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Abstract. In this paper we define a Boltzmann machine for modelling prob-

ability distributions on categorical data, that is, distributions on a set of vari-

ables with a finite discrete range. The distribution model is suggested by the

log-linear models and it is a generalization of the binary Boltzmann machine.

High-order connections are defined instead of hidden units in order to model

general probability distributions on multi-valued units. We deduce the iterative

learning rule that minimizes the divergence function, which corresponds to a

neural scheme. We show that this learning rule converges to the global mini-

mum of the Kullback-Leibler divergence. An example is provided to illustrate

the modelling capability of the Boltzmann machine with discrete (non-binary)

units.
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1 Introduction

The Boltzmann machine derives from the Hopfield memory with stochastic dy-

namics [18, 8]; Boltzmann machines are recurrent neural networks and their

dynamics is similar to the stochastic associative memory dynamics. However,

Boltzmann machines [16, 2, 17, 1] are not defined to store memories, but to

model probability distributions on binary units through a neural learning algo-

rithm. An important characteristic of these neural networks is the stochastic

simulation [22] in the learning phase and in the subsequent probabilistic infer-

ence. The simulation method is a variant of the Metropolis algorithm [21], a

basic Monte Carlo method with a Markov chain, this variant being equivalent

to the Gibbs sampler [13]. The stochastic simulation becomes crucial when the

network size grows, so this neural network is a massively parallel computation

algorithm for probabilistic modelling.

In general, the Boltzmann machine is defined as a probabilistic classifier:

given the input we have a probability distribution on the class binary units, a

distribution that is typically obtained through a stochastic simulation of the

corresponding Markov chain. Alternatively, if input units are suppressed the

Boltzmann machine can be viewed as a model for probability distributions on a

set of binary units. This approach to the Boltzmann machine is closely related

to the log-linear or exponential models [12, 19], developed in the statistical the-

ory to describe especially categorical data [3, 9, 24]. In the statistical theory

of log-linear models the parameters of the model are basically determined with
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the Newton-Raphson procedure, which requires matrix inversion. Another pro-

cedure is the Deming-Stephan algorithm or the iterative proportional scaling

algorithm, which does not determine the model parameters but successively ad-

justs the marginal counts of the contingency table. These algorithms are clearly

computationally impracticable when the number of variables (units) is great,

and furthermore the Boltzmann machine learning algorithm allows a heuristic

schedule that accelerates the convergence. Therefore the advantage of connec-

tionist paradigms such as the Boltzmann machine is the distributed computation

of the model parameters. In this context the Boltzmann machine determines the

connection weights through steepest descent, which results in its known neural

learning rule.

The aim of this paper is to develop a Boltzmann machine for modelling dis-

tributions on categorical data, so the binary variables are generalized by defining

variables with a finite discrete range. We present a log-linear model suitable for

the Boltzmann machine, and we deduce the corresponding neural learning rule

as well as its convergence properties. Higher-order Boltzmann machines with

binary units have been reported in the literature [23, 7], but they were not gen-

eralized in order to consider distributions on discrete data. On the other hand,

in [11] and [20] the extension to multi-valued variables is considered; however,

the model presented in the former reference is limited to two-order interactions,

and the latter develops a physical model where the objective is not to describe

a probability distribution. Consequently, these previous works on Boltzmann

3



machines do not provide a general model for distributions on categorical data.

In this paper we propound a Boltzmann machine generalization that can model

any distribution on discrete data preserving the neural learning algorithm.

If the Boltzmann machine is limited to two-order interactions we need hid-

den units to model a general probability distribution. Conversely, hidden units

are not necessary for distribution modelling when higher-order connections are

defined. It is well known that hidden units introduce local minima into the func-

tion minimized by the learning rule, the Kullback-Leibler divergence between

the distribution to learn and the model distribution, so that the learning algo-

rithm can obtain non-optimal parameter weights. When high-order connections

are used instead of hidden units there is not any local minima [4]. On the other

hand, the connection structure of a Boltzmann machine without hidden units

can be derived from qualitative properties of the probability distribution [6].

Consequently, in this paper we will define and study a higher-order Boltzmann

machine with multi-valued units and without hidden units. The model can be

extended to include hidden units, but this extension would not conserve all the

properties of the model without hidden units.

We complete the theoretical study with a significant example where a distri-

bution on discrete units is modelled, showing the capability of the Boltzmann

machine for learning a probability distribution on categorical data.

In Section 2 we describe the high-order Boltzmann machine with discrete

units, showing that it can model any positive distribution on multi-valued units.
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The learning rule is derived in Section 3, where convergence properties of this

rule are analysed. We provide the learning example in Section 4, and finally, we

signal the conclusions in Section 5.

2 The Boltzmann machine with discrete units

The original Boltzmann machine was defined with hidden units and two-order

connections, however high-order connections can be used instead of hidden units

obtaining interesting convergence properties for the learning rule [4]. In our

theory hidden units are not used, but the extension of the distribution model

to this case is straightforward.

