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Overview
Part I: Theory

• Pertinent algebraic structures
• Lattice algebra with focus onℓ-vector Spaces
• Concluding remarks and questions

Part II: Applications
• LNNs
• Matrix based LAMs
• Dendritic LAMs
• Concluding remarks and questions
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History
• Lattice theory in image processing and AI
• Image algebra, mathematical morphology, and

HPC

A pertinent question:

Why is (−1) · (−1) = 1?
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Algebraic Structures
Some basic backgound

LetG be a set with binary operation◦. Then

1. (G, ◦) is agroupoid

2. if x ◦ (y ◦ z) = (x ◦ y) ◦ z, then(G, ◦) is a
semigroup

3. if G is a semigroup and andG has an identity
element, thenG is amonoid

4. if G is a monoid and every element ofG has an
inverse, thenG is agroup

5. if G is a group andx ◦ y = y ◦ x ∀ x, y ∈ G, then
G is anabeliangroup.
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Algebraic Structures
Why are groups important?

Theorem. If (X, ·) is a group anda, b ∈ X, then the
linear equationsa · x = b andy · a = b have
unique solutions inX.

Remark: Note that the solutionsx = a−1 · b and
y = b · a−1 need not be the same unlessX is
abelian.
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Algebraic Structures
Sets with Multiple Operations

Suppose thatX is a set with two binary operations⋆
and◦. The operation◦ is said to beleft distributive
with respect to⋆ if

x ◦ (y ⋆ z) = (x ◦ y) ⋆ (x ◦ z) ∀ x, y, z ∈ X (1)

andright distributiveif

(y ⋆ z) ◦ x = (y ◦ x) ⋆ (z ◦ x) ∀ x, y, z ∈ X. (2)

Division onR+ is not left distributive over addition;
(y + z)/x = (y/x) + (z/x) but
x/(y + z) 6= (x/y) + (x/z).

When both equations hold, we simply say that◦ is
distributivewith respect to⋆. Lattice Theory & Applications – p. 6/87



Algebraic Structures

Definition: A ring (R, +, ·) is a setR together with
two binary operations+ and· of addition and
multiplication, respectively, defined onR such
that the following axioms are satisfied:
1. (R, +) is an abelian group.
2. (R, ·) is a semigroup.
3. ∀ a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c) and

(a+ b) · c = (a · c) + (b · c).

If axiom 1 in this definition is weakened to(R, +) is a
commutative semigroup, thenR is called asemiring.
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Algebraic Structures

If (R, +, ·) is a ring, we let0 denote the additive
identity and1 the multiplicative identity (if it exists).
If R satisfies the property

• For every nonzeroa ∈ R there is an element in
R, denoted bya−1, such that
a · a−1 = a−1 · a = 1 (i.e. (R \ {0}, ·) is a group),

thenR is calleddivisionring. A commutative division
ring is called afield
You should now be able to prove that(−1) · (−1) = 1.
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Partially Ordered Sets
Definition: A relation4 on a setX is called apartial

order onX if and only if for everyx, y, z ∈ X
the following three conditions are satisfied:
1. x 4 x (reflexive)
2. x 4 y andy 4 x⇒ x = y (antisymmetric)
3. x 4 y andy 4 z ⇒ x 4 z (transitive)

The inverserelation of4, denoted by<, is also a
partial order onX.

Definition: Thedualof a partially ordered setX is
that partially ordered setX∗ defined by the
inverse partial order relation on the same
elements.

Since(X∗)∗ = X, this terminology is legitimate.
Lattice Theory & Applications – p. 9/87



Lattices
Definition: A lattice is a partially ordered setL such

that for any two elementsx, y ∈ L, glb{x, y} and
lub{x, y} exist. IfL is a lattice, then we define
x ∧ y = glb{x, y} andx ∨ y = lub{x, y}.
• A sublatticeof a latticeL is a subsetX of L

such that for each pairx, y ∈ X, we have that
x ∧ y ∈ X andx ∨ y ∈ X.

• A latticeL is said to becompleteif and only if
for each of its subsetsX, infX andsupX
exist. We define the symbols

∧

X = infX
and

∨

X = supX.
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sℓ-Semigroups andℓ-Groups

Suppose(R, ◦) is a semigroup or group andR is a
lattice(R,∨, ∧) or semilattice(R,∨).

