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Introduction

Overview of the paper

e Adaptive Hybrid Extreme Rotation Forest (AHERF):
e heterogeneous classifier ensembles
e profit from classifier specialization

o the anticipative determination of the the fraction of each classifier
architecture included in the ensemble. ,

independent pilot classifer architecture cross-validation experiments
rank classifier architectures

build a probability distribution of classifier architectures

type of each individual classifier is decided by sampling
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Elementary Classifiers

Elementary classifiers

Elementary classifiers implementation in the experiments reported in this
paper are extracted from SciKit Python package.

-Decision Trees,

-Extreme Learning Machines

-Support Vector Machines

-k-Nearest Neighbors

-Adaboost

-Gaussian Naive Bayes

The Python implementation of AHERF is available .
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Randomized Data Rotation

Randomized data rotation

To construct the training/testing datasets for a specific classifier D; in an
ensemble, we carry out the following steps:

1. Partition the set of feature variables F into K subsets of variables.
2. For each subset of feature variables, Fy, k=1,... K

2.1 extract the corresponding data X from the training data set
2.2 compute the partial randomized rotation matrix Ry using Principal
Component Analysis (PCA) from Xj

3. Compose the global rotation matrix R = [Ry, ..., Rk], reordering
columns according to the original data,

4. Transform the train and test data applying the same rotation matrix.
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Anticipative Hybrid Extreme Rotation Forest

Anticipative Hybrid Extreme Rotation Forest

o Let x = [x1,...,x,] " be a sample described by n feature variables,

e F is the feature variable set and

e X is the data set containing N training samples in a matrix of size
nx N .

e Let Y be a vector containing the class labels of the data samples,
Y= [l L1 DRI

e The number of classes is denoted €.

e Denote by Dy, ..., D, the classifiers in the ensemble,
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Anticipative Hybrid Extreme Rotation Forest

AHERF
Begin
Anticipative Model selection
M1 Select 30% of the dataset for model selection
M2 For each classifier type k =1,..., M
M3 Perform 5-fold cross-validation, obtain accuracy A
M4 Rank Ay, assigning 7 to the k-th classifier
M5 Assign selection probability px = %, k=1,....M

On the 70% unused data, perform 10-fold cv, at each fold:

Ensemble construction on each training fold
2 For each individual classifier D;, i =1...L
3 Computation of rotation matrix R:
Partition F' into K random subsets: F; ;;j=1... K
For each F}j,j=1...K
- Let X, ; be the subset of X corresponding to features in Fj ;.
- Cj,; obtained from PCA on X ;
Compose R using matrices Cj ; .
9 Decide the model of D; sampling {px;k =1,..., M}
10 Train classifier D; on training set (R$X,Y) or (X,Y) —
End ensemble construction ‘b’ ©
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Anticipative Hybrid Extreme Rotation Forest

AHERF

Test on each testing fold
Let 2 be number of classes

C1 For each unknown x!©%* z-scores.
2 d; = Dy(Roxtest): i = 1,... L
L .
C3 szzizlad?;,w;?lea---;[/
c4 cteSt:argmgx{cw,w: 1,...,Q}
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Anticipative Hybrid Extreme Rotation Forest

AHERF ranking distribution

e model selection phase uses 30% of the training data

e For each classifier type a 5-fold cross-validation is performed on the
selected data.

e r; is the ranking of the k-th classifier type .

e selection probability according to the expression

L Fibl(€ 6 L).<7d)
>y Fib (7)

where Fib (i) is the i-th value of the Fibonacci series.

Pk

)
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Anticipative Hybrid Extreme Rotation Forest

AHERF ranking distribution

Probability di of the Ensemble
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Figure : The architecture selection probability distribution from the ranking of the
classifiers. LX)
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Rationale for AHERF

General Motivation

e Heterogenous ensembles of classifiers are motivated by the well known

no-free lunch theorems
e no single approach is optimal for the solution of all optimization
problems,

e it can as well as be applied to machine learning solutions of
classification and regression problems.

e Therefore, we would like to predict which kind of classifier architecture
is better for the problem domain at hand.

e The idea in AHERF is to build an ensemble where the best fitted
classifier types are more frequent.
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Rationale for AHERF

Some notation

e ground truth classification mapping C : X — Q,

e that gives the true class w € Q corresponding to each input feature
vector x € X.

o we build classifiers C from X = {(x;,w;)},,

o teT
e collection of classifier architectures T,
e its best estimation of the true class & =* C (x).