In the usual Boltzmann machine the probability function is the normalized

exponential of a (minus) energy that is the summation of connection weights

between activated binary units. For discrete units the naive approach is to

multiply connection weights by unit values, but the resultant model is not valid

for general distributions [15]. Lin et Lee [20] propose a multi-valued Boltzmann

machine based on the spin glass model, but the scheme is not suitable to describe

distributions. Anderson and Titterington [11] define a two-order Boltzmann

machine with multi-valued units, so that hidden units are needed to model

probability distributions; therefore local minima are present and the convergence

properties of our model do not hold in this extension of the Boltzmann machine.

Our Boltzmann machine with discrete units is suggested by the log-linear
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models, where the logarithm of the probability function is a general function

that is linear in the parameters. Now the interactions between units are not

connection weights but functions on finite discrete spaces that are defined by a

set of parameters. In order to determine the parameters of a log-linear model

it is necessary to establish some constraints on the parametrization so that

the parameters are independent and the divergence function can be minimized

with the iterative method of steepest descent (or Newton-Raphson). These

constraints can be established in several different ways and we will describe a

model that is a generalization of the binary Boltzmann machine.

The probability function of our Boltzmann machine is

P (x) =
1
Z

exp
∑

α∈A∗

uα(x) (1)

where

Z =
∑
x

exp
∑

α∈A∗

uα(x)

The configuration of the units is x = (x1, . . . , xd), where each xi has a finite

discrete range. In these formulas A∗ is the set of connections α, and each connec-

tion α is a nonempty subset of {1, . . . , d}. In a two-order network a connection

joins at most two units, and on the other hand, a higher-order network has some

connections between three or more units.

The interaction associated with a connection α is given by a function uα(x),

which depends on x through the components of x corresponding to α, that is

uα(x) = uα(xα). So each function uα(xα) is defined on a finite discrete space
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of partial configurations and it is determined by a finite number of parameters.

Besides, uα(x) = 0 if xi = 0 for any i ∈ α, where xi = 0 is a reference value of

the variable. It is also required that given a connection α ∈ A∗ of the model,

any subset β ⊂ α of this connection is also a connection of the model, β ∈ A∗.

The logarithm of the probability function can be written as

log P (x) =
∑
α∈A

uα(x) (2)

where A = A∗ ∪ {∅} and u∅ = − log Z.

Any positive distribution P (x) on a finite discrete space has a log-linear

expression (2), where the connections are in general all the subsets of {1, . . . , d}.

It is easy to show that if we take all possible configurations x in (2) it leads

to a triangular equation system, that can be solved by backsubstitution, so

that given a probability distribution the model parameters are determined. In

practice, in order to model an empirical distribution we will consider in (1)

interactions up to an order r smaller than d when the number of units is large;

our objective will not be to reproduce exactly the empirical distribution, but

to obtain an approximation distribution that minimizes some function of the

model parameters, specifically the Kullback-Leibler divergence.

We give an example to illustrate the notation introduced. The two-order

probability function (1) for a distribution on x = (x1, x2, x3), xi ∈ {0, 1, 2}, is

the normalized exponential of

u1(x1) + u2(x2) + u3(x3) + u12(x1, x2) + u13(x1, x3) + u23(x2, x3)
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The parameters of the model are u1(1), u1(2), . . . , u12(1, 1), u12(1, 2), u12(2, 1),

u12(2, 2), etc.

Finally, we note that for binary units, xi ∈ {0, 1}, the model (1) is just the

usual Boltzmann machine probability function.

3 Learning and convergence properties

Now, we will deduce the neural learning rule for this Boltzmann machine. The

objective is to minimize the Kullback-Leibler divergence between a positive

distribution P s(x) that we want to learn, usually given by a set of samples, and

the model distribution P (x),

D =
∑
x

P s(x) log
P s(x)
P (x)

The divergence D is a function of the parameters uα(yα). (We will use y in

the argument of the model parameters and we will reserve x for the summation

index.) Partial derivatives are calculated as in the binary case, obtaining

∂D

∂[uα(yα)]
= τα(yα)− τ s

α(yα)

where

τα(yα) =
∑

x : xα=yα

P (x)

and

τ s
α(yα) =

∑
x : xα=yα

P s(x)
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The iterative learning rule is the steepest descent:

[uα(yα)]t+1 = [uα(yα)]t − ρ[τα(yα)− τ s
α(yα)]

for all α ∈ A∗ and for all yα without null components.

This learning rule is neural because, in order to obtain the τα(yα) at each

step through a stochastic simulation of the Markov chain corresponding to the

distribution (1), we can compute simultaneously at each connection α ∈ A∗ the

frequency of the configurations x such that xα = yα for every yα.

Convergence properties of our Boltzmann machine for distributions on dis-

crete data can be obtained by extending the convergence properties of the binary

high-order Boltzmann machine without hidden units proved by Albizuri et al.

[4]. We will not reproduce the proofs but we will give an outline of this theory

and will enunciate the main results. Rigorous proofs can be constructed by

following the proofs of this reference and developing a parallel reasoning.