Definition: A group translationψ is a function
ψ : R → R of form

ψ(x) = a ◦ x ◦ b,

wherea, b are constants.

The translationψ is said to beisotoneif and only if

x 4 y ⇒ ψ(x) 4 ψ(y)

Note that a group translation is a unary operation.
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sℓ-Semigroups andℓ-Groups
Definition: A ℓ-group(ℓ-semigroup) is of form

(R,∨, ∧, +), where(R, +) is a group
(semigroup) and(R,∨, ∧) is a lattice,andevery
group translation is isotone.

If R is just a semilattice - i.e.,(R, ∨) or (R, ∧) - in
the definition, then(R, ∨,+) (or (R, ∧,+)) an
sℓ−group if (R, +) is a group and an
sℓ-semigroupif (R, +) is a semigroup.
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sℓ-Vector Spaces andℓ-Vector Spaces
Definition: A sℓ−vector spaceV over thesℓ-group

(or sℓ-monoid)(R,∨,+), denoted byV(R), is a
semilattice(V,∨) together with an operation
calledscalar additionof each element ofV by an
element ofR on the left, such that∀α, β ∈ R
andv, w ∈ V, the following conditions are
satisfied:
1. α + v ∈ V

2. α + (β + v) = (α + β) + v

3. (α ∨ β) + v = (α + v) ∨ (β + v)

4. α + (v ∨w) = (α + v) ∨ (α +w)

5. 0 + v = v

Lattice Theory & Applications – p. 13/87



sℓ-Vector Spaces andℓ-Vector Spaces
Thesℓ-vector space is also called amaxvector space,
denoted by∨-vector space. Using the duals(R, ∧, +)
and(V,∨), and replacing conditions (3.) and (4.) by

3’. (α ∧ β) + v = (α + v) ∧ (β + v)

4’. α + (v ∧w) = (α + v) ∧ (α +w),

we obtain theminvector space denoted by∧-vector
space.
Note also that replacing∨ (or∧) by+ and+ by ·, we
obtain the usual axioms defining a vector space.
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sℓ-Vector Spaces andℓ-Vector Spaces
Definition: If we replace the semilatticeV by a

lattice(V,∨, ∧), thesℓ-group (orsℓ-semigroup)
R by anℓ-group (orℓ-semigroup)(R,∨,∧,+),
and conditions 1 through 5 and 3’ and 4’ are all
satisfied, thenV(R) is called anℓ-vector space.

Remark. The lattice vector space definitions given
above are drastically different fromvector lattices
as postulated by Birkhoff and others! A vector
lattice is simply a partially ordered real vector
space satisfying the isotone property.
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Lattice Algebra and Linear Algebra
The theory ofℓ-groups,sℓ-groups,sℓ-semigroups,
ℓ-vector spaces, etc. provides an extremely rich
setting in which many concepts from linear algebra
and abstract algebra can be transferred to the lattice
domain via analogies.ℓ-vector spaces are a good
example of such an analogy. The next slides will
present further examples of such analogies.
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Lattice Algebra and Linear Algebra

Ring: (R,+, ·)
• a · 0 = 0 · a = 0
• a+ 0 = 0 + a = a
• a · 1 = 1 · a = a
• a · (b+ c) = (a · b) + (a · c)

Semi-Ring orsℓ-Group: (R−∞,∨,+)
• a+ (−∞) = (−∞) + a = −∞
• a ∨ (−∞) = (−∞) ∨ a = a
• a+ 0 = 0 + a = a
• a+ (b ∨ c) = (a+ b) ∨ (a+ c)
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Lattice Algebra and Linear Algebra
• Since(R−∞,∨,+)∗ = (R∞,∧,+

∗), (R∞,∧,+
∗)

is also ansℓ−semigroup (with+∗ = +)
isomorphic to(R−∞,∨,+)

• Defininga+∗ b = a+ b ∀ a, b ∈ R−∞ and

−∞+∞ = ∞+−∞ = −∞

−∞+∗ ∞ = ∞+∗ −∞ = ∞,

we can combine(R−∞,∨,+) and(R∞,∧,+) into one
well defined algebraic structure(R±∞,∨,∧,+,+

∗).
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Lattice Algebra and Linear Algebra
• The structure(R,∨,∧,+) is anℓ-group.
• The structures(R−∞,∨,∧,+) and(R∞,∨,∧,+)

areℓ-semigroups.
• The structure(R±∞,∨,∧) is a bounded

distributive lattice.
• The structure(R±∞,∨,∧,+,+

∗) is called a
bounded lattice ordered groupor blog, since the
underlying structure(R,+) is a group.
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Matrix Addition and Multiplication

SupposeA = (aij)m×n andB = (bij)m×n with
entries inR±∞. Then
• C = A ∨ B is defined by setting
cij = aij ∨ bij, and

• C = A ∧ B is defined by setting
cij = aij ∧ bij.

