
Several modeling enrichments developed in the context of single-agent RL can
be extended to MARL in order to cope with some specific features of MCRS or
with its inherent scaling problem. These enrichments are focused in the state
identification or in the modeling of actions. They propose variations of the basic
MDP underlying the RL.

4.1.1 Modeling action duration

The basic MDP model assume actions to have the same duration, preventing
the use of abstract or heterogeneous actions such as Open-the-door or Move-
East. Semi-Markov Decision Processes (SMDPs) were introduced [52, 43, 10]
to allow the definition of actions that may take different amounts of time to
finish. Denoting N (a) the number of time-steps required by an action a ,
the duration dependent transition and reward functions can be reformulated as
P (s, a, s′, N (a)) and R (s,N (a)), respectively. This SMDP model only consid-
ers indivisible variable-length actions and does not provide any way to model
the nature of these timed actions (also called macro-actions, abstract actions or
sub-controllers in the literature).

Sutton et al. propose in [64] a more general framework defining Markov
Options as a generalization of primitive actions that have three components: a
policy π : S ×A → [0, 1], a termination condition β : S+ → [0, 1], and an initia-
tion set I ⊆ S , where S+ represents the regular states plus the terminal states.
To handle optional timeouts, Semi-Markov Options allow to model termination
conditions and policies which may not only depend on the current state st+k

but on the whole sequence of states observed since the Markov option started
in state st: (st, at) , (st+1, at+1) . . . , st+k. Semi-Markov Options are therefore
defined by a policy π : Ω × A → [0, 1], a termination condition β : Ω → [0, 1],
where Ω denotes the set of state sequences. The set of selectable options at any
given state s is denoted Os and the whole set of options is thus O = ∪

s∈S
Os.

The approach allows defining policies over options: µ : S ×O → [0, 1] .
This modeling framework is very appealing, offering a huge set of possi-

bilities, such as to abort an option if a better one is available, and to define

7

sub-goals considering transitions between sub-goals as sub-problems easier to
learn. This could be of direct application to the modeling of synchronization
situations in MCRS control, when some robot units must wait until some con-
dition is accomplished by other units. However, the programmer is expected to
provide a complete set of policies, which can be a hard task. The approach is
not easy to scalable to large and complex problems.

4.1.2 Partially Observable Models

The focus of partially observable models is the unability to have complete knowl-
edge of the system state, so that the process must be guided by the partial
knowledge provided by an observation function which returns measurements
that can be used to learn policies despite ignorance of the full state effect of the
actions.

A Partially Observable MDP (POMDP) [36] is defined as tuple (S,A, P,R,Ω, O),
where the tuple (S,A, P,R) describes a MDP, Ω is a finite set of past environ-
ment observations the agent has made, and O : S×A → Π(Ω) is the observation
function, specifying a probability distribution over possible observations such
that O (s′, a, o) is the probability of making observation o given that the agent
took action a reaching state s′. No distinction is made in this model between
actions meant to change the environment or to observe it, and belief estimations
are used to take decisions. Decentralized-MDP (DEC-MDP) and Decentralized-
POMDP (DEC-POMDP) models respectively extend MDP and POMDPs to the
cooperative multi-agent case using a global reward, but this kind of systems is
known to be very hard to scale because of their NEXP-complete complexity[7],
and only a Dynamic Programming algorithm has been proved to optimally solve
them[6]. DEC-POMDP with Communication further yet expands this model
immediate and costly communications, communication decisions and rewards
depending on communications in the model. Estimating the whole environ-
ment state from a set of observed measurements has also been approached as a
generalization problem, i.e. using Recurrent Neural Networks[58].

4.1.3 Automatic State Abstraction

Automated state abstraction approaches consider the problem of aggregating
states into state partitions that share some common properties. This approach
tries to cope with the combinatorial explosion of the state space through a hi-
erarchical decomposition approach. Early work in automatic state abstraction
include statistical t-test analysis to measure the relevance of binary state vari-
ables [12] and soft-aggregation methods to map state projections [62, 47]. Fuzzy
theory has also been applied to obtain abstractions of state sets and generalize
over them[4, 5, 21]. Some authors have also empirically studied different manu-
ally set state abstraction operations, such as [25] which studied symmetry and
multi-agency homomorphic mappings. Homomorphisms may allow to reduce
the size of MDPs, but they do not guarantee that the reduced problem is rel-
evant to solve the original one. [42] proposed a unified theoretical framework

8

to define abstractions and studied some properties of five different abstraction
operations, giving some interesting insights into their respective benefits and
limitations. This approach can be of use for MCRS because the state space nat-
urally partitions into the local states of the robots, plus some variables modeling
coordinations/synchronization processes.

In robotic applications, this procedure leads to the partition of the configuration-
action space into continuous compact regions of similar or equivalent rewards
in the sense of contributing to the fulfillment of the assigned task. A notion of
equivalence based on bi-simulation is introduced in [27]. The authors propose
to aggregate states that are both action sequence equivalent and optimal value
equivalent. An algorithm is proposed to optimally reduce a MDP to an equiv-
alent one so that the optimal policy over the reduced MDP is also the optimal
policy for the original model.

Another interesting approach consists in defining some state variable rele-
vance criterion [33]. Assuming that the state space S is the cartesian product
S = X × Y of the state variable sets X = {X1, ..., Xn} and Y = {Y1, ..., Ym},
[s]X is defined as the projection of S onto X and using s′ |= [s]X to denote that
s′ agrees with s on every state variable in X, Y is said to be policy irrelevant if
an optimal policy is optimal for both the original state space and the projected
one, formally: ∃a; ∀s′ |= [s]X ; ∀a′;Q∗ (s′, a) ≥ Q∗ (s′, a′). A statistical hypothe-
sis test is proposed to determine how relevant a state variable is, but it requires
an optimal value function. [14] proposes to measure the variance of the value
function among states that only differ in the value of one state variable, there-
fore estimating the relevance of variable states before the actual value function
is available. This is particularly interesting for task decomposition approaches,
because using only subtask-relevant variables can further reduce the complexity
of subtasks, yielding higher scalability.

