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Overview

PartI: Theory
» Pertinent algebraic structures
« Lattice algebra with focus ofrvector Spaces
« Concluding remarks and questions

Part Il:  Applications
* LNNs
» Matrix based LAMs
» Dendritic LAMs
» Concluding remarks and questions
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History

« Lattice theory in image processing and Al

* Image algebra, mathematical morphology, and
HPC

A pertinent guestion:
Whyis(—1) - (—1) =17
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Algebraic Structures

Some basic backgound
Let G be a set with binary operatian Then

1. (G, o) is agroupoid
2. ifxo(yoz)=(roy)oz then(G,o)isa
semigroup

3. If G Is a semigroup and an@ has an identity
element, thed? Is amonoid

4. If G'Is a monoid and every element@Gfhas an
Inverse, thertz Is agroup

5. fGisagroupandt oy =yoxzVz,y < G, then
(G Is anabeliangroup.
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Algebraic Structures

Why are groups important?

Theorem. If (X, -)isagroup and, b € X, then the
linear equationg - x = b andy - a = b have
unigue solutions inX.

Remark: Note that the solutions = o' - b and
y = b-a ! need not be the same unle¥ds
abelian.
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Algebraic Structures

Sets with Multiple Operations

Suppose thak Is a set with two binary operations
ando. The operation Is said to bdeft distributive
with respect tox If

zo(y*z)=(roy)x(roz)Vr,y,ze€X (1)
andright distributiveif
(yxz)ox=(yox)x(zo0x)Va,y z€X. (2)

Division onR™ is not left distributive over addition;

(y+2)/z = (y/z) + (z/z) but
z/(y+2) # (x/y) + (x/2),
When both equations hold, we simply say thas$
distributivewith resbect tox.



Algebraic Structures

Definition: Aring (R, +, -) is a setR together with
two binary operations- and- of addition and
multiplication, respectively, defined ar such
that the following axioms are satisfied:

1. (R, +) is an abelian group.

2. (R, -) is a semigroup.

3. Va,b,ce R,a-(b+c¢)=(a-b)+ (a-c)and
(a+b)-c=(a-c)+(b-c).

If axiom 1 in this definition is weakened {&, +) is a
commutative semigroup, tharis called asemiring
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Algebraic Structures

If (R, +, -) is aring, we leD) denote the additive
identity andl the multiplicative identity (if it exists).
If R satisfies the property

» For every nonzera € R there is an element In
R, denoted by: !, such that
a-al=atl-a=1(.e. (R\{0},-)isagroup),

thenR Is calleddivisionring. A commutative division

ring is called dield
You should now be able to prove that1) - (—1) = 1.
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Partially Ordered Sets

Definition: A relation< on a setX Is called apartial
orderon X If and only If for everyx, y, z € X
the following three conditions are satisfied:

1. x < z (reflexive)

2. v < yandy < xr = z = y (antisymmetric)
3. z X yandy < z = x < z (transitive)

Theinverserelation of<, denoted by=, is also a
partial order onX.

Definition: Thedual of a partially ordered seX is
that partially ordered seX* defined by the

Inverse partial order relation on the same
elements.

Since(X™)* = X, this terminology is legitimate.
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Lattices

Definition: A latticeis a partially ordered sdt such
that for any two elements, y € L, glb{x,y} and
lub{x,y} exist. If L is a lattice, then we define
r Ay = glb{z,y} andx Vy = lub{z,y}.

A sublatticeof a latticeL is a subsefX of L

such that for each pair, y € X, we have that
r ANy € XandrVy e X.

» A lattice L is said to becompletaf and only if
for each of its subset¥, in f X andsupX
exist. We define the symbof§ X = infX
and\/ X = supX.
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sf-Semigroups and/-Groups

Supposé R, o) is a semigroup or group andis a
lattice (R, V, A) or semilattice R, V).

Definition: A group translationy is a function
Y . R — R of form

() =aoxob,

wherea, b are constants.
The translation) is said to basotoneif and only if

vy = () < P(y)

Note that a group translation is a unary operation.
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sf-Semigroups and/-Groups

Definition: A /-group(¢/-semigroup is of form
(R,V, A, +), where(R, +) is a group
(semigroup) andR, VvV, A) is a lattice,and every
group translation is isotone.