® as a maximum a posteriori estimation, i.e.

& = maxtP (w]x),
w
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Rationale for AHERF

Accuracy

e The accuracy of a classifier can be computed as the expectation of the
distance between the a posteriori distribution and the ground truth
classification:

e

[tAP(w|x) —C(w,x)}wm ,

where

e Ex [.] denotes the expectation over the input space, i.e. over all
possible sampling processes providing the training dataset X, and
e C(w,x) is 1 for the true class, and 0 for the others.

e cross-validation experiments are a minimum variance method to
provide estimates of the accuracy.
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Rationale for AHERF

Acccuracy of the ensemble

e ensemble of classifiers {tCk},’yzl,
e t as many a posteriori distribution estimations as classifiers.

{{rpeml )

ensemble decision by majority voting, then the ensemble class
estimation is given by

@ = argmax [{k |w = }|,
w

where @ = maxtPy (w |x).
w

e Accuracy of the ensemble can be modeled by

Aw  Ex [Z‘ [t?vk (wx) —C(w,x)}wH]
k

It is immediate that

M ry
A ta ‘b’ i©)
M X k) iees o i
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Rationale for AHERF

Convergence

e Let us assume that there is some accuracy ranking of the classifier
types
BA>RA>BA> .
e an ensemble is characterized by the vector n = [n; |t € T*],

e where T* denotes the identifiers of the classifiers types ordered by
accuracy ranking.

e ensembles can be ordered by lexicographic ordering

e if n" > n” we expect the first ensemble to have accuracy greater than
the second.
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Rationale for AHERF

Convergence

e AHERF estimates the classifier type ranking
HASBA> BA> .

using this information to drive the selection of the classifier type of
each individual ensemble constituent.

e In order to have ensembles whose characteristic vector n is of the form
Ny >2> Ngy > Ny > .

we sample an integer random variable whose distribution of probability
is an approximation of the exponential distribution built using the
Fibbonacci series on the ranking.
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Experimental design

Experimental design

e Validation
o the average of 50 repetitions of a 10-fold cross-validation approach,

e all feature extraction and classification parameters are estimated from
the training datasets and applied to the testing datasets as such.

e data normalization by the independent computation of the z-score of
each input variable

e the p and o are estimated on the training data and used as such on the
testing data,
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Experimental design

Experimental design

Model parameter selection

e [: The number of individual classifiers,is set to L = 35 for all
experiments.

Classifier intrinsic parameters:
DT depth is set to 10 i
The number of hidden nodes in the ELM is set to min {%, 1000}.

The SFLN architecture trained by ELM has a single output unit
encoding the output of the classifier as an integer value, both for
two-class and many-classes datasets.

K: The number of partitions of the set of features has been set to
K=zl
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Experimental design

Materials

We have performed the computational experiments over 16 datasets used
for the comparison and validation are in the public domain, they have been
extracted from the UCI machine learning repository !, including multi-class
instances as well as two class problems.
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Experimental Results

Experimental results

SVM(RBF) | OP-ELM BP k-NN ELM DT HERF AHERF |
Balance 95.88+1.31 92.3141.83 90.9242.14 | 87.00+1.80 69.8+2.73 76.01+2.81 90.99+1.61 90.57£1.45
Breast-can 95.55+0.82 95.33+1.29 95.01%+1.66 96.3241.03 97.78+1.22 96.3630.49 97.40£0.89% 97.5141.15%
Diabetes 77.3142.73* 77.34£3.17% | 77.2342.81% | 74.09+2.73 55.91+1.31 71.57+4.8 77.64+1.97* 78.1313.88
Ecoli 85.83+2.79 85.20+2.88 80.2743.91 83.68+2.22 35.9410.48 73.85+3.85 88.07+2.45% 88.69+6.02
Iris 94.36:£2.76* 97.8018.98 | 95.60+3.00% | 96.0442.23% 86.67+4.80 96.67+2.80* 96.642.00% 96.00+4.42*
Liver 68.24+4.58 65.85+4.75 66.50%4.45 61.46£3.27 62.1244.98 66.37+3.59 72.75+3.88% 73.67+6.19
Sonar 83.483.88 71.70£4.79 70.31£5.40 | 66.30+4.93 86.473.35% 74.71£4.08 80.08+4.24 87.00+6.82
Soybean 99.56+1.32% 99.1241.51% 88.1749.38 79.74£11.47 | 100.00+0.00 | 100.0030.00 100.00£0.00 | 100.00+0.00
Spambase 93.50£0.45* 91.2340.78 92.06£0.78 | 88.610.53 70.31£0.93 91.47+1.21 92.5740.60 93.9610.79
‘Waveform 85.7840.62* 85.4640.64 85.9440.76 82.6540.72 57.56+1.94 74.3440.75 85.7740.67 87.12:+41.42
‘Wine 97.48+1.57 98.18+1.72 94.10+3.12 96.23+2.01 65.52+15.99 94.83+2.11 98.30+1.60 99.411+1.76
Digit 98.1420.01 98.3440.25 - 97.5440.01 98.2540.16 100.0040.00 99.92+0.05% 99.2440.26*
Hayes 75.00£0.00 70.43+4.95 74.4347.08 75.0040.00 77.89+4.04 83.5140.96 83.09+5.05% 80.62+9.46
Monk1 94.4430.01 74.79+3.91 69.99+13.82 80.5640.01 98.26+0.81 93.48+3.90 97.87+2.96* 93.70£4.90
Monk2 84.72+0.01 70.35+3.58 72.84:+2.92 71.53+0.01 83.02+3.75 93.17+6.62 96.33£2.83 72.38+3.58
Monk3 90.04+0.01 88.7742.31 80.4146.07 80.7940.01 95.7142.94 99.34+0.46 98.8240.79 97.49+2.42
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Experimental Results