4.2 Value Function Approximation
The most straight-forward approach to avoid the exponential growth of the stor-
age requirements in Q-Learning is to use a Value Function Approximator (VFA)
instead of the tabular representation of the value function Q. These approaches
provide generalizations of available experience estimating a response to yet un-
observed states, and some of them involve also abstraction, for they need not
store the observed experience after the VFA is updated (trained) accordingly to
it. Many general-purpose function approximators have been reported to build
VAFs: Local Linear Regression [67], weighted Radial Basis Functions [40], Cere-
bellar Model Arithmetic Computers [8, 65], Artificial Neural Networks [17, 76],
instance-based approximators[1], and Least Squares Policy Iteration[29]. It has
been discussed whether VAFs might be appropriate in the general case (in favor
[65], against [9]), because of the assumptions on the topology of the functions
[63]. They remain to be applied to MARL systems. VAF approaches can be
directly related to state aggregation, because they can be defined on the aggre-
gated values providing a hierarchical evaluation of the value function.

9

4.3 Automatic Task Decomposition
After manually designed task decomposition was successfully applied to increas-
ingly complex environments[53], the automatic decomposition of tasks became
a hot subject and it has thereafter focused great scientific interest [15], because
of the inherent scalability of automated approaches.

A medium level of automation is introduced in [59], which proposes defining
some basic MAXQ hierarchy to introduce domain knowledge in the system and
using options to learn subtasks in some hierarchy level. After constructing a
transition-graph, vertices are clustered using an artificial immune network model
until a preset number of clusters (options) are discovered.

Another approach is HEX-Q [31], a method that automatically discovers
hierarchies in single-agent RL problems by finding repeated sub-structures, but
is limited to work in environments meeting three conditions: (a) some of the
variables in the state vector change less frequently than others, (b) variables
that change more frequently retain their transition properties in the context
of the more persistent variables and (c) the interface between regions can be
controlled. This is most likely to work in structured environments, such as
buildings with different number of floors and rooms, and requires a coherent
representation of state variables. The algorithm first constructs a Directed
Graph and clusters the states by the less often changing state variables (i.e. the
floor), then decomposes it in Strongly Connected Components (SCC), which
are further combined to recursively form regions maximizing their size. States
that are part of trajectories between different regions are labeled as exits and
entries.

More general approaches [13, 45, 48, 60] are based on transition-graphs par-
titioning techniques. First, the state space is randomly explored while storing
the history of observed state-transitions, then a transition-graph is built from
transition history, usually building a directed graph G = (V,E), where set V is
the set of vertices representing states (V ∈ S) and E is the set of edges (s, s′)
representing observed transitions s → s′ between states. Defining subtasks in
a transition-graph is commonly considered as a clustering problem, implicitly
assuming state clusters are considered subtasks to be solved towards reaching
sub-goals, which have been identified as states with a high reward gradient [20]
or states that are often visited on successful trajectories [46], but mostly, sub-
goals are identified as bottlenecks (such as a door separating two rooms) between
densely connected state clusters. Reaching a sub-goal state or region of states
is usually considered a subtask. The Q-Cut algorithm [48] was proposed using
the Min-Cut procedure to partition the directed graph using network flow anal-
ysis. This partition algorithm has complexity O

(
m3

)
, where m is the number

of nodes or states, and uses the complete transition-graph meaning it doesn’t
scale well to the number of states. Relative Novelty (RN)[3] was proposed as a
means of overcoming this limitation. It only considered the last observed tran-
sitions, thus bounding m, and even more important, its execution complexity
on the number of nodes is O (1). The downside is the use of parameters that
need to be set heuristically. L-Cut [60] was presented as a more scalable par-

10

titioning algorithm than Q-Cut and, just as RN, it only considered part of the
state transitions. To measure the quality of a binary partition, a normalized cut
metric was chosen (NCut) and, because computing the partition that minimizes
NCut is a NP-hard computational problem, the algorithm approximated this
metric for every m− 1 possible binary partition by using spectral graph theory.
The complexity is O

(
th3

)
where t is the number of transition samples and h

the number of nodes of the local transition-graph (note that h - m). Towards
a fully-automated process, [14] proposed the use of the smoothness property
of the second smallest eigenvector of the Laplacian to recursively partition the
transition-graph until a predefined number of clusters is reached. [45] proposed
using small sets of states rather than unique states as sub-goals and presented
two heuristic methods for clustering: (a) by topology: given a preferable size
of clusters, their quality is proportional to the size of the smallest cluster and
(b) by value: states are clustered so the value differences are minimized in each
cluster.

Recently, Dynamic Bayesian Networks (DBN) have been proposed to ap-
proximate state transition probabilities of a factored MDP. They presented the
Variable Influence Structure Analysis (VISA)[34, 35] algorithm, that following
some of the concepts of the HEX-Q approach, decomposed factored MDPs into
SCC and was able to neglect state variables irrelevant to an SCC. This algo-
rithm requires the existence of two or more SCC and that a DBN is given, which
cannot be assumed in most problems.

Task decomposition has also been approached using Diverse Density to solve
a Multiple-Instance Learning Problem[46], identifying sub-goals as small sets of
states often visited in successful trajectories.