If Risjusta semilattice -i.e(,R, V)or (R, A)-in
the definition, then R, v, +) (or (R, A,+)) an
s{—groupif (R, +) is a group and an
sf-semigroupf (R, +) is a semigroup.
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s¢-Vector Spaces and-Vector Spaces

Definition: A s{—vector spacé&/ over thes/-group
(or s¢-monoid)(R, V, +), denoted bW (R), is a
semilattice(V, V) together with an operation
calledscalar additionof each element o by an
element ofR on the left, such thata, 5 € R
andv, w € V, the following conditions are
satisfied:

l. a+vevV

2. ot (B4v)=(a+6) +v

3. (avVp)+v=(a+Vv)V(B+V)
4. a+ (vVw)=(a+Vv)V(a+Ww)
5. 0+v=v
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s¢-Vector Spaces and-Vector Spaces

The s/-vector space Is also callechaaxvector space,
denoted byv-vector space. Using the dudlB, A, +)
and(V, V), and replacing conditions () and &.) by
3. (aANp)+v=(a+V)AN(B+V)

4. a+(VAW)=(a+V)A(a+w),

we obtain thamin vector space denoted byvector
space.

Note also that replacing (or A) by + and+ by -, we
obtain the usual axioms defining a vector space.
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s¢-Vector Spaces and-Vector Spaces

Definition: If we replace the semilattic€ by a
lattice (V, Vv, A), the sf-group (ors/-semigroup)
R by an/-group (oré-semigroup) R, V, A, +),
and conditions 1 through 5 and 3’ and 4’ are all
satisfied, thefV(R) is called ar/-vector space

Remark. The lattice vector space definitions given
above are drastically different frouector lattices
as postulated by Birkhoff and others! A vector
lattice Is simply a partially ordered real vector
space satisfying the isotone property.
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Lattice Algebra and Linear Algebra

The theory off-groups,s/-groups,s/-semigroups,
(-vector spaces, etc. provides an extremely rich
setting in which many concepts from linear algebra
and abstract algebra can be transferred to the lattice
domain via analogieg-vector spaces are a good
example of such an analogy. The next slides will
present further examples of such analogies.
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Lattice Algebra and Linear Algebra

Ring: (R, +,)
°ca-0=0-a=0
ca+0=0+a=a
caq-1=1-a=a
ca-(b+c)=(a-b)+ (a-c)

Semi-Ring or s¢-Group: (R_,V,+)
¢ ¢+ (—00) =(—0)+a=—0
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Lattice Algebra and Linear Algebra

» Since(R-oo, V, +)* = (Roo, A, +7), (Rooy A, +7)
IS also ans¢/—semigroup (witht+* = +)
isomorphic toR_.., V, +)

* Defininga+*b=a+0b6Va,be R_, and

— X0+ =04+ —00 =—0
—00 +" 00 = 00 +" —00 = 00,

we can combinéR_ ., Vv, +) and(R., A, +) into one
well defined algebraic structuf® ..., vV, A, +, +%).
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Lattice Algebra and Linear Algebra

» The structurdR, \V, A, +) is an/-group.

. The structure$R_.., V, A, +) and(R., V, A, +)
are/-semigroups.

e The structuréR.., V, A) is a bounded
distributive lattice.

e The structurdR_., V, A, +,+") is called a
bounded lattice ordered grougr blog, since the
underlying structuréR, +) is a group.
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Matrix Addition and Multiplication

SUppPosed = (a;j)mxn ANAB = (b;;)mxn With
entries INR. ... Then
« ' = AV B s defined by setting
Cij = Qjj \% bz’j1 and
« ' = A A B s defined by setting
Cij — CLZ']' A\ bzy
If A= (@z’j)mXp andB = (bij)pxm then
- ' = AN B Is defined by setting

cij = V=1 (@i + bi;), and
« ' = AN B Is defined by setting
Cij = Ni=i(aix +* brj)-

« V] and A are called thenaxandmin
products, respectively.
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Zero and ldentity Matrices
For the semirind M,,..,(R_), V,

matrix 1s

[ o

|

_OO .

V1 ), thenull
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Zero and ldentity Matrices

For the semirind M,,..,(R_), V,

matrix 1s

[0

|

_(X) .