If A = (aij)m×p andB = (bij)p×n, then
• C = A ∨ B is defined by setting
cij =

∨p
k=1(aik + bkj), and

• C = A ∧ B is defined by setting
cij =

∧p
k=1(aik +

∗ bkj).
• ∨ and ∧ are called themaxandmin

products, respectively.
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Zero and Identity Matrices

For the semiring(Mn×n(R−∞),∨, ∨ ), thenull
matrix is

Φ =















−∞ · · · −∞

· −∞ · · ·

· · · · ·

· · · · ·

−∞ · · · −∞














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Zero and Identity Matrices

For the semiring(Mn×n(R−∞),∨, ∨ ), theidentity
matrix is

I =















0 −∞ · · −∞

−∞ 0 · · ·

· · · · ·

· · · · −∞

−∞ · · −∞ 0














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Matrix Properties

We have∀A, B, C ∈Mn×n(R−∞)

A ∨ (B ∨ C) = (A ∨ B) ∨ (A ∨ C)

I ∨ A = A ∨ I = A

A ∨ Φ = Φ ∨ A = A

A ∨ Φ = Φ ∨ A = Φ

Analogous laws hold for the semiring
(Mn×n(R∞),∧, ∧ ),
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Conjugation
If r ∈ R±∞, then theadditive conjugateof r is the
unique elementr∗ defined by

r∗ =







−r if r ∈ R

−∞ if r = ∞.

∞ if r = −∞

• (r∗)∗ = r andr ∧ s = (r∗ ∨ s∗)∗

• It follows thatr ∧ s = −(−r ∨ −s) and
• A ∧ B = (A∗ ∨ B∗)∗ andA ∧ B = (B∗ ∨ A∗)∗,

whereA = (aij) andA∗ = (a∗ji).
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sℓ-Sums
Definition: If X = {x1, . . . ,xk} ⊂ R

n
−∞ (or

X ⊂ R
n
∞), thenx ∈ R

n
−∞ (or x ∈ R

n
∞) is said to

be alinear max (min) combinationof X if x can
be written as

x =
k
∨

ξ=1

(αξ + xξ) (or x =
k
∧

ξ=1

(αξ + xξ)),

whereα ∈ R−∞ (or α ∈ R∞) andxξ ∈ R
n
−∞ (or

xξ ∈ R
n
∞.

The expressions
∨k

ξ=1(αξ + xξ) and
∧k

ξ=1(αξ + xξ)

are called alinear max sumand alinear min sum,
respectively.
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sℓ-Independence

Definition: Given thesℓ-vector space(Rn
−∞,∨) over

(R−∞,∨,+), X = {x1, . . . ,xk} ⊂ R
n
−∞, and

x ∈ R
n
∞, thenx is said to bemax dependentor

sℓ-dependentonX ⇔ x =
∨k

ξ=1(αξ + xξ) for
some linear max sum of vectors fromX. If x is
not max dependent onX, thenx is said to bemax
independentof X.

The setX is sℓ-independentor max independent⇔
∀ ξ ∈ {1, . . . , k}, xξ is sℓ-independent of
X \ {xξ}.
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sℓ-Subspaces and Spans

Definition: If X ⊂ R
n
−∞, then(X,∨) is an

sℓ-subspace of(Rn
−∞,∨) ⇔ the following are

satisfied:
1. if x, y ∈ X, thenx ∨ y ∈ X
2. α + x ∈ X ∀α ∈ R−∞ andx ∈ X.

Definition: If X ⊂ R
n
−∞, then thesℓ-spanof X is

the set

S(X) = {x ∈ R
n
−∞; x is max dependent onX}.
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sℓ-Spans and Bases

Remark: If x ∈ S(X), thenα + x ∈ S(X) and
x ∨ y ∈ S(X) ∀x,y ∈ S(X). ThusS(X) is an
sℓ-vector subspace ofRn

−∞.

