

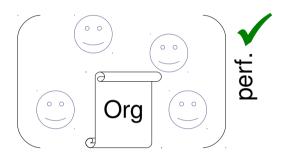
# A Case-Based Reasoning approach for Norm adaptation

Jordi Campos<sup>1</sup>, Maite López-Sánchez<sup>1</sup>, Marc Esteva<sup>2</sup> HAIS 2010

<sup>1</sup> Universitat de Barcelona (UB) <sup>2</sup> Institut d'Intel·ligència Artificial (IIIA-CSIC)



#### Outline

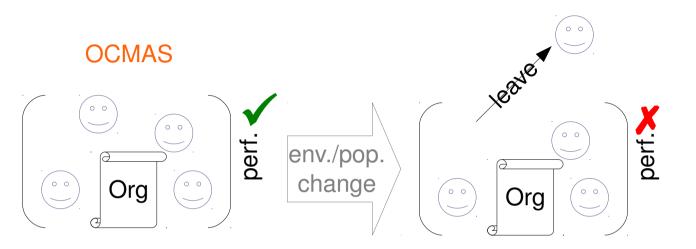

- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work



#### Motivation

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

#### **OCMAS**

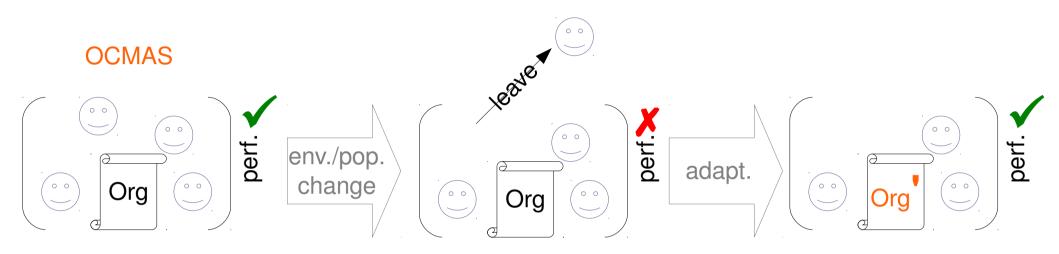



- Organisational-Centred MAS (OCMAS)
  - They have proven to be effective to regulate agents' activities (specially in open MAS & †dynamic dom)
  - MAS activity is regulated by an organisational struct.
     (Org) towards certain social Goals
    - we focus on norms (an Org component)



#### Motivation

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.




- environmental / population changes
  - → Org. effectiveness



#### Motivation

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



- environmental / population changes
  - Vorg. effectiveness → Org adaptation
    - we focus on norm adaptation, but we also have social structure adaptation.



#### Outline

- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work

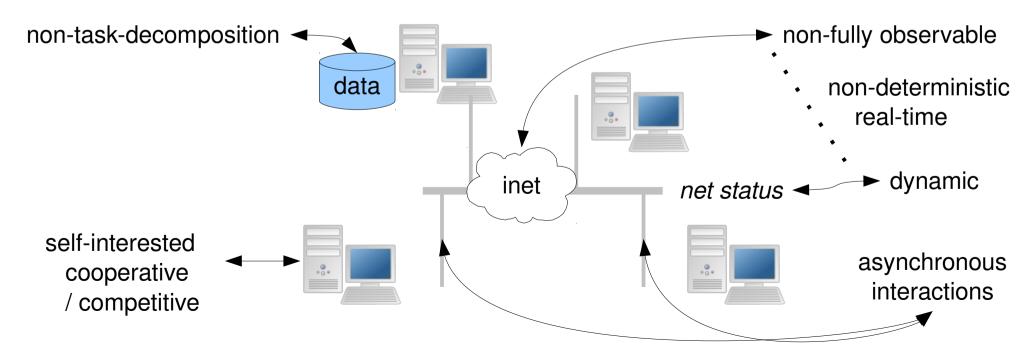


## Problem characterisation

- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
    - → we are interested in using norms to influence in agent behaviour instead of assigning tasks
  - non-fully observable → non-deterministic
  - dynamic, real-time, run-time adaptation
- Agent pop.: self-interest, coop./comp., open
- → there exist real problems with such features
   e.g. a traffic scenario or a P2P sharing network



#### Outline


- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work



## Case study: P2P

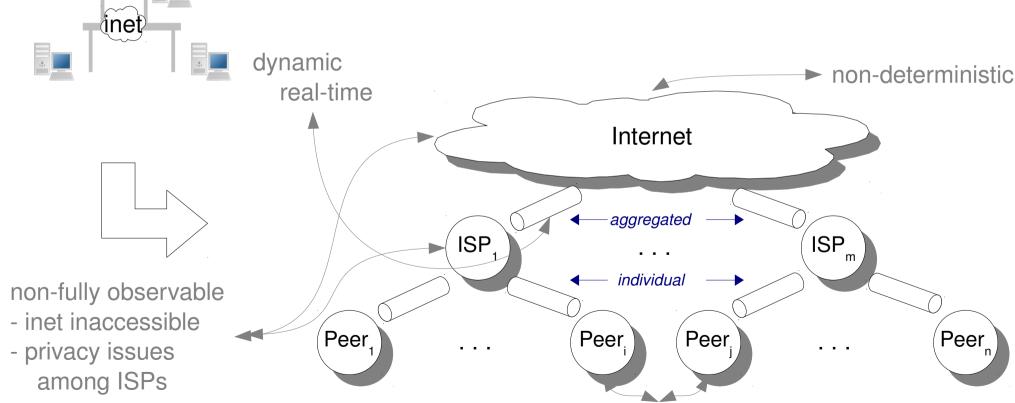
Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