0

), theidentity

_OO\
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Matrix Properties

We havev A, B, C € M,,.(R_

[

Vi

AN (BV C)

A

AV D

A

Analogous laws hold for the semiring

(Mnxn(Roo)a /\7

Vi

JA\

o

),

50)
(AM B) V
AV =A
dPVA=A
OPMA=

(A
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Conjugation

If » € R, then theadditive conjugate®f r Is the
unique element* defined by

—r frelR
r*=¢ — If r = o0.
o Ifr=—-—

o (r*)*=randr As=(r*Vvs*)*

» It follows thatr A s = —(—r vV —s) and

c ANB=(A"VB)*andAAN B = (B*M A*)*,
whereA = (a;;) andA* = (aj;).
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s/-Sums

Definition: If X = {x!,... x*} Cc R*__ (or
X C R2), thenx € R" _ (orx € R%) is said to

be alinear max (min) combinationf X If x can
be written as

k k

<= Va5 (orx= Afag +x)

e=1 £=1

wherea € R_, (ora € Ry) andx® € R”__ (or
xt € R

The expressiony/;_; (o + x%) and \¢_; (o + x5)
are called dinear max sunand alinear min sum
respectively.
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s¢-Independence

Definition: Given thes/-vector spacéR” __, V) over
(R_oo, V,+), X = {x!,... ,x"} cR"__, and
x € R, thenx Is said to beanax dependerdr
st-dependenbn X < x = \/¢_, (a¢ + x) for

some linear max sum of vectors frof If x IS

not max dependent ok, thenx Is said to banax
iIndependendf X.

The setX is s/-independenbr max independens
VEée{l,... k}, x5 is st-independent of

X\ {x}.
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s¢-Subspaces and Spans

Definition: If X C R” _, then(X, V) is an
sf-subspace ofR"” __, V) < the following are
satisfied:

1. iIfx, y € X,thenxVy e X
2. a+xe XVaeR_, andx € X.

Definition: If X C R”__, then thes/-spanof X Is
the set

S(X)={x € R"__; xis max dependent oX }.
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s¢-Spans and Bases

Remark: If x € S(X), thena +x € S(X) and
xVyeSX)Vx,y € S(X). ThusS(X) is an
sl-vector subspace " __.

If S(X)=R"_,then we say thak spansR” __ and
X Is called a set ofjeneratordor R” __.

Definition: A basis for ans/-vector space¢V, V) (or
(V, A)) is a set ofs/-independent vectors which
SpansV.
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sf-independence

Example. The setX = {(0, —o0), (—00,0)} spans
RZ __ and iss/-independent. ThuX is a basis for
RZ

Question: What is a basis foR??

Question: If a € R, what is the span of
X ={(0,a),(—00,0)} inR*__?

Question: What is the span ok = {(1,0),(0,1)} in
R 7
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(-Vector Spaces

Most of what we have said faiZ-vector spaces also
holds for/-vector spaces with the appropriate
changes. Thus, fqiR"} _, V, A) we have:

- If {x!,...,x*} Cc R?_, then dlinear minimax
combinationof vectors from the sefix!, ..., x*}

IS any vectorx € Rt _ of form

k
x =6(x, ..., x") = \/ /\(a,gj +x%), (3)

jeJ £=1

whereJ is a finite set of indices ang; € R,
Vi e Jandvé =1,... k.

| attice Theorv & Applications — n. 30/87



(-Vector Spaces

* The expression
1 A k :
_G(X A v_X ) = \/jEJ /\le(aﬁj T XS) s cal
linear minimax sunor an/-sum
« Similarly we can combine the structures

led a

(M(RL o Jnxn; V, M) @nd(M (R Jnsn, A,

Al )

to obtain the blog M (R" __).,xn, V, A, M, I\

)in

)

order to obtain a coherent minimax theory for

matrices.