If S(X) = R
n
−∞, then we say thatX spansRn

−∞ and
X is called a set ofgeneratorsfor Rn

−∞.

Definition: A basis for ansℓ-vector space(V,∨) (or
(V,∧)) is a set ofsℓ-independent vectors which
spansV.
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sℓ-independence

Example. The setX = {(0,−∞), (−∞, 0)} spans
R

2
−∞ and issℓ-independent. ThusX is a basis for

R
2
−∞

Question: What is a basis forR2?

Question: If a ∈ R, what is the span of
X = {(0, a), (−∞, 0)} in R

2
−∞?

Question: What is the span ofX = {(1, 0), (0, 1)} in
R

2
−∞?
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ℓ-Vector Spaces
Most of what we have said forsℓ-vector spaces also
holds forℓ-vector spaces with the appropriate
changes. Thus, for(Rn

±∞,∨,∧) we have:

• If {x1, . . . ,xk} ⊂ R
n
±∞, then alinear minimax

combinationof vectors from the set{x1, . . . ,xk}
is any vectorx ∈ R

n
±∞ of form

x = S(x1, . . . ,xk) =
∨

j∈J

k
∧

ξ=1

(aξj + xξ), (3)

whereJ is a finite set of indices andaξj ∈ R±∞

∀j ∈ J and∀ξ = 1, . . . , k.
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ℓ-Vector Spaces
• The expression
S(x1, . . . ,xk) =

∨

j∈J

∧k
ξ=1(aξj + xξ) is called a

linear minimax sumor anℓ-sum.
• Similarly we can combine the structures
(M(Rn

±∞)n×n,∨, ∨ ) and(M(Rn
±∞)n×n,∧, ∧ )

to obtain the blog(M(Rn
±∞)n×n,∨,∧, ∨ , ∧ ) in

order to obtain a coherent minimax theory for
matrices.

• Many of the concepts found in the corresponding
linear domains can then be realized in these
lattice structures via appropriate analogies.
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ℓ-Transforms
Definition: A linear max transformor sℓ-transform

of ansℓ-vector spaceV(R) into ansℓ-vector
spaceW(R) is a functionL : V → W which
satisfies the condition

L((α+v)∨ (β+u)) = (α+L(v))∨ (β+L(u))

for all scalarsα, β ∈ R and allv,u ∈ V.

A linearmin transform obeys

L((α+v)∧ (β+u)) = (α+L(v))∧ (β+L(u))

and a linearminimaxtransform of anℓ-vector
spaceV(R) into anℓ-vector spaceW(R) obeys
both of the equations.
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sℓ-transforms and polynomials
• Just as in linear algebra, it is easy to prove that

anym× n matrixM with entries fromRm
−∞ (or

R
m
∞) corresponds to a linear max (or min)

transform fromRm
−∞ intoR

n
−∞ (or Rm

∞ intoR
n
∞).

Simply define

LM(x) =M ∨ x ∀x ∈ R
m
−∞

• The subject ofℓ- andsℓ-polynomials also bears
many resemblances to the theory of polynomials
and waits for further exploration.
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sℓ-Polynomials
Definition: max polynomial of degreen with

coefficients in the appropriate semiringR in the
indeterminatex is of form

p(x) =
∞
∨

i=0

(ai + ix),

whereai = −∞ for all but a finite number ofi.
• If for somei > 0 ai 6= −∞, then the largest

suchi is called thedegreeof p(x) If no such
i > 0 exists, then the degree ofp(x) is zero.

• For min polynomials simply replace
∨

by
bigwedge. Combining the two notions will
result in minimax polynomials.
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Discussion and Questions
1. Many items have not been discussed; e.g.,

eigenvalues and eigenvectors.

2. Applications have not been discussed. We will
discuss some in the second talk.

3. Questions?

Thank you!
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Associative Memories (AMs)

SupposeX = {x1, . . . ,xk} ⊂ R
n andY =

{y1, . . . ,yk} ⊂ R
m.

• A functionM : Rn → R
m with the property that

M(xξ) = yξ ∀ξ = 1, . . . , k is called an
associative memorythat identifiesX with Y .