The second-order derivative of the divergence is given by

∂2D

∂[uα(yα)]∂[uβ(zβ)]
= τα,β(yα, zβ)− τα(yα)τβ(zβ)

where

τα,β(yα, zβ) =
∑

x : xα=yα∧xβ=zβ

P (x)

If we define the random variable X(yα) such that it takes value 1 when xα = yα

and 0 otherwise, then

∂2D

∂[uα(yα)]∂[uβ(zβ)]
= Cov(X(yα), X(zβ))
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where the covariance is under P (x), and it can be shown that the divergence

D, a function of the model parameters, has a positive definite Hessian matrix

and consequently it is a convex function.

Since the second-order derivative is bounded, |τα,β(yα, zβ)−τα(yα)τβ(zβ)| ≤

1, it can be proved (from the Taylor’s theorem) that if ρ < 2/|L|2, |L| being

the number of parameters, then the divergence decreases at each step of the

learning algorithm, and the parameter values generated being bounded, it can

be established the convergence of the learning rule to the global minimum of

the divergence.

This value of ρ is theoretical, and it can be deduced from the convexity

of the divergence that whenever τα(yα) converges to τ s
α(yα) for any α and

yα (without null components) during the learning process, then the parameter

values converge to the global minimum of the divergence. In practice we rely

on this last result to set the learning rule, and ρ is fixed experimentally in order

that ||∇D||2 =
∑

α,yα
(τα(yα)− τ s

α(yα))2 converges to 0.

Consequently, the high-order Boltzmann machine for multi-valued units,

without hidden units, defines a convex divergence, and the neural learning al-

gorithm converges to the global minimum. These remarkable properties do not

hold when hidden units are used in a two-order model.
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4 An example

We present an example where the Boltzmann machine is used to learn a distri-

bution on non-binary units. Our example is similar to the problem studied in

[17], where a Boltzmann machine with binary units and hidden units was used.

In [5] this problem was treated with a high-order binary Boltzmann machine.

Now we will define a problem where non-binary units are required. In these ex-

amples the basic problem is to implement logical relations [14] between discrete

variables through a probability distribution. The neural network determines the

model parameters by learning from this distribution and subsequently we test

the neural network to check whether the logical relations have been modelled.

We will consider an array of four units, each unit taking the values a(= 0),

b, c, d, e, f. We say that an array configuration is well ordered if the letters in

the array are consecutive (a follows f ), as in bcde, efab, etc. The distribution

to learn is defined so that well ordered configurations have higher probability

than the configurations that are not well ordered. Then the Boltzmann machine

parameters are determined by means of its learning rule.

In order to test the distribution learned by the Boltzmann machine we will

fix the value of a unit and compute the probability of the configuration for the

rest of units that completes a well ordered array configuration. (This proba-

bility coincides with the conditional probability corresponding to the value of

the specified unit.) In the original distribution, the well ordered configuration

has a higher conditional probability than the conditional probabilities of the
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rest of configurations; if this property holds in the learned distribution we will

conclude that the Boltzmann machine has modelled satisfactorily the original

distribution.

In this experiment, the distribution to learn assigns to the well ordered con-

figurations a probability mass that adds up to 0.95. For the approximation

distribution model of our Boltzmann machine we have defined two-order inter-

actions between adjacent units (and one-order interactions in each unit). We

have determined the parameters through 500 iterations of the learning rule, with

ρ = 1.

In Table 1 we report the test results: the row indicates the unit fixed, the

column the value assigned, and the corresponding entry is the probability of the

partial configuration that completes a well ordered array. The approximation

distribution of the Boltzmann machine clearly models the distribution to learn.

We point out that with the first 160 iterations the probabilities obtained are

greater than 0.5, the learning process is very effective.

5 Conclusion

In this paper we have defined a Boltzmann machine for modelling probability

distributions on (finite range) discrete data. The distribution model is log-linear

and the required parametrization constraints are defined so that it can be viewed

as a generalization of the binary Boltzmann machine. Any distribution can be
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Table 1: Probability of the partial configuration that completes a well ordered

array when the value of a unit is fixed.

Value a b c d e f

Unit 1 0.808 0.867 0.867 0.821 0.760 0.765

Unit 2 0.744 0.827 0.866 0.866 0.819 0.766

Unit 3 0.744 0.766 0.819 0.866 0.866 0.827

Unit 4 0.808 0.765 0.760 0.821 0.867 0.867

expressed with this model, in general taking the full set of connections. With

interactions up to a determined order the Boltzmann machine provides an ap-

proximation distribution of the distribution to learn. We have also deduced the

neural learning rule, which converges to the global minimum of the divergence.

Convergence properties of the Boltzmann machine for distributions on discrete

data can be obtained from the convergence properties of the binary high-order

Boltzmann machine without hidden units.

We remark that the convergence to the global minimum does not hold when

hidden units are introduced into the two-order Boltzmann machine with binary

or multi-valued units to model general probability distributions. On the other

hand, the Newton-Raphson algorithm and similar two-order methods do not

have the convergence properties of our Boltzmann machine.
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