« Many of the concepts found in the corresponding
linear domains can then be realized in these

lattice structures via appropriate analogie

S.
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/-Transforms

Definition: A linear max transfornor s/-transform
of an s/-vector spac&/( R) into ans/-vector

spaceéW(R) is a functionL : V — W which
satisfies the condition

L((a+v)V(B+u)) = (a+L(v))V(E+Lu))

for all scalarsy, 5 € Rand allv,u € V.
A linear min transform obeys

L{(a+v)A(f+u)) = (a+ L(v)) A (B + L(u))

and a lineaminimaxtransform of ar/-vector
spaceV(R) into an/-vector spacéV(R) obeys
both of the equations.
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st-transforms and polynomials

« Just as in linear algebra, it Is easy to prove that
anym x n matrix M with entries fromR™__ (or

R™) corresponds to a linear max (or min)
transform fromR™__ into R” __ (or R into R2).
Simply define

Lyx)=MVvx VxeR"™_

« The subject of- ands/-polynomials also bears
many resemblances to the theory of polynomials
and waits for further exploration.
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s¢-Polynomials

Definition: max polynomial of degree with

coefficients in the appropriate semiridgin the
Indeterminater is of form

p(x) = \/(ai + ix),
1=0
wherea; = —oo for all but a finite number of.

* If for some: > 0 a; #* —oo, then the largest
suchs is called thedegreeof p(x) If no such

i > 0 exists, then the degree pfx) is zero.

« For min polynomials simply replacg by
bigwedge. Combining the two notions will
result in minimax polynomials.
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Discussion and Questions

1. Many items have not been discussed,; e.g.,
eigenvalues and eigenvectors.

2. Applications have not been discussed. We will
discuss some in the second talk.

3. Questions?
Thank you!
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Associative Memories (AMSs)

SupposeX = {x!,...,x"} c R"andY =
{yl, . ,yk} C R™.

« A function M : R" — R™ with the property that
M(x%) =y*Vé=1,...,kis called an
associative memomhat identifiesX with Y.

 If X =Y, thenM Is called amuto-associative
memoryand if X # Y, thenM Is called a
hetero-associative memory

« M is said to beobust in the presence of noige
M (x%) = y*, for every corrupted versiog* of
the prototype input patterns.
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Robustness in the Presence of Noise

« We say thatV/ is robust in the presence of noise
bounded bya = (n4, ns, ..., n,)" if and only if
wheneverx represents a distorted versionof
with the property thatx — x¢| < n, then
M(x) = y*.

Remark: In this theory, it may be possible to have
n; = oo for somey If that is desirable.

» The concept of the noise bound can be
generalized to be bounded by the set

{n',n? ... n"}, with n being replaced by in
the above inequality so that — x| < n®.
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Matrix Bases AMs

» The Steinbuch Lernmatrix (1961), auto- and
hetero-associative memories.

» The classical Hopfield net is an example of an
auto-associative memory.

« The Kohonen correlation matrix memory Is an
example of a hetero-associative memory.

e The lattice based correlation matrix memories
Wxy andMXy.

| attice Theorv & Applications — n. 38/87



Lattice-based Associative Memories

« For a pair( X, Y') of pattern associations, the two

canonical lattice memoridd’yy and My are
defined by:

k k

Wy = /\ (yf — x§> and m;; = \/ (yf — x§> .

¢=1 ¢=1
e Fact. If X =Y, then

WXXVX€:X£:MXXAX€ \V/§:1,...,k.
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Lattice-based Associative Memories
We have
1. Wxy =Y A X"andMyy =Y M X",
2. Wxy = (X MY*)* = M, anc
Myx = (X AY*)* = Wiy
3. xt* = {Wxy|Mxy} — y¢ —
{Myx | Wyx}t — x5,

4. This provides for a biassociative memory
(LBAM).
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Behavior of W x In Presence of Random Noise

Top row to bottom row patterns: Original; Noisy;
Recalled. The output dix x appears shifted towards
white pixel values.
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Behavior of My v In Presence of Random Noise

Top row to bottom row patterns: Original; Noisy;

Recalled. The output o/ x x appears shifted towards
black pixel values.
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Behavior of Wxx and My x in R?
The orbits ofiVx x andMyy for X = {x!,x?} C R*:

F(X) = set of fixed points ofVx x.
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The data polyhedron®3(v,u) N F(X)
» Letv! = W4 andu’ = M5 y.
e Setu = V§:1 x¢ andv = /\i,f:1 ¢,
 Setw’ = u; + v/ andm’ = v; + v’