• If X = Y , thenM is called anauto-associative
memoryand ifX 6= Y , thenM is called a
hetero-associative memory.

• M is said to berobust in the presence of noiseif
M(x̃ξ) = yξ , for every corrupted versioñxξ of
the prototype input patternsxξ.
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Robustness in the Presence of Noise
• We say thatM is robust in the presence of noise

bounded byn = (n1, n2, . . . , nn)
′ if and only if

wheneverx represents a distorted version ofxξ

with the property that
∣

∣x− xξ
∣

∣ ≤ n, then
M(x) = yξ.

Remark: In this theory, it may be possible to have
ni = ∞ for somei if that is desirable.

• The concept of the noise bound can be
generalized to be bounded by the set
{

n1,n2, . . . ,nk
}

, with n being replaced bynξ in
the above inequality so that

∣

∣x− xξ
∣

∣ ≤ nξ.
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Matrix Bases AMs
• The Steinbuch Lernmatrix (1961), auto- and

hetero-associative memories.
• The classical Hopfield net is an example of an

auto-associative memory.
• The Kohonen correlation matrix memory is an

example of a hetero-associative memory.
• The lattice based correlation matrix memories
WXY andMXY .
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Lattice-based Associative Memories
• For a pair(X,Y ) of pattern associations, the two

canonical lattice memoriesWXY andMXY are
defined by:

wij =
k
∧

ξ=1

(

yξi − xξj

)

and mij =
k
∨

ξ=1

(

yξi − xξj

)

.

• Fact. If X = Y , then

WXX ∨ xξ = xξ =MXX ∧ xξ ∀ξ = 1, . . . , k .
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Lattice-based Associative Memories
We have

1. WXY = Y ∧ X∗ andMXY = Y ∨ X∗.

2. WXY = (X ∨ Y ∗)∗ =M ∗
Y X and

MY X = (X ∧ Y ∗)∗ =W ∗
Y X .

3. xξ → {WXY |MXY } → yξ →

{MY X |WY X} → xξ.

4. This provides for a biassociative memory
(LBAM).

Lattice Theory & Applications – p. 40/87



Behavior ofWXX in Presence of Random Noise

Top row to bottom row patterns: Original; Noisy;
Recalled. The output ofWXX appears shifted towards
white pixel values.
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Behavior ofMXX in Presence of Random Noise

Top row to bottom row patterns: Original; Noisy;
Recalled. The output ofMXX appears shifted towards
black pixel values.
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Behavior ofWXX andMXX in R
2

The orbits ofWXX andMXX for X =
{

x1,x2
}

⊂ R
2:

F (X) = set of fixed points ofWXX .
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The data polyhedronB(v,u) ∩ F (X)

• Let vℓ = Wℓ
XX anduℓ = Mℓ

XX.

• Setu =
∨k

ξ=1 x
ξ andv =

∧k
ξ=1 x

ξ.

• Setwj = uj + vj andmj = vj + uj.

• DefineW = {w1, . . . ,wn} and
M = {m1, . . . ,mn}

• W is affinely independent whenverwℓ 6= wj

∀ℓ 6= j. Similarly forM .
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The data polyhedronB(v,u) ∩ F (X)

• Let B(v,u) denote the hyperbox determined by
{v,u}.

• We obtainX ⊂ C(X) ⊂ B(v,u) ∩ F (X).
• The vertices of the polyhedron

B(v,u) ∩ F (X)

are the elements ofW ∪M ∪ {v,u}
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The data polyhedronB(v,u) ∩ F (X)

1
x

2
x

2
x

1
m

1
x

6
x

5
x

4
x

3
x

2
m

1
w

2
w

u

1

2

1-

2-

5

5

1
x

2
x

2
x

1

1
x

6
x

5
x

4
x

3
x

2
m

1
w

2
w

u

1

2

1-

2-

5

5

v

The fixed point setF (X) is the infinite strip bounded
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Rationale for Dendritic Computing

• The number of synapses on asingleneuron in the
cerebral cortex ranges between 500 and 200,000.

• A neuron in the cortex typically sends messages
to approximately104 other neurons.

• Dendrites make up thelargest componentin both
surface area and volume of the brain.