4.4 Structured Single Agent Reinforcement Learning
Learning processes can be simplified by decomposing tasks into more manage-
able subtasks, thus reducing the original problem complexity. This decomposi-
tion has the additional advantage of reducing the total amount of information
required to solve the problem, if subtasks are appropriately defined. There are
two main Structured RL approaches: Modular Reinforcement Learning (MRL)
and Hierarchical Reinforcement Learning (HRL). The former considers execut-
ing concurrent subtasks, while the latter defines a hierarchical structure of tasks.
To illustrate the approaches we will consider this variant of the classical taxi
driver problem [18]: a taxi driver has to transport a passenger from his current
location to some predefined goal position and can choose an action a ∈ A ,
where A={Pick, Leave, Move-North, Move-East, Move-South, Move-West} .

4.4.1 Modular Reinforcement Learning

A modular approach involves learning different subtasks or behaviors concur-
rently and using a Module Mediator (also referred to as Module Arbiter in the
literature) responsible for action selection, as represented in Figure 1(a). Each
module has its own Q matrix representing its partial knowledge of the world

11

!"#$%#&'(

)*%'+,+-
.$/(0(#*1

!"#$%&'#(($)$#*)

'+,,-&.+))/*0/,
1#&0#+(

2$*$3$4/&56/(
/7./*%$16,/

.*+(&',%2
.$/(0(#*1

!8

3&4$2*
3*4,%#&'

!9

!:

" 8

" 9

":

"

(a)

!"#$%&%'
()*+,+-".

!""#

$%&'
(%))'*+',

-'%.'
(%))'*+',

/01&
!'%12

(%))'*+',
!'%12
+"%3

-'%.'

4".'
5%)#

4".'
6')#

4".'
7",#2

4".'
8"9#2

("%+/$�
()*+,+-".

12-)#-/$+
! "

(b)

Figure 1: Examples of Structural Reinforcement Learning for the classical taxi
driver problem: (a) MRL, (b) HRL

12

state si. An agent-level module selection or action selection policy chooses
an action from modules preferences, such as the Greatest Mass (GM) strategy
[75, 49]:

π(si) = arg max
a∈A

{
m∑

i=1

Qi(si, a)

}
, (3)

which selects the action that maximizes the sum of local agent Q-values. The
work [30] gives a full review of different action selection policies π : {A,R}m →
A, based on letting the ith agent to propose a single action ai ∈ A with an associ-
ated weight wiεR. In other words, the agent specifies what the a module “wants
to do” and “how important” this action is for it. A variety of different importance
interpretations and action selection algorithms are discussed, such as Minimize
Worst Unhappiness, Strict Highest W, Maximize Best Happiness, Maximize Col-
lective Happiness, and so on. More sophisticated approaches[68, 56] use gating
signals to decide which module is designed responsible in each state and some
authors have studied how to share the reward among modules[77]. The main
advantage of this approach is that it allows to learn different concurrent sub-
tasks in a fairly simple way. On the other hand, agent-level action selection
could lead to unpredictable behavior and modules may even compete imposing
their preferences to the rest.

4.4.2 Hierarchical Reinforcement Learning

Whereas MRL deals with concurrent tasks, HRL decomposes complex tasks
into sequentially executed simpler subtasks which are executed from the upper
subtask in a recursive manner. Figure 1(b) shows one such a hierarchical de-
composition for the taxi problem. Subsystems performing these subtasks are to
be separately trained in order to solve the global task.

MAXQ algorithm. One of the most extensively used HRL algorithms is
MAXQ [18, 19], which is based on HAMQ algorithm [51, 52] and decomposes
a MDP into a set of subtasks or subroutines {M0,M1, . . . ,Mm}, each defined
as a tuple Mi =

{
Ti, Ai, R̄i

}
, where Ti is a subset of states Ti ∈ S in which

subtask Mi is terminated, Ai is a set of allowed actions during execution of
Mi (either primitive or composite), and R̄i (s′) is a pseudo-reward function
that maps termination states s′ ∈ Ti into real values indicating how desirable
they are. The key feature of this approach is that the ith task’s value function
Q (i, s, a) can be decomposed into two components, nam ely, the expected reward
received from executing subtask a, denoted V (a, s), and the expected received
reward from the end of subtask a until the completion of parent task Mi, which
is also know as the completion function:

Cπ (i, s, a) =
∑

s′,N

Pπ
i (s′, N | s, a) γNQπ (i, s′, π (s′)) , (4)

13

where Pπ
i (s′, N | s, a) represents the probability of observing state s′ exactly

N time-steps after executing action a in state s following policy π. Then, the
function Qπ is expressed as follows

Qπ (i, s, a) = V π (a, s) + Cπ (i, s, a) , (5)

and V π (i, s) is of the form:

V π (i, s) =





Qπ (i, s, πi (s)) if Composite (Mi)∑

s′
P (s′ | s, i)R (s′ | s, i) if Primitive (Mi)

. (6)

This decomposition allows a compact representation and only requires to store
the Q function for composite subtasks and V values for primitive actions. Fur-
thermore, MAXQ gives the ability to use different state abstractions because
probably not all state variables are relevant to all subtasks. Shared subtasks is
another added advantage: for example, subtasks Reach-Passenger and Reach-
Goal in the Figure 1(b) could be collapsed into a single parametrized subtask
Reach(t) shared by both Take-Passenger and Leave-Passenger, where t repre-
sents the destination as a parameter of the subtask.

This approach relies heavily on the designer’s knowledge of the domain and
ability to select appropriate subtasks. Because the hierarchy of tasks imposes a
hierarchy of policies, each subtasks will reach a locally optimal policy, not taking
into account the context in which it is executed, maybe leading to a globally
suboptimal policy.