- DefinelV = {w',...,w"} and
M= {m! ... m"}

» W is affinely independent whenver® # w’
Yl #£ 5. Similarly for M.
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The data polyhedron®3(v,u) N F(X)
« LetB(v,u) denote the hyperbox determined by

{v,u}.
« We obtainX € C(X) C B(v,u) N F(X).
» The vertices of the polyhedron

B(v,u) N F(X)

are the elements t U M U {v,u}
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The data polyhedron®3(v,u) N F(X)

The fixed point sef’( X) is the infinite strip bounded
by the two lines of slope 1.
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Rationale for Dendritic Computing

« The number of synapses orsi@gleneuron in the
cerebral cortex ranges between 500 and 200,000.

« A neuron Iin the cortex typically sends messages
to approximatelyl0* other neurons.

» Dendrites make up thargest componenh both
surface area and volume of the brain.

« Dendrites of cortical neurons make mp50% of
the neuron’s membrane.
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Rationale for Dendritic Computing

« Recent research results demonstrate that the
dynamic interaction of inputs in dendrites
containing voltage-sensitive ion channels make
them capable of realizing nonlinear interactions,
logical operations, and possibly other local
domain computation (Poggio, Koch, Shepherd,
Rall, Segev, Perkel, et.al.)

» Based on their experimentations, these
researchers make the case that it isdbrdrites
and not the neural cell bodiese the basic
computational units of the brain.
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Our LNNs Are Based On Biological Neurons

axon axon axon terminal

hillock \ branch fibers

— /)
spmes

soma
myehn

nucleus sheet
dendrites axonal tree

Figure 1. Simplified sketch of the processes of a bio-
logical neuron.
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Dendritic Computation: Graphical Model

wj ), = synaptic weight from theV; to thekth dendrite
of M;; ¢ = 0 for inhibition and? = 1 for excitation.
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SLLP (with Dendritic Structures)

O .

-
- -
- - -

Graphical representation of a single-layer lattice
based perceptron with dendritic structure.
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Dendritic LNN model

* In the dendritic ANN model, a neural/; hask;
dendrites. A given dendrit® j;,
(ke {l,..., K;}) of M, receives inputs from
axonal fibers of neurondj, ..., N, and
computes a value.

- The neuronV/; computes a value’ which will
correspond to the maximum (or minimum) of the

valuesry, . .. ,T;(j received from its dendrites.
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Dendritic Computation: Mathematical Model

The computation performed by tla¢h dendrite for
inputx = (x1,...,x,) € R"is given by

Pjk /\ /\ ‘/EZ_I_wfjk) )

i€l (k) beL(i
where
» z; — value of neuronV;;

I(k) € {1,...,n}—setof all input neurons with
terminal fibers that synapse on dendrilg;;

e L(i) C{0,1} — set of terminal fibers al; that
synapse on dendritd ;x;

* Dik € {—17 1} — IPSC/EPSC ODjk.
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Dendritic Computation: Mathematical Model

» The valuer/ (x) is passed to the cell body and the
state of)/; is a function of the input received

from all its dendritic postsynaptic results. The
total value received by/; Is given by

Fi) = py A\ 7 ()
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The Capabilities of an SLLP

« An SLLP can distiguish between any given
number of pattern classes to within any desired
degree ot > 0.

* More precisely, supposE;, Xs, ..., X,, denotes
a collection of disjoint compact subsetskf.

« Foreaclp € {1,...,m}, define
Yy = U?zl,j;ép X
&p = d(va Y;?) > 0
g0 = s min{ey, ..., &}

 As the following theorem shows, a given pattern
x € R™ will be recognised correctly as belonging
to classC, wheneverx € X,
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The Capabilities of an SLLP

Theorem. If { X, X,,..., X,,} is a collection of
disjoint compact subsets Bf' ands a positive
number withe < ¢, then there exists a single
layer lattice based perceptron that assigns each
pointx € R" to classC; whenevex € X; and
j€{l,...,m}, andtoclas€y = = J;_, C;
wheneverd(x, X;) > ¢, Vi =1,...,m.
Furthermore, no point € R" |s assigned to more
than one class.
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Any point in the setX Is identified with clasg’;;
points within thes-band may or may not be classified

as belonging t@’;, points outside the-bands will not
be associated with a clag§ V.
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Learning in LNNs

 Early training methods were based on the proofs
of the preceding Theorems.