• Dendrites of cortical neurons make up> 50% of
the neuron’s membrane.
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Rationale for Dendritic Computing
• Recent research results demonstrate that the

dynamic interaction of inputs in dendrites
containing voltage-sensitive ion channels make
them capable of realizing nonlinear interactions,
logical operations, and possibly other local
domain computation (Poggio, Koch, Shepherd,
Rall, Segev, Perkel, et.al.)

• Based on their experimentations, these
researchers make the case that it is thedendrites
and not the neural cell bodiesare the basic
computational units of the brain.
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Our LNNs Are Based On Biological Neurons

Figure 1: Simplified sketch of the processes of a bio-

logical neuron.
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Dendritic Computation: Graphical Model

wℓ
ijk = synaptic weight from theNi to thekth dendrite

of Mj; ℓ = 0 for inhibition andℓ = 1 for excitation.
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SLLP (with Dendritic Structures)

Graphical representation of a single-layer lattice
based perceptron with dendritic structure.
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Dendritic LNN model

• In the dendritic ANN model, a neuronMj hasKj

dendrites. A given dendriteDjk

(k ∈ {1, . . . ,Kj}) of Mj receives inputs from
axonal fibers of neuronsN1, . . . , Nn and
computes a valueτ jk .

• The neuronMj computes a valueτ j which will
correspond to the maximum (or minimum) of the
valuesτ j1 , . . . , τ

j
Kj

received from its dendrites.
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Dendritic Computation: Mathematical Model
The computation performed by thekth dendrite for
inputx = (x1, . . . , xn)

′ ∈ R
n is given by

τ jk(x) = pjk
∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

xi + wℓ
ijk

)

,

where
• xi – value of neuronNi;
• I(k) ⊆ {1, . . . , n} – set of all input neurons with

terminal fibers that synapse on dendriteDjk;

• L(i) ⊆ {0, 1} – set of terminal fibers ofNi that
synapse on dendriteDjk;

• pjk ∈ {−1, 1} – IPSC/EPSC ofDjk.
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Dendritic Computation: Mathematical Model

• The valueτ jk (x) is passed to the cell body and the
state ofMj is a function of the input received
from all its dendritic postsynaptic results. The
total value received byMj is given by

τ j(x) = pj

Kj
∧

k=1

τ jk(x).
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The Capabilities of an SLLP
• An SLLP can distiguish between any given

number of pattern classes to within any desired
degree ofε > 0.

• More precisely, supposeX1,X2, . . . ,Xm denotes
a collection of disjoint compact subsets ofR

n.
• For eachp ∈ {1, . . . ,m}, define
Yp =

⋃m
j=1,j 6=pXj

εp = d(Xp, Yp) > 0

ε0 =
1
2 min{ε1, . . . , εp}.

• As the following theorem shows, a given pattern
x ∈ R

n will be recognised correctly as belonging
to classCp wheneverx ∈ Xp

Lattice Theory & Applications – p. 55/87



The Capabilities of an SLLP

• Theorem. If {X1, X2, . . . , Xm} is a collection of
disjoint compact subsets ofRn andε a positive
number withε < ε0, then there exists a single
layer lattice based perceptron that assigns each
pointx ∈ R

n to classCj wheneverx ∈ Xj and
j ∈ {1, . . . ,m}, and to classC0 = ¬

⋃m
j=1Cj

wheneverd(x, Xi) > ε, ∀i = 1, . . . ,m.
Furthermore, no pointx ∈ R

n is assigned to more
than one class.
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Illustration of the Theorem in R
2

Any point in the setXj is identified with classCj;
points within theǫ-band may or may not be classified
as belonging toCj, points outside theǫ-bands will not
be associated with a classCj ∀j.
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Learning in LNNs

• Early training methods were based on the proofs
of the preceding Theorems.

• All training algorithms involve the growth of
axonal branches, computation of branch weights,
creation of dendrites, and synapses.

• The first training algorithm developed was based
on elimination of foreign patterns from a given
training set (min or intersection).

• The second training algorithm was based on
small region merging (max or union).
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Example of the two methods inR2

The two methods partition the pattern spaceR
2 in

terms of intersection (a) and union (b), respectively.
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SLLP Using Elemination VS MLP

(a) SLLP: 3 dendrites, 9 axonal branches. (b) MLP 13
hidden neorons and 2000 epochs.
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SLLP Using Merging

During training, the SLLP grows 20 dendrites, 19
excitatory and 1 inhibitory (dashed).
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Another Merging Example
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Learning in LNNs

• L. Iancu developed a hybrid method using both
Merging and Elimination. The method is
reminiscent of the Expansion-Contraction
method for hyperboxes developed by P.K. Simson
for training Mini-Max Neural Networks, but it is
distinctly different.