Multi-Agent MAXQ. Although the MAXQ framework was developed for
single agent systems, [44] adopted it and extended it to the Cooperative HRL
algorithm, studying the use of joint-actions to coordinate homogeneous agents.
These joint-actions are high-level subtasks (ideally from the level below the root)
and thus provide a higher capability to scale up than sharing primitive actions.
Agents only have knowledge of what other agents are doing at a high-level (i.e.
in a multi-agent taxi scenario, an agent would know whether other agents are
approaching a passenger, but not what low-level actions they are performing).
This approach implicitly assumes that agents do not interfere with each other
and it also implies immediate and reliable communications. A more general
algorithm know as COM-Cooperative HRL that considered costly but immediate
communications and modeled these as an abstraction level below the root node,
so each agent learns when to and even with whom to communicate, is presented
in [26]. The main drawback remains the dependency upon a correct hand-made
design, which is not likely to scale up properly in complex environments, where
a more automated approach is more desirable.

4.4.3 Hybrid Structures

Trying to have both the concurrent computation of modular structures and the
task decomposition of hierarchical structures, [55] proposes concurrent options

14

using disjoint action spaces which don’t interfere with each other. Another
hybrid approach is to define hierarchies of module groups [69], each group re-
sponsible of solving a specific subtask in the hierarchy. A big problem that
affects nearly all modular approaches and has yet not been solved are the in-
terferences between different modules, which are likely to happen unless they
operate on specific disjoint spaces.

4.5 Cooperative Multi-Agent Reinforcement Algorithms
In fully-cooperative systems, agents should coordinate to achieve the team goal
and most authors consider a unique shared reward signal. The amount of infor-
mation shared between agents has been reported to influence the cooperation
of a team [70], and three different categories have been proposed according on
the degree of coordination of the algorithm: coordination-free, indirectly coor-
dinated and coordinated methods. We will review the most generally applicable
methods and refer the interested reader to [11] for a more in-depth review.

4.5.1 Coordination-free MARL

Coordination free MARL can be appropriate for some specific MCRS with tasks
such as the displacement of objects by independent mobile robots. In such cases,
the coordination is based on the actual state of the object in the environment,
which acts as an external independent marker.

The most simple of cooperative MARL methods is to use agents unaware
of the actions taken by the rest. This approach offers a great reduction of the
state-action space size. It grows linearly instead of the exponential growth (n
tables with | S ×A | entries instead of one with | S ×An | entries) and involves
no coordination mechanism. Independent Learners were studied in [16] mostly
as a benchmark for coordinated methods. Because of the lack of a coordination
mechanism, the system cannot be guaranteed to converge to neither a stable nor
a globally optimal policy. Nevertheless, it has been quite successfully applied to
some cooperative problems with low cooperation requirements.

The work in [41] studied making optimistic assumptions about the behavior
of the rest of agents. This method too is only aware of the local action instead
of the global joint action, but it updates the Q-matrices only when the resultant
state-action value is higher than the previous one. This method has been proved
to converge to a globally optimal policy and requires no explicit communication,
but is only suitable to deterministic environments.

4.5.2 Indirectly Coordinated MARL

In indirect coordination MARL, the agents try to estimate the policy of the
remaining agents, in order to integrate them into the local decision making
process. This is the case in some mobile robot applications, such as exploration
or robot formation[54]. Some authors have proposed several heuristic algorithms
[16, 37] to estimate the most likely response of the rest of agents using models.

15

!"#$%&'

!"#$%&(

!"#$%&)

Figure 2: Coordination Graph example

Those models are dynamically built from observed experience and are used to
bias local policies towards coordinated joint actions.

On the other hand, each state in a MDP can be regarded as virtual state-
less Stochastic Games (SG) and some adaptive methods [47, 73] have been
proposed to provably bias local action selection towards a globally optimal joint
action. Still, these approaches require additional memory resources and knowl-
edge about the optimal Q∗function, limiting their scalability to increasingly
greater problems.

4.5.3 Coordinated MARL

The coordinated MARL perform the integration of the local policies into global
(optimal) policies encompassing all the agents. They aim to decide the (optimal)
joint-action of all the agents to be performed at each time instant. These ap-
proaches can be useful for linked systems, such as the Linked MCRS discussed in
[23]. Distributed Rewards and Distributed Value Functions were studied in [57]
as a way to estimulate and control cooperation between neighbors. Instead of
updating the state-action values using only the local reward or value functions,
agents also used weighted rewards or state-action values of their teammates.
This methods scales linearly to the number of agents, but offer no guarantees
of optimality.

The Coordinated Reinforcement Learning (Coordinated-RL)[29] approximates
the global joint value function as a linear combination of local value functions
[28]. The complexity of agreeing on a globally optimal joint action can be re-
duced assuming that agents need not to coordinate with all the rest of agents,
but with a smaller subset. These coordination dependencies between agents are
context-specific, can change dynamically and can be defined as a Coordination-
Graph denoted CG = {V,E}, where undirected edges eij ∈ E represent a
coordination dependence between agents i and j, such as the one in Figure 2.
Each of the n agents has a local Qi function approximating its contribution to
the global function Q =

n∑
i=1

Qi (si, ai), and the goal is to select a joint-action

{a1, a2, . . . , an} that maximizes the expected global reward. The use of the CG
reduces the state-action space by defining which actions are relevant to each Qi

function, and it can still be further reduced by identifying which state variables
are relevant to each local value function (si ∈ Si ⊆ S). In the example of Fig-

16

ure 2, the coordination task is to find the joint actions that maximize the joint
reward given by the addition of the individual rewards:

(a∗1, a
∗
2, a

∗
3) = arg max

(a1,a2,a3)
{Q1 (s1, a1, a2, a3) +Q2 (s2, a1, a2) +Q3 (s3, a1, a3)} .

