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Introduction |

GOAL: “To propose an algorithm to optimize the independence criterion
among multivariate data using local, global, and hybrid optimizers, in
conjunction with techniques involving a Lie group and its corresponding Lie
algebra, for implicit imposition of the orthonormality constraint among the
estimated sources”
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Introduction |

@ ICA Constraint: WWT =

@ To preserve the orthogonality constraint at all time can be handled by
techniques which will “lock” the weight matrix onto the constraint
surface.

@ Because the optimization landscape of a contrast function used for
estimating the 1Cs of a multivariate data is nonconvex, the methods
we have developed here are to look for near-global-optimum solutions.
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Contributions |

@ The use of global and in conjunction with a
, to maximize the independence criterion, has never been
explicitly studied before.

@ The issue of computational complexity is addressed, by performing the
spectral screening of the image data prior to the IC estimation.

© Recommended here is a local optimizer—the quasi- Newton
method—employing Lie group techniques, which can yield more
accurate IC estimates, compared to a conventional technique.
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Lie Group of IC Weight Matrices |

The possible IC weight matrices W belong to the set of nxn orthogonal
matrices such that WW T = /| form a Lie group under matrix
multiplication because the following group axioms are satisfied:

@ closed under matrix multiplication, associativity, identity element, and
existence of an inverse;

@ the group operations are differentiable;
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Lie Group of IC Weight Matrices |

@ The Lie group formed by the set of nxn orthogonal matrices with
determinant +1, called the “special” orthogonal matrices SO(n), is
applied in the estimation of the ICs.

@ For every © lying in the space of skew-symmetric matrices so(n),
there exists a corresponding weight matrix W, which lies in the space
of orthogonal matrices SO(n)

W =exp©.
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Lie Group of IC Weight Matrices Il

@ The orthonormality constraint among the estimated 1Cs will never be
violated during the course of optimization, in the proposed approach
using the Lie group.
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MI as Contrast Function |

The mutual information (MI) was chosen to be the suitable contrast
function, to separate the sources with mutually exclusive specific
information from the multivariate data:

@ The MI, expressed as the negative sum of negentropy
approximations, is the natural measure of dependence.
o MI:

I(Zl-_.z z-----.uzn) OC_ZJ(Z!')

where J(z) x [E{GGz)} - E{GOITP gre the negentropy approximations based
on the maximume-entropy principle computed for the linear combinations

n=wixi=12...,n I
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MI as Contrast Function |

The nonquadratic function is selected from the following choices G; and
Gy, to compute the negentropy approximations

G]_ (z;) = Ell_l ]ﬂg (‘IJS]’.I(E]]_Z-;)

2

1 22
Ga(2i) = — —exp (—az%)

The overall optimization problem is:

min 121, 22y 00 ey 20 ) & —Z [E{G(z)} — E{G)}

subject to the constraint WWT =/
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Local Minimization of MI with Lie Group Techniques |

MI minimization using the quasi-Newton method and the Lie group,
reasons:
© It uses both gradient and curvature informations about the
optimization landscape during the search process,

@ Hessian update can be obtained using only gradient information, the
computational overhead is relatively small, the method converges
superlinearly, and it performs well for cases where the steepest ascent
methods suffer from convergence difficulty
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Local Minimization of MI with Lie Group Techniques |

Implementation

@ The weight matrix W, corresponding to a randomly chosen
representative vector W, of dimension n(n —1)/2,

W‘m—l—l = EeXp (_(EmGS }W‘m

™

m the iteration number.

@ Optimum is tertermined by the line-search iterative technique
employing the cubic/quadratic polynomial method

f(wm—l—l) < I(WT,;).