- a simplified P2P Sharing network
  - To share 1 piece of data among all connected computers (peers)
  - Goal: consuming the minimum time





## Case study: Network


Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

#### Network abstraction

- Communication channels are shared and may be saturated

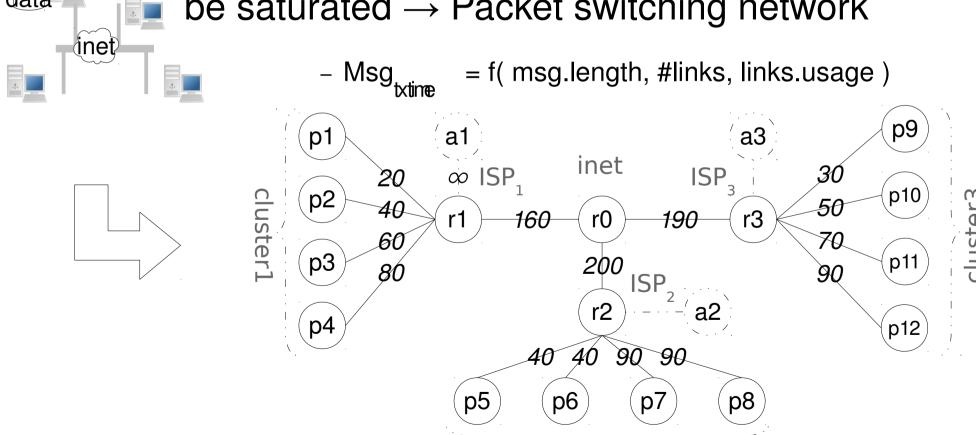
dynamic

non-determ



asynchronous interactions

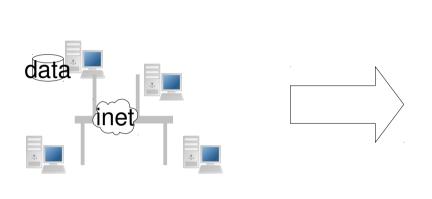



## Case study: Network

Motiv. | Problem | **Scenario** | Approach | Adaptation | Eval. | Concl.

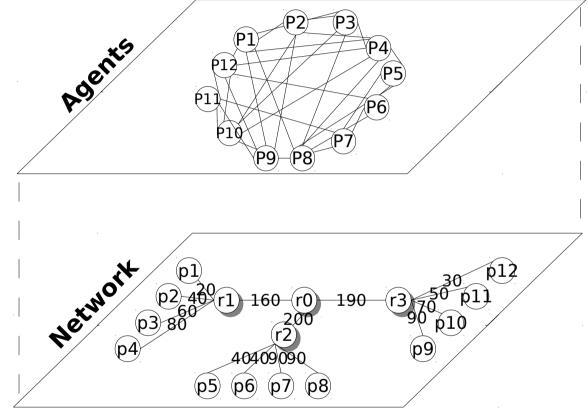
cluster2

#### Network abstraction


- Communication channels are shared and may be saturated → Packet switching network






## Case study: OCMAS

Motiv. | Problem | **Scenario** | Approach | Adaptation | Eval. | Concl.



#### OCMAS view:

- Comput. = Agents
- Net = Environment



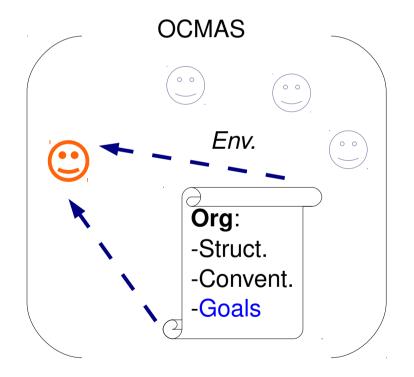
- Protocols, Social struc., Restrictions = Organisation
- → org. adaptation to env./pop. changes may improve perf.

## UNIVERSITAT DE BARCELONA

#### Outline

- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work




## Our approach: features

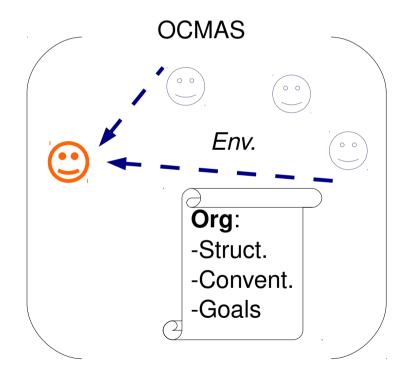
Motiv. | Problem | Scenario | **Approach** | Adaptation | Eval. | Concl.

#### Agent features required to deal with organisational issues:

#### to Reason

- at a higher level of abstr.
- considering system goals





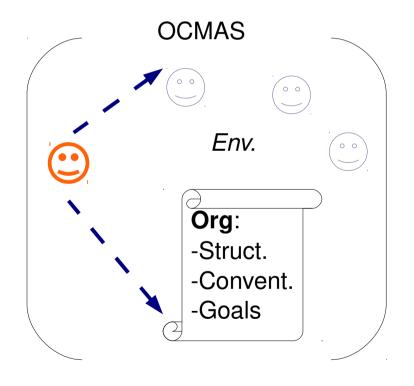

## Our approach: features

Motiv. | Problem | Scenario | **Approach** | Adaptation | Eval. | Concl.