(7)
A Variable Elimination (VE) procedure is needed for the agents to agree on a
joint-action. The use of a CG gives the chance to maximize the global value
function by maximizing one variable at a time, which can be viewed as con-
ditioned maximization. An agent is chosen to communicate its expected local
reward for each action to one of its neighbors. Then, this agent can be elimi-
nated from the graph and the selected neighbor can compute that action that
maximizes its local value function for each of the possible choices of the first
one. This procedure is applied to the remaining agents. When only one agent
is left, it computes the global maximum and the joint action is propagated with
another pass over the CG. While this algorithm can be implemented using a
simple message-based protocol and always computes the global optimal joint-
action no matter the selected elimination order, time constraints can render this
approach not suitable for real-time systems.

Two alternative anytime algorithms were proposed in [72] to agree on a
joint-action: Coordinate Ascent (CA) and the Max-Plus algorithm. Instead
of trying to find the absolute maximum, they are both real-time (suboptimal)
approximations. CA starts with a randomly generated joint-action and agents
change their local action ai, one at a time, so as to maximize their local function
until the global value function cannot be further improved. Depending on time
constraints, more than one random start could be generated, and when the
time limit is reached, the joint-action with a highest value can be selected. More
sophisticated search algorithms, such as evolutionary algorithms, could be used.
Max-Plus is well-known asynchronous method for estimating the maximum-a-
posteriori configuration in an undirected graph. Only local messages between
agents representing the local value function are needed to compute the globally
optimal joint-action, but although it is know to converge in a finite number of
steps for graphs without cycles, no guarantees are given about the amount of
steps required to converge. A variant of the Max-Plus algorithm is proposed
in [39]: agents compute from time to time the global value function and only
update the joint-action when updates improve the global value function. A
deadline signal is assumed to end the joint-action selection process.

Analogously, Sparse Cooperative Q-Learning[38] (or SparseQ) is a distributed
version of the traditional Q-Learning for which two global value function decom-
position methods have been proposed[39]: agent-based (equivalent to Coordinated-
RL) and edge-based. Edge-based decomposition approximates global value for
each edge of the CG instead of doing so for each agent: Qi =

1
2

∑
Qij
eij∈E

(sij , ai, aj).

Two different update rules are given: edge-based and agent-based update. Em-
pirical experiments show that both storage requirements and joint-action calcu-
lation for both Coordinated-RL and agent-based SparseQ grow exponentially in
the average degree of the CG. Better scalability properties are shown for edge-

17

based SparseQ when a anytime algorithm is used to approximate the value-
maximizing joint-action.

4.6 Transfer Learning
Based on the idea of incremental learning, Transfer Learning (TL) [53, 71]
speeds up learning of a target task using available knowledge from a source
task. In a RL context, the general TL approach can be viewed as using knowl-
edge about a source MDP < S′, A′, P ′, R′ > to improve learning in a target
MDP < S,A, P,R >. Several different approaches can be found in the litera-
ture. [71] categorizes them by their features: differences allowed between source
and target MDPs, how source tasks are selected, how to map different state
spaces, the transferred knowledge, the allowed learners and the metrics used to
measure improvement.

5 Conclusions and discussion
We propose the MARL as an appropriate paradigm to develop control algo-
rithms for MCRS, describing some of the common issues found applying the
basic RL algorithms regarding the desired properties of MCRS presented in
Section 1. We have also reviewed some of the main current RL and MARL
innovation trends that can lead to scalable solution for MCRS control. In this
final section, we will discuss the potential contributions of MARL to review the
problems described in Section 3, pointing out which techniques have addressed
them and which ones still remain open.

• Resource scalability: Two different resources have been considered, mem-
ory size and communication bandwidth. The memory requirements can be
effectively reduced using any of the existing VFA, because they dramat-
ically reduce the storage requirements and are able to generalize for un-
known inputs. RL and MARL performed using VAF can be less accurate
because the underlying interpolation may induce some loss of information.
They involve training processes besides the RL which can be very sensitive
to environment changes, degrading the performance of the system. Auto-
mated state abstraction mechanisms, on the other hand, usually require
more memory resources than VFA and depend on the topology of the state
space. The literature on the subject usually uses highly structured envi-
ronments which may not always be the case in real MCRS applications.
Some compromise between state representation accuracy and memory re-
quirements might be desirable to obtain higher scalability. Communica-
tion bandwidth requirements are higher in MARL methods than in single-
agent RL scenarios. They can be minimized when a Coordination Graph
is used to determine coordination requirements. This dynamic graph is
problem dependent. Thus, the scalability of these approaches depends on
the specific coordination requirements of the problem.

18

• Action heterogeneity: Temporal abstraction frameworks seem applicable
to heterogeneous robotic systems, because action durations can be mod-
eled decomposing them into time-steps. It must be noted, though, that no
application example can be found in the literature where a RL algorithm
controls several robotic systems with heterogeneous actions and some more
work in this area would be interesting.

• Decentralized control: MARL algorithms are the natural approach to
achieve decentralized control. There are plenty cooperative MARL algo-
rithms in the literature the most interesting areas of research seem to be
coordinated and indirectly coordinated MARL algorithms, because they
are able to deal with stochastic environments.

• Control delays: No relevant literature can be found regarding this issue
in RL algorithms. This is a big issue in coordinated MARL algorithms
because, even using anytime algorithms, because the state must be first
observed and the system must agree on a joint action before an action
can be taken. Thus, there will be inevitably some delay from the time an
action finishes until the system takes the next one. Using some estimator
to predict the next state, such as Kalman Filters, could alleviate this.
Assuming the action selection algorithm is executed each T ms, that it
needs tc ms to execute the whole control algorithm and tp ms to predict
the next state, the system could take an action at t = t0, use the state
predictor at t1 = t0 + T − tp − Tc and run the entire control algorithm at
t2 = t1 + tc using the estimated state instead of the observed one. This
way, the system could take next action exactly at t3 = t0 + T .