@ The skew-symmetric matrix 1 is constructed from the search

direction 6”!
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Local Minimization of MI with Lie Group Techniques Il
ﬁm - H;;lgm-

HT” is the Hessian update of the contrast function. g, is the
representative vector of the gradient of in the Lie algebra space that is:

or ([ al T ar \"
o = (ow ) Wo- W ()

@ Hessian update:

Hm-l—l =H, + nmn;{! - g‘mg;{;

H{; Sm 53,:gm

S = Wm—l—l - Wm and 7, = Bmi1 — Bm
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Local Minimization of MI with Lie Group Techniques Il

@ The Ml is computed as the negative sum of the negentropy
approximations of the data values in each dimension.
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Near-global Minimization of MI with Lie Group Techniques |

@ It is imperative to design the global optimizers in conjunction with the
Lie group, to produce more accurate IC estimates, which are
insensitive to the initial choice of the random input vectors.

» Data processing using spectral screening
» Simulated Annealing With Lie Group Techniques
» Cross-Entropy Method With Lie Group Techniques
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Data processing using spectral screening |

@ To make the estimation of the ICs in very large data computationally
feasible with the global optimizers, instead of taking the entire set of
data vectors into account, a small subset of data vectors can be
used such that a few vectors represent each group of “similar” vectors.

@ The similarity measure between the data vectors and is the spectral
angle:

o) = (i)

o Algorithm:

» S: The set of all pixel vectors present in the multispectral image.
» One of the pixel vectors is placed in the subset S;.

» Each pixel vector from is compared with all the pixel vectors alread
placed in S;. ]
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Data processing using spectral screening |l

For all x € 5y, if the similarity measure
a(x,y) in (11) is greater than the angle threshold [, then y
is included in Sy ; otherwise, it is discarded. At the end of the
process, S will contain the representative pixel vectors from §

, that are quite dissimilar.
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Minimization of M| using Hybrid Optimizers and Lie Group
Techniques |

@ There is an improvement in the quality of the solution while using the
Lie group with the global optimization techniques. Problem: they are
being trapped in the local minima.

@ To avoid this: Hybrid optimizers.

» PSO (global optimizer) with the quasi-Newton local optimizer during
every iteration (PSO-QN) or at a periodic intervals (PSO-periodic
QN).

» FastlCA (local optimizer) to minimize the MI produced by the PSO in
all the iterative steps (PSO-fastICA) or periodically (PSO-periodic

fastICA)
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Minimization of M| using Hybrid Optimizers and Lie Group

Techniques
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Fig.2. Implementation of the hybrid optimizer—a combination of the PSO and

fastICA.
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Minimization of M| using Hybrid Optimizers and Lie Group
Techniques |

@ In the PSO-QN algorithm, the quasi-Newton method minimizes the
MI by treating the weight vectors (W;(1)) as the set of inputs; the
resulting weight vectors related to the local minima are the updated

particles’ positions in the first iteration.

@ In the PSO-fastICA algorithm, the weight matrices W;(1)
corresponding to W;(1) serve as the inputs for the fastICA algorithm
employing symmetric orthogonalization to minimize the MI.

@ Instead of updating the particles’ positions based on the fastICA
results, the local minimum MI values are assigned to the particles’
initial positions itself.

@ In the periodic versions, at iteration k, the search positions x;(k) of

the particles:
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Minimization of M| using Hybrid Optimizers and Lie Group
Techniques I

vi(k + 1) = x[vi(k) + p1 * randl; * (pbest,(k) — x;(k))
+p2 #rand2; + (ghest(k) — x;(k))]  (18)
xi(k+1)=xi(k)+ vi(k+1) (19)

25
X:
12— —V? -4y

Y =1 + 2, p>4
k €[0,1].
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Minimization of M| using Hybrid Optimizers and Lie Group
Techniques

o While implementing the PSO-fastICA algorithm, the weight matrices
Wi(k + 1) corresponding to W;(k + 1) serve as the inputs for the
fastICA algorithm to assign the local minimum Ml values to x;(k + 1).
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Experimental Results and Discussion |
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Experimental Results and Discussion

Source images estimated with the fastICA method, resulting in an MI value of —0.000345. (j)~(1) Source images estimated with the PSO-fastICA algorithm,

Fig. 3. (a)(c) Original grayscale images of size 200 x 200. (d)~(f) Mixed images generated with an orthonormal mixing matrix given in Section VILB. (g)~i) :
that yielded the least MI value of —0.000196. (m)~(0) Source images estimated with the PSO-fastICA algorithm, using the spectral screened input data of size
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Experimental Results and Discussion