« All training algorithms involve the growth of
axonal branches, computation of branch weights,
creation of dendrites, and synapses.

» The first training algorithm developed was based
on elimination of foreign patterns from a given
training set (min or intersection).

» The second training algorithm was based on
small region merging (max or union).
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Example of the two methods inR?

The two methods partition the pattern sp&zen
terms of intersectiona) and union ), respectively.
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SLLP Using Elemination VS MLP

(a) (b)

(a) SLLP: 3 dendrites, 9 axonal branches) MLP 13
hidden neorons and 2000 epochs.
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SLLP Using Merging

During training, the SLLP grows 20 dendrites, 19
excitatory and 1 inhibitorydasheqd.
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Another Merging Example

i _uil
e EALECS

4] o]

Y
<

I C

Iy n
T

| attice Theorv & Applications — p. 62/87



Learning in LNNs

L. lancu developed a hybrid method using both
Merging and Elimination. The method is
reminiscent of the Expansion-Contraction
method for hyperboxes developed by P.K. Simson
for training Mini-Max Neural Networks, but it Is
distinctly different.

L. lancu also extended this learning to Ritter’s
Fuzzy SLLP
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Fuzzy LNNs

TheProblem :

« Classify all points in the intervak, b| C R as
belonging to clasg’;, and every point outside the
interval e — o, b + « as having no relation to
classC', wherea > 0 Is a specified fuzzy
boundary parameter.

« Forapointr € [a — a,al orz € b, b+ o we
would like y(x) to be close td whenz is close

to a or b, andy(x) close to0 wheneverr is close
toa —aorb+ a.
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Fuzzy LNNs

Solution :

- Change the weights) = —b andw{ = —a
found by one of the previous algorithms to

0 1

v = —=L —landv; = —=- + 1, and use the
Input £ instead ofr.

« Use the activation function

1 fz>1
flz)=¢ 2z F0<2< 1
0 1f 2<0

| attice Theorv & Applications — n. 65/87



Fuzzy LNNSs

Computing fuzzy output values with an SLLP using
the ramp activation function.
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Learning in LNNs

Classifier Recognition
SLLP (elimination) 98.0%
Backpropagation 96%
Resilient Backpropagation 96.2%
Bayesian Classifier 96.8%
Fuzzy LNN 100%

UC Irvine lonosphere data set (2-class problem in
R3* with training set = 65% of data set)
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Learning in LNNs

Classifier Recognition
Fuzzy SLLP (merge/elimination) 98.7%
Backpropagation 95.2%
Fuzzy Min-Max NN 97.3%
Bayesian Classifier 97.3%
Fisher Ratios Discimination 96.0%
Ho-Kashyap 97.3%

Fisher’s Iris Data Set. A 3-class problem in
R* with training set = 50% of data set.
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Learning in LNNs

« A. Barmpoutis extended the elimination method
to arbitrary orthonormal basis settings.

« A dynamic Backpropagation Method is currently
under development.
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Learning in LNNs

In Barmpoutis’s approach, the equation

— Pjk /\ /\ ml+wfjk) )

i€l (k) beL(i

IS replaced by

H6) =pi A\ (FD7 (RO, + wl) |

whereR is a rotation matrix obtained in the learning
process.
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LNNs employing Orthonormal Basis

Left: Maximal hyperbox for elimination in the

standard basis fdR".
Right: Maximal hyperbox for elimination in another

orthonormal basis foR".
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Dendritic Model of an Associative Memory

e X = {Xl,...,Xk} C R"™.
* n Input neuronsVy, ..., N, accepting input
X = (513‘1, . ,Zl?n)/ e R", Whereil?i — N;.

« One hidden layer containingneurons
Hy, ..., H,;.

« Each neuror?; has exactly one dendrite which

contains the synaptic sites of exactly two terminal
axonal fibers ofV; for: =1, ... n.