#### Agent features required to deal with organisational issues:

- to Reason
  - at a higher level of abstr.
  - considering system goals
- to **Perceive** certain info.



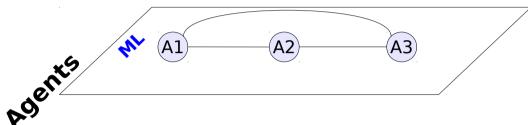



## Our approach: features

Motiv. | Problem | Scenario | **Approach** | Adaptation | Eval. | Concl.

#### Agent features required to deal with organisational issues:

- to Reason
  - at a higher level of abstr.
  - considering system goals
- to Perceive certain info.
- Trusted by others
   (or ~authority)

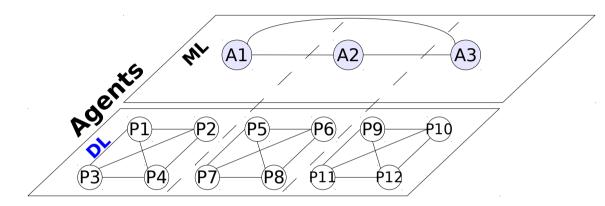





Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

#### Approach: an abstract architecture w/ 2 levels

- Meta-Level (ML)
  - staff agents
     organised
     to deal with organisational issues
    - = assistants
  - they present previous mentioned features
     (reasoning high level, considering social goals, accessing certain info, trusted by others)






Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

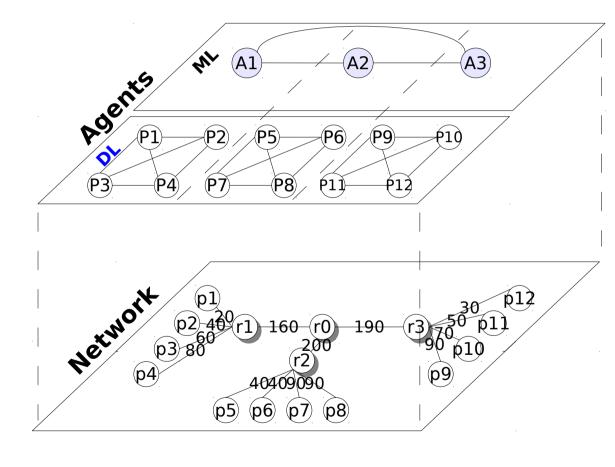
#### Approach: an abstract architecture w/ 2 levels

- Meta-Level (ML)
  - assists DL
- Domain-Level (DL)
  - Agents organisedto performdomain's activity





Motiv. | Problem | Scenario | **Approach** | Adaptation | Eval. | Concl.

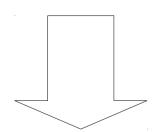

#### Approach: an abstract architecture w/ 2 levels

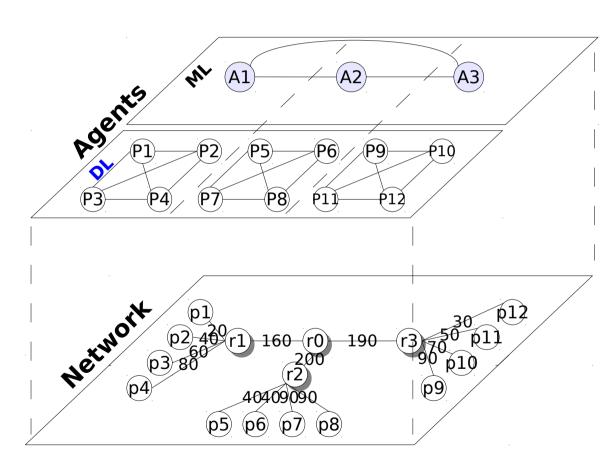
- Meta-Level (ML)
  - assists DL
- Domain-Level (DL)
  - domain's activity
    - → e.g. in P2P:

peers that share

data over a

network




Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

#### Approach: an abstract architecture w/ 2 levels

- Meta-Level (ML)
  - assists DL
- Domain-Level (DL)
  - domain's activity





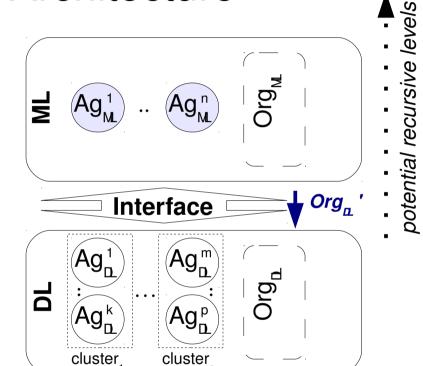
#### **2-LAMA**: Two Level Assisted MAS Architecture



Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

#### Model: Two Level Assisted MAS Architecture

$$2LAMA = ML \times DL \times Int$$


$$ML = Ag_{ML} \times Org_{ML}$$

$$DL = Ag_{DL} \times Org_{DL}$$

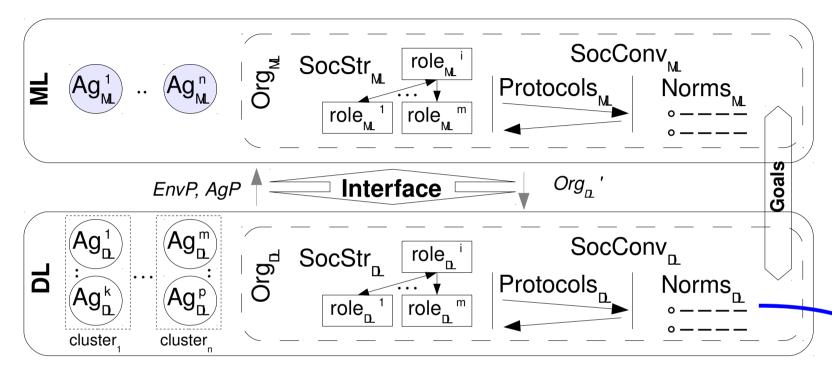
- ML provides assistance serv.
  - to DL (e.g. Org. Adaptation)
  - → Divison of labour



- \*\trust to reason about social goals (e.g. like politicians, who cannot be involved in activities they regulate)



## UNIVERSITAT DE BARCELONA


#### Outline

- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work

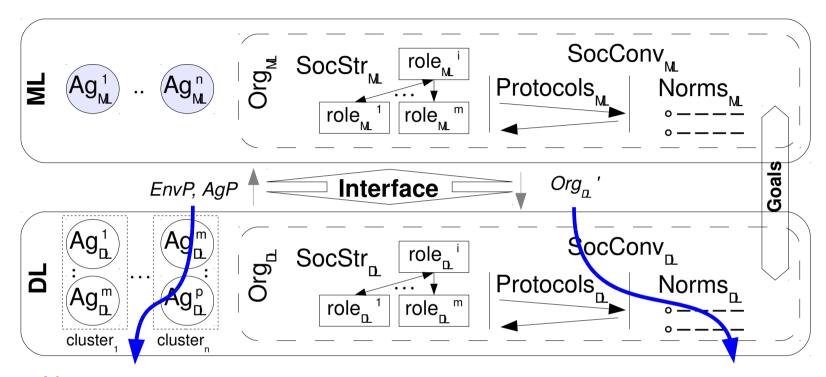


### Org. Adaptation: norms

Motiv. | Problem | Scenario | Approach | **Adaptation** | Eval. | Concl.



• **DL**: org = (socstr, {prot, norms}, goals)


in P2P

- norm : "a peer cannot send data to >maxFR simult."
- norm<sub>BW</sub>: "a peer cannot use >maxBW bandwidth%"

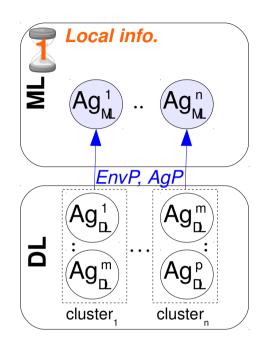


## Org. Adaptation: in/out

Motiv. | Problem | Scenario | Approach | **Adaptation** | Eval. | Concl.



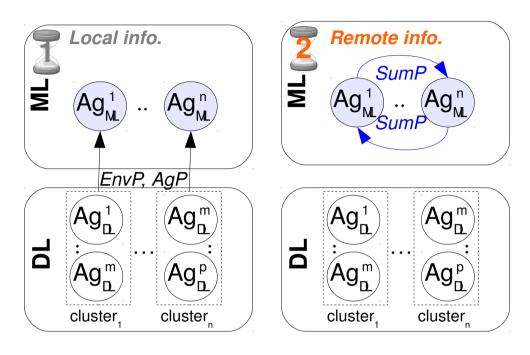
• ML:  $\alpha^{N}$ : EnvP x AgP x Norm x Goals  $\rightarrow$  Norm


$$-\alpha^{N} = \beta^{N} \left( \left\{ \alpha_{1}^{N} ... \alpha_{n}^{N} \right\} \right)$$

– Assist:  $\alpha_i^N$ : EnvP<sub>i</sub> x AgP<sub>i</sub> x(SumP<sub>j</sub>)<sup>n1</sup> x N x G  $\rightarrow$  N

In current implementation:  $\beta^{N} = voting \& \alpha_{i}^{N} = Heuristic / CBR$ 

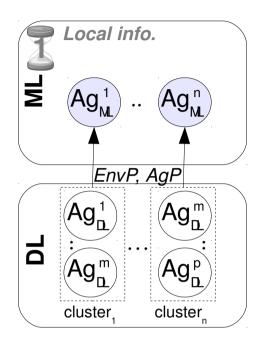


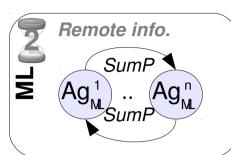

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

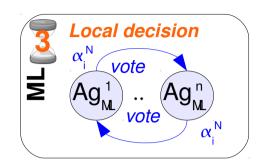


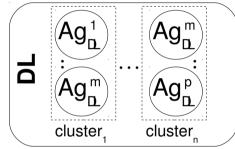
- EnvP: nominal&real BW for each individual link
- AgP: the % of data possesed by each peer

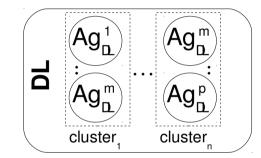



Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.