Results discussion

e |t can be appreciated that AHERF gives the best results in most cases
e (Ecoli: 88.69%; Liver: 73.67%; Sonar: 87%; Spambase: 93.96%, etc)

e and it is close to the best result in the others.

e Differences are not statistically significant (t-test p>0.01) due to high
variance of the results
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Experimental Results

algorithm working

e we show

e an instance of the ranking of the classifier types for each database, and
e the number of individual classifiers of each type generated by selection
according to those rankings.

e there is no guarantee that the better ranking will lead to a greater
number of individual classifiers in the ensemble, due to random nature
of the generation process,

e AHEREF is better suited for big datasets.
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Table :

Ranking (1-best, 7-worst) of elementary

benchmark database.

Borja Ayerdil,

Experimental Results

Results

classifier types per each

|

‘ DT ‘ ELM ‘ k-NN ‘ SVM (RBF) ‘

RF ‘ AdaBoost ‘ Gaussian NB

Balance 6 5 2 4 7 1 3
Breast-can 5 3 4 2 6 7 1
Diabetes 2 6 5 1 4 7 3
Ecoli 6 2 5 4 3 7 1
Iris 6 7 5 4 3 2 1
Liver 6 1 7 5 4 3 2
Sonar 6 7 3 2 5 4 1
Soybean 6 7 5 4 3 2 1
Spambase 5 4 6 2 3 1 7
Waveform 6 7 3 1 2 4 5
Wine 6 5 1 3 4 7 2 ﬁ’ @E)
Digit 2 4 6 5 3 cls no1h s B! corcA, oth June
Manyel Grafiaft2 , (* ComgutsiipegNigéfderi@rbyprebiR\RERHihnDemesCCIA, San Sebgstian, Spain; ZENGBNI




Table : Number of classifiers on an instance of final ensemble composition

Experimental Results

Results

‘ DT ‘ ELM ‘ k-NN ‘ SVM (RBF) ‘ RF ‘ AdaBoost ‘ Gaussian NB

&

Borja Ayerdil,

Balance 6 1 4 2 3 15 4
Breast-can 1 3 4 7 1 3 16
Diabetes 7 1 2 19 1 1 4
Ecoli 2 6 3 2 9 0 13
Iris 1 0 5 3 4 10 12
Liver 3 10 0 1 3 10 8
Sonar 0 2 2 9 6 4 12
Soybean 0 0 3 5 4 9 14
Spambase 4 2 1 9 7 10 2
Waveform 0 2 4 18 10 0 1
Wine 0 16 3 3 0 11
Digit 10 0 1 4 5 3 12
el B 1 e 2 sl s S04, S5, Do, A B
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Conclusions and future work

Conclusions

e The proposal of the AHERF hybrid ensemble classifier is an
improvement of HERF algorithm, including the anticipative selection
of the classifier type according to the prediction of the classifier types
accuracy in each database.

e The results obtained on a collection of benchmark databases are
encouraging.
e Further works
e to apply AHERF in other areas like medical image processing (fMRI,

CTA, etc) and remote sensing image processing problems, and
e to improve the combination of the outputs of the ensemble.
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