• Robustness to incomplete and noisy sensor data: The use of PODMP can
yield higher applicability than MDP in environments in which not all state
variables can be observed, but there is currently no scalable model-free RL
algorithm able to deal with them.. Noisy sensor data is a huge problem
in coordination-free MARL algorithms, because they all rely on an accu-
rate shared perception of the environment, but in real applications, local
measurements are likely to produce different perceptions of the state. An
interesting approach could be to use of other AI tools such as Neural
Networks to learn the model and estimate non-observable state variables.
Using an estimator could also be helpful in the presence of noisy measure-
ments. Communication has also been pointed out as a way of reducing
that dependence upon a consistent perception of the environment [11].

• Convergence time: Learning the control algorithm in a real environment
can be time-wise unaffordable and this is a big issue towards scalable
systems. Two different main trends have been found in the literature:
transfer learning and task decomposition techniques. Transfer learning
can be used to take benefit of simulated off-line experience in a real envi-
ronment. An interesting line of work would be to simulate off-line models
sampled from on-line experience, because this would not require the sys-
tem designer to have expertise on the specific domain. On the other hand,

19

task decomposition can be used to reduce the complexity of the task to
be solved and therefore reduce the time needed to develop a control algo-
rithm. Manual approaches such as the original MAXQ algorithm require
domain knowledge, and we find automated state abstraction and sub-goal
identification to be the most interesting topics in this area because au-
tomatic complexity reduction approaches are more likely to be scalable.
Nevertheless, the literature lacks automatic state abstraction and sub-goal
identification examples of MARL applications.

Although it might seem that most of the reviewed issues can be already ad-
dressed, there exists no universal scalable solution and more scientific effort
should be put towards developing more general methods offering all of the de-
sired MCRS properties. Hybrid approaches mixing both RL methods and other
AI tools pose an interesting venue for improving scalability. For example, while
model-free learning is very appealing because of its huge applicability to un-
known environments, the use of models can alleviate some control issues such
as accuracy. An interesting compromise between both worlds could be using
model-free learning method to learn a experience-based model, which could be
used to predict unknown behaviors.

References
[1] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning

algorithms. In Machine Learning, pages 37–66, 1991.

[2] R. Aragues, J. Cortes, and C. Sagues. Distributed consensus algorithms
for merging feature-based maps with limited communication. Robotics and
Autonomous Systems, 59(3-4):163 – 180, 2011.

[3] Andrew G. Barto. Using relative novelty to identify useful temporal ab-
stractions in reinforcement learning. In In Proceedings of the Twenty-First
International Conference on Machine Learning, pages 751–758. ACM Press,
2004.

[4] Hamid Berenji. Fuzzy reinforcement learning and dynamic programming.
In Anca Ralescu, editor, Fuzzy Logic in Artificial Intelligence, volume 847
of Lecture Notes in Computer Science, pages 1–9. Springer Berlin / Heidel-
berg, 1994.

[5] H.R. Berenji. Fuzzy Q-learning for generalization of reinforcement learning.
In IEEE Press, editor, Proc. of the Fifth IEEE International Conference
on Fuzzy Systems, volume 3, pages 2208 – 2214, 1996.

[6] Daniel S. Bernstein. Dynamic programming for partially observable
stochastic games. In In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, pages 709–715, 2004.

20

[7] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-
stein. The complexity of decentralized control of markov decision processes.
In Mathematics of Operations Research, page 2002, 2000.

[8] Michael Bowling and Manuela Veloso. Scalable learning in stochastic
games. In In: AAAI Workshop on Game Theoretic and Decision Theo-
retic Agents, pages 11–18, 2002.

[9] Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement
learning: Safely approximating the value function. In Advances in Neural
Information Processing Systems 7, pages 369–376. MIT Press, 1995.

[10] Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods
for continuous-time markov decision problems. In Advances in Neural In-
formation Processing Systems, pages 393–400. MIT Press, 1994.

[11] L. Busoniu, R. Babuska, and B. De Schutter. Comprehensive survey of mul-
tiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics. Part C: Applications and Reviews, 38(2):pp. 156–172, 2008.

[12] D. Chapman and L.P. Kaelbling. Input generalization in delayed reinforce-
ment learning: An algorithm and performance comparisons. In Learning
and Knowledge Acquisition, IJCAI 1991, pages 726–731. Morgan Kauf-
mann, 1991.

[13] Chung-Cheng Chiu and Von-Wun Soo. Subgoal identification for reinforce-
ment learning and planning in multiagent problem solving. In Paolo Petta,
Jï¿œrg Mï¿œller, Matthias Klusch, and Michael Georgeff, editors, Mul-
tiagent System Technologies, volume 4687 of Lecture Notes in Computer
Science, pages pp. 37–48. Springer Berlin / Heidelberg, 2007.

[14] Chung-Cheng Chiu and Von-Wun Soo. Automatic complexity reduction in
reinforcement learning. Computational Intelligence, 26(1):pp. 1–25, 2010.

[15] Chung-Cheng Chiu and Von-Wun Soo. Advances in Reinforcement Learn-
ing, chapter Subgoal Identifications in Reinforcement Learning: A Survey,
pages pp.181–188. InTech, 2011.

[16] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learn-
ing in cooperative multiagent systems. In In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 746–752. AAAI Press,
1997.

[17] Robert Crites and Andrew Barto. Improving elevator performance using
reinforcement learning. In Advances in Neural Information Processing Sys-
tems 8, pages 1017–1023. MIT Press, 1996.

[18] Thomas Dietterich. An overview of maxq hierarchical reinforcement learn-
ing. In Berthe Choueiry and Toby Walsh, editors, Abstraction, Refor-
mulation, and Approximation, volume 1864 of Lecture Notes in Computer
Science, pages pp. 26–44. Springer Berlin / Heidelberg, 2000.