TABLE 1
PERFORMANCE EVALUATION OF FASTICA AND QUASI-NEWTON ALGORITHM WITH LIE GROUP
Local optimizer G G'g
minimizing MI MI mean | MI sid. dev. | least MI % | MI mean | MI std. dev. | least MI %
FastICA -0.016217 0.016045 0 -0.018909 0014836 0
QN numerical gradient || -0.020256 0.016127 44 -0.022559 0.015535 42
QN analytical gradient -0.020204 0.015890 56 -0.022680 0.015479 58

ic
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Experimental Results and Discussion
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Fig. 4. Convergence plot of the local optimizers showing faster convergence EE
while employing the fastICA, compared to the quasi-Newton approach with the
Lie group.
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Experimental Results and Discussion
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Fig.5. (a) Poor convergence characteristics of the fastICA, as compared to the q
the quasi-Newton approach converges monotenically in a few iterations.
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Experimental Results and Discussion

(a) (b) (© @ (e) [63]
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Fig. 7. ()(f) The 6-D multispectral ASTER image sections of size 500 x 500, acquired at different ranges of wavelength, as specified in Section VIL () and
(h) IC source images generated using the weight matrix estimate from the PSO-QN, while inputting the image sections shown in (a)—£), which were selected from
the variance scree plot.
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Experimental Results and Discussion

TABLE I
PERFORMANCE EVALUATION OF GLOBAL AND HYERID ALGORITHMS WITH LIE GROUP
Global/hybrid optimizer G G
minimizing MI MI mean | MI std. dev. | least MI % | MI < multi-start | MI mean | MI std. dev. | least MI % | MI < multi-start
‘ fastICA (%) ‘ ‘ fastICA (%)
PSO -0.021776 0.018016 0 56 -0.023526 | 0.016994 0 32
EP -0.017241 0.014606 0 0 -0.018378 | 0.013757 o 0
SA -0.020617 0.017332 0 30 -0.022665 | 0.016355 o 38
CE -0.020771 0.018054 0 22 -0.021672 | 0.014990 0 20
PSO-fastICA -0.023162 0.019688 0 96 -0.025207 | 0.017950 2 94
PSO-periodic fastICA -0.023069 0.019719 0 86 -0.024956 | 0.017619 0 86
PSO-QN -0.023431 0.019707 80 100 -0.025499 | 0.017960 76 100
PSO-periodic QN -0.023419 0.019709 20 100 -0.025465 | 0.017829 22 100
Multi-start fastlCA -0.022253 0.019620 0 — -0.024207 | 0.017891 0 —
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Experimental Results and Discussion
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Fig. 8. Relationship between the average CPU time taken by the var
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(b

us algorithms, implemented with the same stopping criterion, and the data dimension:

(a) using Gy (b) using G'y. The proposed approaches were supplied with the spectral screened input, to illustrate how the execution time of the PSO-fastiCA
and the PSO-periodic fastICA could be brought lower than that of the fastICA implemented with the original image input of size 200 x 200, Implementing the
quasi-Newton method with the analytical gradient makes it comparable with the fastICA, and the CPU time noticeably reduces. Notice that the y-axis is logarithmic

for the bottom row.
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Conclusion |

@ Source separation algorithms are proposed and investigated for
accurately estimating the weight matrix in the ICA model, with the
help of Lie group techniques.

@ We have proposed an approach to use a local optimizer, the
quasi-Newton method, in conjunction with the Lie group, to impose
the orthonormality constraint implicitly.

@ This approach produces more accurate IC estimates in comparison
with the fastlCA, provided both the approaches are supplied with the
same initial random input vector.

@ We have attempted an approach wherein the global optimizers, the
PSO, EP, SA, and CE method, are implemented with the Lie group.

@ We have demonstrated how the variations of the hybrid optimizers,
preserve a reasonable estimation accuracy by periodically integrating
the local optimizers with the global one. @
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