• L. Iancu also extended this learning to Ritter’s
Fuzzy SLLP
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Fuzzy LNNs

TheProblem :

• Classify all points in the interval[a, b] ⊂ R as
belonging to classC1, and every point outside the
interval[a− α, b+ α] as having no relation to
classC1, whereα > 0 is a specified fuzzy
boundary parameter.

• For a pointx ∈ [a− α, a] or x ∈ [b, b+ α] we
would likey(x) to be close to1 whenx is close
to a or b, andy(x) close to0 wheneverx is close
to a− α or b+ α.
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Fuzzy LNNs

Solution :

• Change the weightsw0
1 = −b andw1

1 = −a
found by one of the previous algorithms to

v01 = −w0

1

α
− 1 andv11 = −w1

1

α
+ 1, and use the

input x
α

instead ofx.

• Use the activation function

f(z) =







1 if z ≥ 1

z if 0 ≤ z ≤ 1

0 if z ≤ 0

.
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Fuzzy LNNs

Computing fuzzy output values with an SLLP using
the ramp activation function.
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Learning in LNNs

Classifier Recognition

SLLP (elimination) 98.0%
Backpropagation 96%
Resilient Backpropagation 96.2%
Bayesian Classifier 96.8%
Fuzzy LNN 100%

UC Irvine Ionosphere data set (2-class problem in
R

34 with training set = 65% of data set)
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Learning in LNNs

Classifier Recognition

Fuzzy SLLP (merge/elimination) 98.7%
Backpropagation 95.2%
Fuzzy Min-Max NN 97.3%
Bayesian Classifier 97.3%
Fisher Ratios Discimination 96.0%
Ho-Kashyap 97.3%

Fisher’s Iris Data Set. A 3-class problem in
R

4 with training set = 50% of data set.
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Learning in LNNs

• A. Barmpoutis extended the elimination method
to arbitrary orthonormal basis settings.

• A dynamic Backpropagation Method is currently
under development.
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Learning in LNNs

In Barmpoutis’s approach, the equation

τ jk(x) = pjk
∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

xi + wℓ
ijk

)

,

is replaced by

τ jk (x) = pjk
∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

R(x)i + wℓ
ijk

)

,

whereR is a rotation matrix obtained in the learning
process.
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LNNs employing Orthonormal Basis

Left: Maximal hyperbox for elimination in the
standard basis forRn.
Right: Maximal hyperbox for elimination in another
orthonormal basis forRn.
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Dendritic Model of an Associative Memory

• X =
{

x1, . . . ,xk
}

⊂ R
n.

• n input neuronsN1, . . . , Nn accepting input
x = (x1, . . . , xn)

′ ∈ R
n, wherexi → Ni.

• One hidden layer containingk neurons
H1, . . . , Hk.

• Each neuronHj has exactly one dendrite which
contains the synaptic sites of exactly two terminal
axonal fibers ofNi for i = 1, . . . , n.

• The weights of the two terminal fibers ofNi

making contact with the dendrite ofHj are
denoted bywℓ

ij, with ℓ = 0, 1.
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Input and Hidden Layer Neural Connection

Every input neuron connects to the dendrite of each
hidden neuron with two axonal fibers, one excitatory
and the other inhibitory.
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Computation at the Hidden Layer
• For inputx ∈ R

n, the dendrite ofHj computes

τ j(x) =
n
∧

i=1

1
∧

ℓ=0

(−1)1−ℓ
(

xi + wℓ
ij

)

.

• The state of neuronHj is determined by the
hard-limiter activation function

f(z) =

{

0 if z ≥ 0

−∞ if z < 0
.

• The output ofHj is f
[

τ j (x)
]

.

• The output flows along the axon ofHj and its
axonal fibers tom output neuronsM1, . . . ,Mm.
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Computation at the Output Layer
• Each output neuronMh, h = 1, . . . ,m, has

exactly one dendrite.
• Each hidden neuronHj (j = 1, . . . , k) has

exactly one excitatory axonal fiber terminating on
the dendrite ofMh.