21

[19] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of Artificial Intelligence Research,
13:pp. 227–303, 2000.

[20] Bruce Digney. Learning hierarchical control structures for multiple tasks
and changing environments. In In Proceedings of the Fifth Conference on
the Simulation of Adaptive Behavior: SAB 98. MIT Press, 1998.

[21] Y. Duan and X. Hexu. Fuzzy reinforcement learning and its application in
robot navigation. In Machine Learning and Cybernetics, 2005. Proceedings
of 2005 International Conference on, volume 2, pages 899 –904 Vol. 2, 18-21
2005.

[22] R.J. Duro, Manuel Graña, and J. de Lope. On the potential contributions
of hybrid intelligent approaches to multicomponen robotic system develop-
ment. Information Sciences, 180(14):2635–2648, 2010.

[23] Z. Echegoyen, I. Villaverde, R. Moreno, M. Graña, and A. d’Anjou. Linked
multi-component mobile robots: modeling, simulation and control. Robotics
and Autonomous Systems, 58(12):1292–1305, 2010.

[24] B. Fernandez-Gauna, J.M. Lopez-Guede, E. Zulueta, Z. Echegoyen, and
M. Graña. Basic results and experiments on robotic multi-agent system
for hose deployment and transportation. International Journal of Artificial
Intelligence, 6(S11):183–202, 2011.

[25] Robert Fitch, Bernhard Hengst, Dorian Suc, Greg Calbert, and Jason
Scholz. Structural abstraction experiments in reinforcement learning. In
Shichao Zhang and Ray Jarvis, editors, AI 2005: Advances in Artificial
Intelligence, volume 3809 of Lecture Notes in Computer Science, pages pp.
164–175. Springer Berlin / Heidelberg, 2005.

[26] Mohammad Ghavamzadeh and Sridhar Mahadevan. Learning to commu-
nicate and act using hierarchical reinforcement learning. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multi
Agent Systems, pages 1114–1121, 2004.

[27] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and
model minimization in markov decision processes. Artif. Intell., 147:163–
223, July 2003.

[28] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning
with factored mdps. In NIPS-14, pages pp. 1523–1530. The MIT Press,
2001.

[29] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated rein-
forcement learning. In In Proceedings of the IXth ICML, pages 227–234,
2002.

22

[30] T. Hall, M. Humphrys, and M. Humphrys. Action selection methods using
reinforcement learning. In Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior, pages 135–144. MIT Press,
1996.

[31] Bernhard Hengst. Discovering hierarchy in reinforcement learning with
hexq. In In Maching Learning: Proceedings of the Nineteenth International
Conference on Machine Learning, pages pp. 243–250. Morgan Kaufmann,
2002.

[32] Pieter Hoen, Karl Tuyls, Liviu Panait, Sean Luke, and J.A. La Poutrï¿œ.
An overview of cooperative and competitive multiagent learning. In Karl
Tuyls, Pieter Hoen, Katja Verbeeck, and Sandip Sen, editors, Learning
and Adaption in Multi-Agent Systems, volume 3898 of Lecture Notes in
Computer Science, pages 1–46. Springer Berlin / Heidelberg, 2006.

[33] Nicholas K. Jong. State abstraction discovery from irrelevant state vari-
ables. In In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pages pp. 752–757, 2005.

[34] Anders Jonsson and Andrew Barto. A causal approach to hierarchical
decomposition of factored mdps. In Advances in Neural Information Pro-
cessing Systems, volume 13, pages pp.1054–1060, 2005.

[35] Anders Jonsson and Andrew Barto. Causal graph based decomposition of
factored mdps. J. Mach. Learn. Res., 7:pp. 2259–2301, December 2006.

[36] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101:99–134, 1998.

[37] S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in
cooperative multi-agent systems. In 18th National Conference on Artificial
Intelligence and 14th Conference on Innovative Applications of Artificial
Intelligence, pages pp. 326–331, 2002.

[38] Jelle R. Kok and Nikos Vlassis. Sparse cooperative q-learning. In Proceed-
ings of the International Conference on Machine Learning, pages 481–488.
ACM, 2004.

[39] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement
learning by payoff propagation. Journal of Machine Learning Research,
7:1789–1828, 2006.

[40] Daphne Koller and Ronald Parr. Computing factored value functions for
policies in structured mdps. In In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, pages 1332–1339. Morgan Kauf-
mann, 1999.

23

[41] Martin Lauer and Martin A. Riedmiller. An algorithm for distributed
reinforcement learning in cooperative multi-agent systems. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML
’00, pages 535–542, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[42] C. Li, J. Zhang, and Y. Li. Application of artificial neural network based
on q-learning for mobile robot path planning. In Information Acquisition,
2006 IEEE International Conference on, pages 978 –982, 20-23 2006.

[43] Sridhar Mahadevan, Nicholas Marchalleck, Tapas K. Das, and A. Gosavi.
Self-improving factory simulation using continuous-time average-reward re-
inforcement learning. In Proceedings of the 14th International Conference
on Machine Learning, pages 202–210. Morgan Kaufmann, 1997.

[44] Rajbala Makar and Sridhar Mahadevan. Hierarchical multi-agent rein-
forcement learning. In Proceedings of the Fifth International Conference
on Autonomous Agents, pages pp. 246–253. ACM Press, 2001.

[45] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic ab-
straction in reinforcement learning via clustering. In In Proceedings of the
Twenty-First International Conference on Machine Learning, pages pp.
560–567. ACM Press, 2004.

[46] Amy Mcgovern and Andrew G. Barto. Automatic discovery of subgoals
in reinforcement learning using diverse density. In In Proceedings of the
eighteenth international conference on machine learning, pages pp. 361–
368. Morgan Kaufmann, 2001.