- SumP: statistic aggregation of EnvP and AgP
  - SrvBW: nominal BW of peers that are serving
  - RcvBW: nominal BW of peers that are receiving
  - RcvEffBW: real receiving BW
  - Wait: #incomplete peers that are not receiving





Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

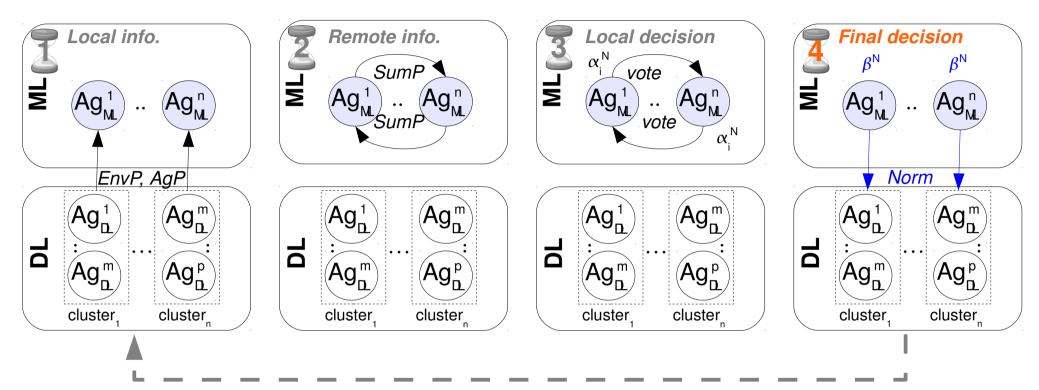


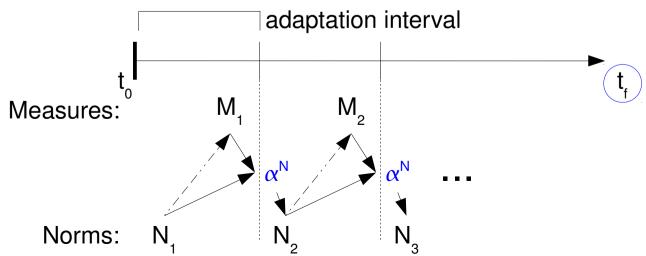









•  $\alpha_i^N$ : EnvP<sub>i</sub>×AgP<sub>i</sub>×(SumP<sub>i</sub>)<sup>n1</sup> ×Norm×Goals → Norm


#### Learning technique: CBR

- use previous experiences to reason about current situation
- if ∄ confident previous experience → use *Heuristic* to suggest new norms
  - to align the serving BW capacity with the receiving one
  - if the effective received BW is smaller than serving one, there is net saturation



Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.







#### CBR: case

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

- **Problem** (attributes/features): discretised *continuous* 



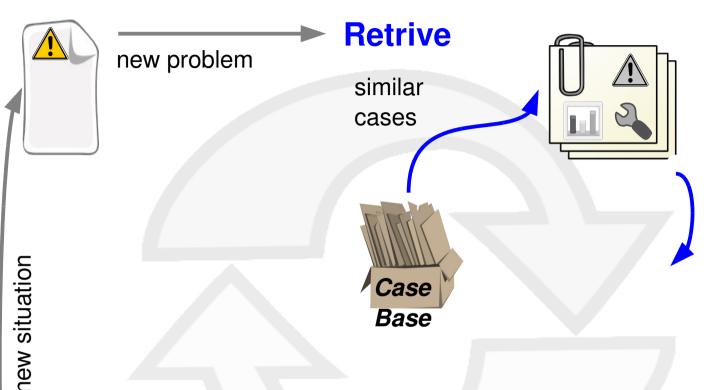
- srvCapacity = SrvBw vs. RcvBW (<<,<,=,>,>>)
- netSat = RcvBW vs. RcvEffBW (<<,<,=,>,>>)
- waiting = wait  $(\Psi, \rightarrow, \uparrow)$
- maxShareRatio = maxFR  $(\downarrow, \rightarrow, \uparrow)$
- bandwidthUsage = maxBW  $(\downarrow, \rightarrow, \uparrow)$
- executionPhase =  $DOC(\downarrow, \rightarrow, \uparrow)$

#### - Solution:



- vFR: vote about maxFR  $(\uparrow,=,\downarrow,\oslash)$
- vBW: vote about maxBW (↑,=,↓,∅)
- Evaluation:




goodness = f( DOCbefore, DOCafter, final\_time )

(under construction)



#### CBR: retrieve

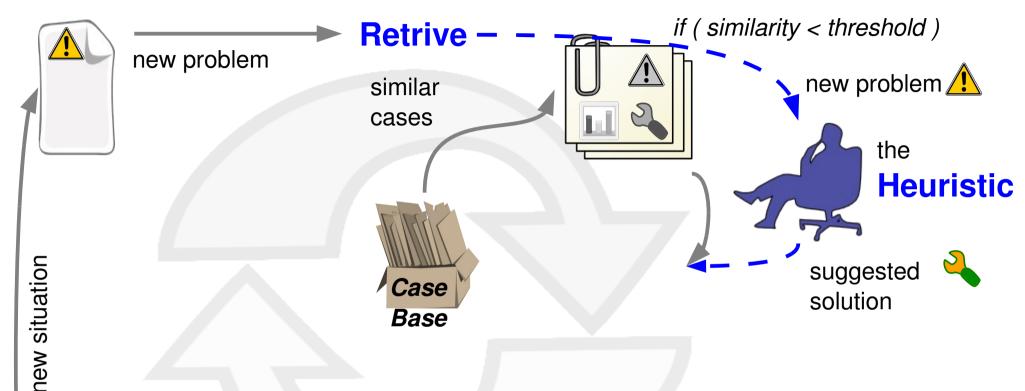
Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