• The synaptic weight of the excitatory axonal fiber
of Hj terminating on the dendrite ofMh is preset
asvjh = yjh for j = 1, . . . , k; h = 1, . . . ,m.

• The computation performed byMh is
τh(q) =

∨k
j=1 (qj + vjh) , whereqj = f

[

τ j(x)
]

denotes the output ofHj.
• The activation function for each output neuron
Mh is the identity functiong(z) = z.
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Dendritic Model of an Associative Memory

Topology of the dendritic associative memory based
on the dendritic model. The network is fully
connected.

Lattice Theory & Applications – p. 76/87



Computation of the Weightswℓ
ij

• Compute
d(xξ,xγ) = max

{∣

∣xξi − xγi
∣

∣ : i = 1, . . . , n
}

.

• Choose a noise parameterα > 0 such thatα <
1
2 min{ud(xξ,xγ) : ξ < γ, ξ, γ ∈ {1, . . . , k}}.

• Setwℓ
ij =

{

−
(

xji − α
)

if ℓ = 1

−
(

xji + α
)

if ℓ = 0
.

• Under these conditions, given inputx ∈ R
n, the

outputy = (y1, . . . , ym)
′ from the output neurons

will be y =
(

yj1, . . . , y
j
m

)′
= yj ⇐⇒ x ∈ Bj,

whereBj =
{

(x1, . . . , xn)
′ ∈ R

n : xji − α ≤

xi ≤ xji + α, i = 1, . . . , n
}

.
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Patterns that will be correctly associ-
ated

Any patter residing in the box with centerxξ will be
idntified as patternxξ. The patterñx will not be
associated with any prototype pattern.
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Patterns to Store

Top row represents the patternsx1,x2, andx3, while
the bottom row depicts the associated patternsy1,y2,
andy3. Heren = 2500 andm = 1500.
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Recall of Corrupted Patterns

Distorting every vector components ofxj with
random noise within the range[−α, α], with α = 75.2
results in perfect recall association.
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Recall Failure when Noise Exceedsα

The memory rejects the patterns if they are corrupted
with random noise exceedingα = 75.2.
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Increasing the Noise Tolerance
• For eachξ = 1, . . . , k compute an allowable

noise parameterαξ by setting
αξ <

1
2 min{d(xξ,xγ) : γ ∈ K(ξ)},

whereK(ξ) = {1, . . . , k} \ {ξ}.
• Reset the weights by

wℓ
ij =

{

−
(

xji − αj

)

if ℓ = 1 ,

−
(

xji + αj

)

if ℓ = 0 ,

• Each output neuronHj will have a valueqj = 0 if
and only ifx is an element of the hypercube
Bj =

{

x ∈ R
n : xji − αj ≤ xi ≤ xji + αj

}

and
qj = −∞ wheneverx ∈ R

n \Bj.

Lattice Theory & Applications – p. 82/87



Successful Recall of the Refined Model

The top row shows the same input patterns as in the
last figure. This time recall association is perfect.
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Recall of AAM based on the Dendritic Model

• Top row: patterns distorted with random noise
within noise parameterα.

• Bottom row: perfect recall of the auto-associative
memory based on the dendritic model.
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A New LNN Model
• In this model the synapses on spines of dendrites

are used. The presynaptic neuron is either
excitatory or inhibitory, but not both.

• N = {Ni : i = 1, . . . , n} denotes the set of
presynaptic (input) neurons.

• σ(j, k) = jth spine on on dendriteDk

• N(j, k) = set of presynaptic neurons with
synapses onσ(j, k). Thus,N(j, k) ⊂ N .

• jk = number of spines onDk
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A New LNN Model
• Thekth dendriteDk now computes

τk = pk

jk
∧

j=1

[wkj +
∑

i∈N(j,k)

(−1)1−ℓ(i)sixi],

whereℓ(i) = 0 if Ni is inhibitory andℓ(i) = 1 if
Ni is exitatory.

• si = number of spikes in spike train produced by
Ni in an interval[s− t, t]

• Note that
⋃k

j=1N(j, k) corresponds to the set of
input neurons with terminal axonal fibers onDk.
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Questions and Comments
• Thank you for your attention.
• Any questions or comments?
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