[47] Francisco Melo and M. Ribeiro. Coordinated learning in multiagent mdps
with infinite state-space. Autonomous Agents and Multi-Agent Systems,
21:321–367, 2010. 10.1007/s10458-009-9104-y.

[48] Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut: Dynamic dis-
covery of sub-goals in reinforcement learning. In Tapio Elomaa, Heikki
Mannila, and Hannu Toivonen, editors, Machine Learning: ECML 2002,
volume 2430 of Lecture Notes in Computer Science, pages pp. 187–195.
Springer Berlin / Heidelberg, 2002.

[49] N. Ono and K. Fukumoto. A modular approach to multi-agent reinforce-
ment learning. In Gerhard Weiss, editor, Distributed Artificial Intelligence
Meets Machine Learning Learning in Multi-Agent Environments, volume
1221 of Lecture Notes in Computer Science, pages 25–39. Springer Berlin
/ Heidelberg, 1997.

[50] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

24

[51] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies
of machines. In Advances in Neural Information Processing Systems 10,
pages pp. 1043–1049. MIT Press, 1998.

[52] Ronald Edward Parr. Hierarchical control and learning for markov deci-
sion processes. Master’s thesis, University of California, Berkeley, 1998.
AAI9902197.

[53] Marc Ponsen, Matthew E. Taylor, and Karl Tuyls. Abstraction and gen-
eralization in reinforcement learning: A summary and framework. In ALA
Workshop, Adaptive and Learning Agents (LNAI Journal), pages pp. 1–33,
2010.

[54] Wei Ren and R.W. Beard. Distributed Consensus in Multi-Vehicle Coop-
erative Control: Theory and Applications. Springer Publishing Company,
Incorporated, 2007.

[55] Khashayar Rohanimanesh and Sridhar Mahadevan. Decision-theoretic
planning with concurrent temporally extended actions. In In UAI’01, pages
pp. 472–479. Morgan Kaufmann Publishers, 2001.

[56] Kazuyuki Samejima, Kenji Doya, and Mitsuo Kawato. Inter-module credit
assignment in modular reinforcement learning. Neural Netw., 16:985–994,
September 2003.

[57] Jeff Schneider, Weng-Keen Wong, Andrew Moore, and Martin Riedmiller.
Distributed value functions. In In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 371–378. Morgan Kaufmann, 1999.

[58] Anton Maximilian Schï¿œfer, Steffen Udluft, and Departement Neural
Computation. Solving partially observable reinforcement learning prob-
lems with recurrent neural networks. In In Workshop Proc. of the European
Conference on Machine Learning, 2005.

[59] Jing Shen, Guochang Gu, and Haibo Liu. Multi-agent hierarchical rein-
forcement learning by integrating options into maxq. In Computer and
Computational Sciences, 2006. IMSCCS ’06. First International Multi-
Symposiums on, volume 1, pages 676–682, 2006.

[60] Ozgur Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying use-
ful subgoals in reinforcement learning by local graph partitioning. In In
Proceedings of the Twenty-Second International Conference on Machine
Learning, pages pp. 816–823, 2005.

[61] Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesv
Ari. Convergence results for single-step on-policy reinforcement-learning
algorithms. In Machine Learning, pages 287–308, 1998.

25

[62] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement
learning with soft state aggregation. In Advances in Neural Information
Processing Systems 7, pages 361–368. MIT Press, 1995.

[63] William D. Smart. Explicit manifold representations for value-function
approximation in reinforcement learning. In Prceedings of the 8th Inter-
national Symposium on Artificial Intelligence and mathematics, pages 25–
2004, 2004.

[64] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence, 112:pp. 181–211, 1999.

[65] Richard S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in Neural Information
Processing Systems 8, pages 1038–1044. MIT Press, 1996.

[66] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[67] Prasad Tadepalli and Dokyeong Ok. Scaling up average reward reinforce-
ment learning by approximating the domain models and the value function.
In In Saitta, pages 471–479. Morgan Kaufmann, 1996.

[68] Y. Takahashi and M. Asada. Reinforcement Learning: Theory and Ap-
plications, chapter Modular Learning Systems for Behavior Acquisition in
Multi-Agent Environment, pages 225–238. I-Tech Education and Publish-
ing, Vienna, 2008.

[69] Yasutake Takahashi and Minoru Asada. Modular learning systems for soc-
cer robot. In Proceedings of the Fourth International Symposium on Human
and Artificial Intelligence Systems, pages pp.370–375, 2004.

[70] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In In Proceedings of the Tenth International Conference on Machine
Learning, pages 330–337. Morgan Kaufmann, 1993.

[71] Matthew E. Taylor and Peter Stone. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine Learning Research,
10(1):1633–1685, 2009.

[72] N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for multiagent
decision making using coordination graphs. In In Proc. Intl. Conf. on
Systems, Man and Cybernetics, 2004.

[73] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an
optimal nash equilibrium in team markov games. In in Advances in Neural
Information Processing Systems, pages 1571–1578. MIT Press, 2002.

26

[74] Christopher Watkins and Peter Dayan. Technical note: Q-learning. In
Machine Learning, volume 8, pages pp. 279–292, May 1992.

[75] S. Whitehead, J. Karlsson, and J. Tenenberg. Robot Learning, chapter
Learning multiple goal behavior via task decomposition and dynamic policy
merging, pages 45–78. Kluwer Academic Publisher, 1993.

[76] H. Xiao, L. Liao, and F. Zhou. Mobile robot path planning based on q-
ann. In Automation and Logistics, 2007 IEEE International Conference
on, pages 2650 –2654, 18-21 2007.

[77] Pucheng Zhou and Bingrong Hong. A modular on-line profit sharing ap-
proach in multiagent domains. International Journal of Electrical and Com-
puter Engineering, 1(6):424–431, 2006.

27