#### Similarity:

- =weighted difference among attributes
- discrete labels are converted into integers

#### Confidence:


Problem's similarity threshold

P2P network

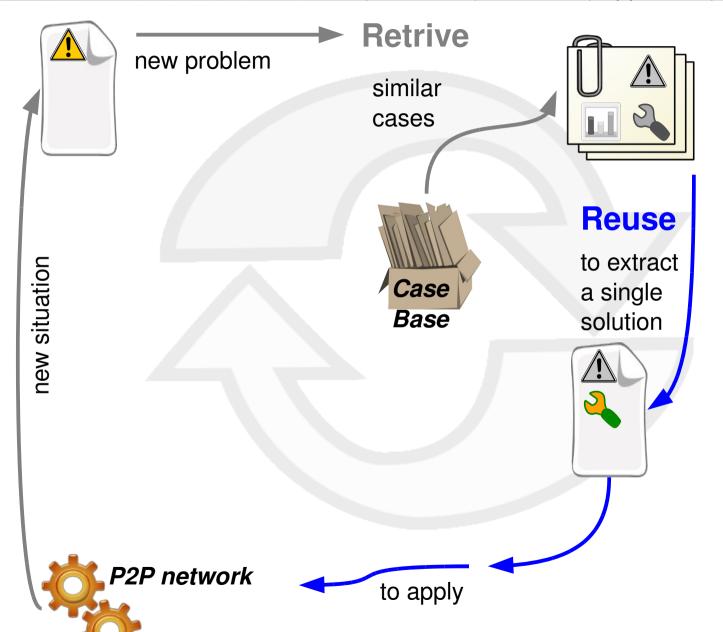


#### CBR: retrieve

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



#### Heuristic:


- no learning
- •solution ≠ the best

P2P network



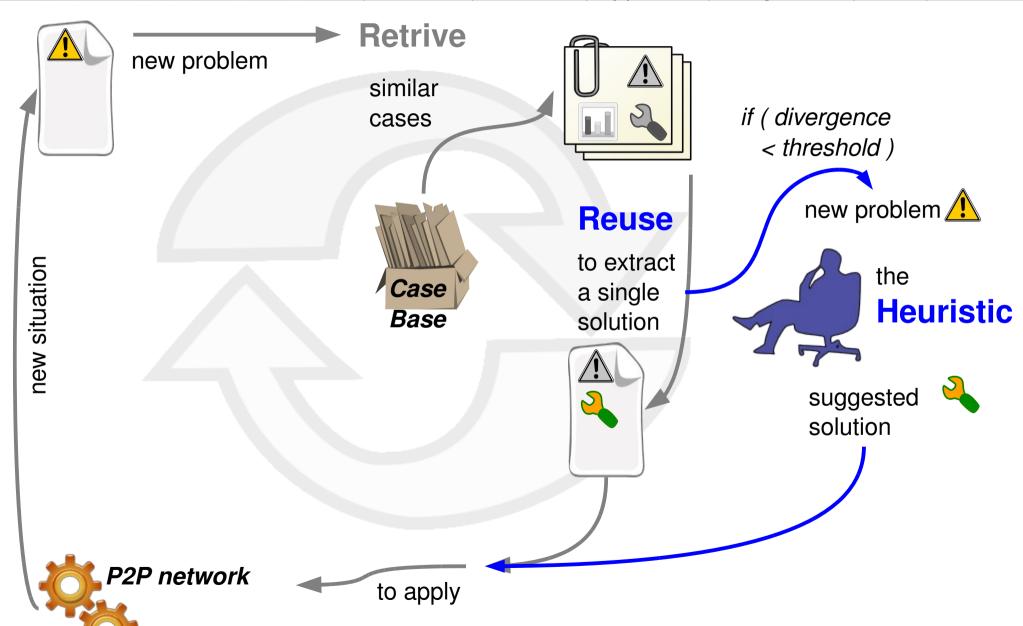
#### CBR: reuse

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



#### Adapt():

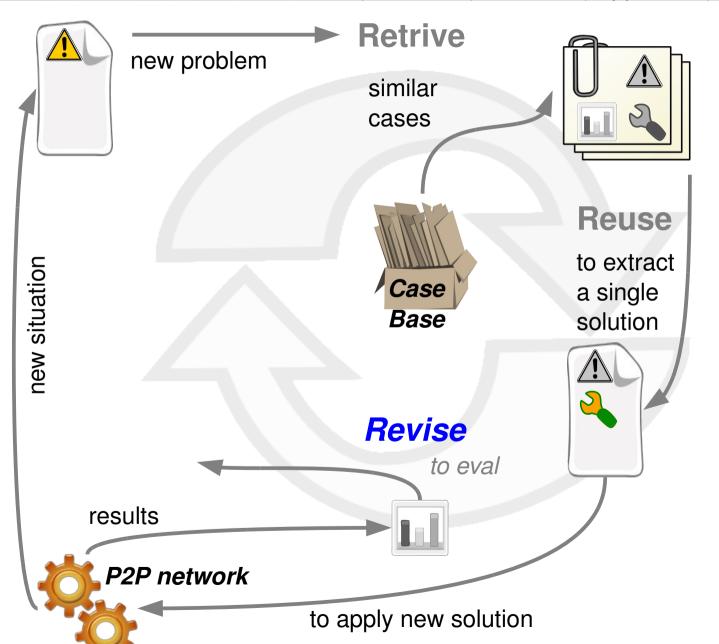
- =voting among different solutions
- tie → extrem opt. win
- tie(extreme opt.)  $\rightarrow$  change nothing