» The weights of the two terminal fibers &
making contact with the dendrite &éf; are

denoted byw;;, with £ = 0, 1,
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Input and Hidden Layer Neural Connection

Every input neuron connects to the dendrite of each
hidden neuron with two axonal fibers, one excitatory
and the other inhibitory.
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Computation at the Hidden Layer
 For inputx € R", the dendrite of{; computes

n 1

(%) = /\ /\(—1)1_6 (:EZ + wfj) .

1=1 (=0

 The state of neuro#; is determined by the
hard-limiter activation function

0 if 2> 0
—o0 ifz<0

fz) =

- The output offf; is f |77 (x)].

» The output flows along the axon &f; and its
axonal fibers ton output neurond/, ..., M,,.
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Computation at the Output Layer

Each output neuron/,, h =1,...,m, has
exactly one dendrite.

Each hidden neuroff; (j = 1,...,k) has

exactly one excitatory axonal fiber terminating on
the dendrite of\/,,.

The synaptic weight of the excitatory axonal fiber
of H; terminating on the dendrite df/;, Is preset

aSvjh:nyforj: I,....k;h=1,...,m.
The computation performed b/}, Is

(q) = V_, (¢j + vjn) , whereg; = f [77(x)]
denotes the output df ;.

The activation function for each output neuron
My, is the identity functiony(z) = z.
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Dendritic Model of an Associative Memory

Topology of the dendritic associative memory based
on the dendritic model. The network is fully
connected.
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Computation of the Weightsw!.

« Compute
d(x*,x7) = max{‘af —z]l:i=1,...,n}.

* Choose a noise parameter- 0 such thatv <
2 min{ud(x%,x7) : £ <, ,v€{1,...,k}}.

. ¢ —(x{—oz) if ¢ =1
Setwij{—(m?%—(x) if¢=0

« Under these conditions, given inpkte R”, the

outputy = (yi1,...,y,) from the output neurons
willbey = (y],...,4),) =y < x¢€ B/,
whereB’ = { (v1,...,7,) €ER" : 2] —a <

J -
T + «, 2—1,...,n}.
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Patterns that will be correctly associ-
ated

Any patter residing in the box with centef will be

idntified as patterx$. The patterrk will not be
associated with any prototype pattern.
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Patterns to Store

Top row represents the patteras x?, andx?’, while
the bottom row depicts the associated pattgrns?,
andy®. Heren = 2500 andm = 1500.
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Recall of Corrupted Patterns

Z T

Distorting every vector components ©f with
random noise within the range «, o, with o = 75.2
results in perfect recall association.
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Recall Faillure when Noise Exceed

The memory rejects the patterns if they are corrupted
with random noise exceeding= 75.2.
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Increasing the Noise Tolerance

 Foreacht =1, ..., kK compute an allowable
noise parametet, by setting

ae < zmin{d(x%,x7) : v € K(§)},
whereK (&) ={1,...,k} \ {&}.
* Reset the weights by

.

Voo (2l 4 ay) if =0,
 Each output neuro#; will have a valugy; = 0 if
and only iIfx Is an element of the hypercube

B = {XER”:x:Z—ozjgxigx‘ngozj}and
g = —oo whenever € R" \ B’.
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The top row shows the same input patterns as in the
last figure. This time recall association Is perfect.
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Recall of AAM based on the Dendritic Model

« Top row: patterns distorted with random noise
within noise parametet.

« Bottom row: perfect recall of the auto-associative
memory based on the dendritic model.
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A New LNN Model

* In this model the synapses on spines of dendrites
are used. The presynaptic neuron is either
excitatory or inhibitory, but not both.

« N={N,;:i=1,...,n} denotes the set of
presynaptic (input) neurons.

* 0(j,k) = jth spine on on dendrit®;

* N(j,k) = set of presynaptic neurons with
synapses on(j, k). Thus,N(j,k) C N.

* 7, = number of spines oW,
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A New LNN Model
e Thekth dendriteD;,. now computes

Tk = pk/\wk]+ Z Wiy,

i€N(j,k)

wherel(2) = 0 if N; is inhibitory and/(:) = 1 if
N; Is exitatory.

* s; = number of spikes In spike train produced by
N; inan intervalls — ¢, ¢|

« Note thatUé?:1 N (7, k) corresponds to the set of
iInput neurons with terminal axonal fibers ah.
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Questions and Comments

« Thank you for your attention.
« Any questions or comments?
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