#### Confidence:

Solution's Divergence is is the difference among vFR converted into integers



#### CBR: reuse


Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



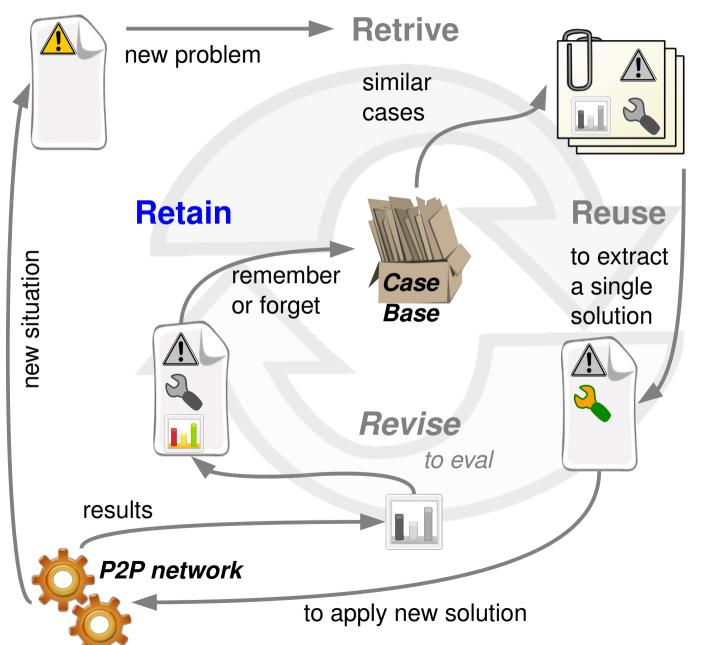


#### **CBR:** revise

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



## We are currently working on Revise:


Evaluation is based on:

- incremental degree of completeness
- final sharing time



### Org. Adaptation: CBR

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.



#### Paper:

Save all cases suggested by Heuristics (it was used when there was a low confidence in current Case Base)

= Learning from others

#### **Current work:**

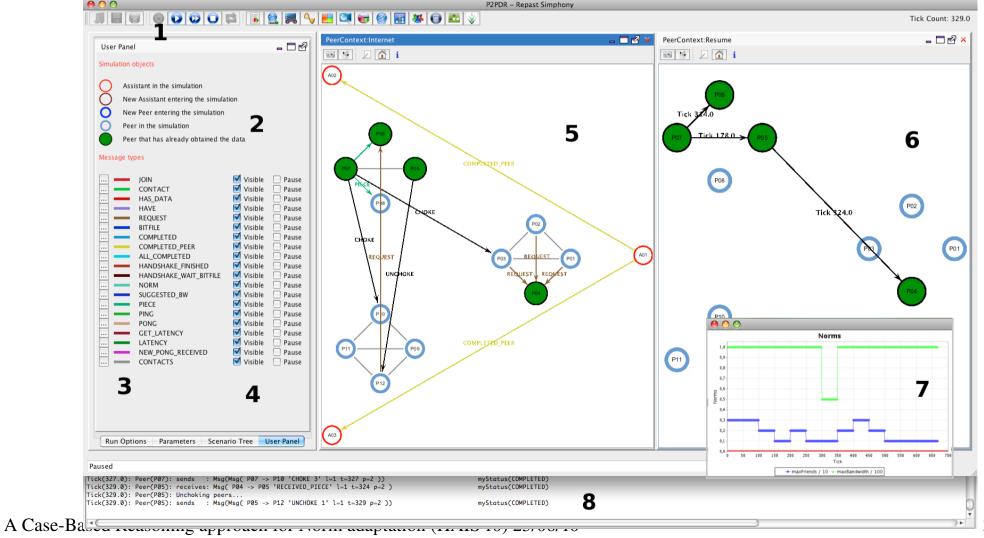
Save also cases depending on evaluation = Learning from own experience

#### in both cases:

CBR updates Case
Base which may let it
provide a different
solution next time



#### Outline


- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work



#### **Evaluation: simulator**

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

 We have a simulator that let us compare different implementations in the P2P scenario:





Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

BT 2L.a 2L.b

## Sharing methods:

- BT: simplified standard Bittorrent protocol
  - 1 Tracker = agent's directory
  - all agents contact among them
  - at certain intervals, agents choose 3 previously interested agents to send data



Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

 $\overline{BT}$  2L.a 2L.b

#### Sharing methods:

- BT: simplified standard Bittorrent protocol
- 2L.a: 2-LAMA without learning (only heuristic)
- 2L.b: 2-LAMA with CBR learning
  - Norms:
    - updated every 50 time units
    - Initial values: (equivalent to BT hardcoded restrictions)
      - maxBW=100%, maxFR=3



|                 | time  |            |
|-----------------|-------|------------|
| $\overline{BT}$ | 941.2 | <b>A</b> + |
| 2L.a            | 834.9 |            |
| 2L.b            | 741.5 | ١.         |

- time = time units to spread data among all agents
  - 2-LAMA approaches (2L.a, 2L.b) improves time
    - + the time invested in communicating with ML is < benefits of having such an additional level.
  - CBR learning approach (2L.b) improves previous ones



|                 | time  | cNet     | data | cML    |   |
|-----------------|-------|----------|------|--------|---|
| $\overline{BT}$ | 941.2 | 205344.1 | 11.0 | -1     | - |
|                 |       | 293526.7 |      |        |   |
| 2L.b            | 741.5 | 292357.7 | 33.8 | 4694.1 | _ |

- cNet = the network cost consumed by all messages;  $msg_{cost} = msg_{length} \times \#links_{traversed}$ 
  - 2-LAMA requires more network
    - more pieces of data messages sent (data)
    - DL2ML and ML2ML communications (cML)
    - but it avoids network saturation and the corresponding delay → it presents shorter times.



|                 | time  | cNet     | data | cML    | h   |            |
|-----------------|-------|----------|------|--------|-----|------------|
| $\overline{BT}$ | 941.2 | 205344.1 | 11.0 | -      | 3.4 | <b>/</b> + |
| 2L.a            | 834.9 | 293526.7 | 35.9 | 5133.3 | 2.9 | -          |
| 2L.b            | 741.5 | 292357.7 | 33.8 | 4694.1 | 3.0 | +          |

- h = the average number of links traversed by each message (hops)
  - 2-LAMA has more local communications

     (i.e. intra-cluster) → convenient since local messages have lower latencies and costs
  - CBR learning (2L.b) reduces hops to increase locality but not "too much" as non-learning (2L.a) does.



#### Outline

- Motivation (OCMAS)
- Problem characterisation
- Case Study (P2P Sharing Network)
- Our approach (2-LAMA)
- Organisational Adaptation (norm adaptation)
- Evaluation (empirical, simulation)
- Conclusions and Future Work



## Conclusions and Future Work

Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

- 2LAMA model can deal with domains with the following feat.:
  - Non-task-decomposition, Non-fully observable, Non-deterministic, Dynamic, real-time,

Run-time adaptation

#### • in P2P scenario:

- 2LAMA improves BT performance
- CBR Learning improves performance

#### **Future Work:**

- Learning techniques:
  - Reinforcement Learning
- Open MAS issues:
- norm violations (related to self-interested competitiv. agents)
  - entering/leaving agents



## Thanks for your attention

Questions?





#### Extra slides



# Problem description



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
    - no direct mapping between goals and tasks
    - → we are interested in using norms to influence in agent behaviour instead of assigning tasks



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable
    - due to totally inaccessible information
    - due to privacy issues (locality)



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic
  - dynamic
    - environment behaviour changes along time



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic
  - dynamic, real-time
    - an agent cannot deliberate for as long as desired to select its best course of action in a given scenario



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic
  - dynamic, real-time, run-time adaptation
    - there are structures that are adapted at the same time they are exploited



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic
  - dynamic, real-time, run-time adaptation
- Agent population:
  - self-interested, cooperative/competitive, developed by third-parties



- Environment: [Russell&Norvig 95] [Wooldridge02]
  - non-task-decomposition oriented
  - non-fully observable → non-deterministic
  - dynamic, real-time, run-time adaptation
- Agents population:
  - self-interested, cooperative/competitive, open
- → there exist real problems with such features
   e.g. a traffic scenario or a P2P sharing network



Results: network measures



|                 | time  | cNet     |
|-----------------|-------|----------|
| $\overline{BT}$ | 941.2 | 205344.1 |
| 2L.a            | 834.9 | 293526.7 |
| 2L.b            | 741.5 | 292357.7 |

- cNet = the network cost consumed by all messages;  $msg_{cost} = msg_{length} \times \#links_{traversed}$ 
  - 2-LAMA requires more network



|                 | time  | cNet     | $\underline{data}$ |
|-----------------|-------|----------|--------------------|
| $\overline{BT}$ | 941.2 | 205344.1 | 11.0               |
|                 |       | 293526.7 |                    |
| 2L.b            | 741.5 | 292357.7 | 33.8               |

- cNet = the network cost consumed by all messages;  $msg_{cost} = msg_{length} \times \#links_{traversed}$ 
  - 2-LAMA requires more network
    - more pieces of data messages sent (data)
      - CBR learning (2L.b) performs a better norm adaptation since it avoids some data cancels



Motiv. | Problem | Scenario | Approach | Adaptation | Eval. | Concl.

|                 | time  | $cNet\ data$  | $\underline{cML}$ |
|-----------------|-------|---------------|-------------------|
| $\overline{BT}$ | 941.2 | 205344.1 11.0 | -                 |
| 2L.a            | 834.9 | 293526.7 35.9 | 5133.3            |
| 2L.b            | 741.5 | 292357.7 33.8 | 4694.1            |

- cNet = the network cost consumed by all messages;  $msg_{cost} = msg_{length} \times \#links_{traversed}$ 
  - 2-LAMA requires more network
    - more pieces of data messages sent (data)
    - DL2ML and ML2ML communications (cML)

CBR learning (2L.b) shorter sharing times save some adaptation cycles and their corresponding control messages. Also fewer cancels require less control messages.