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presented results, it can be expected that the algorithm will success- 
fully handle octrees of real objects if their shape is relatively well 
preserved. For this reason, both a good octree construction method 
and an appropriate resolution influenced by an object’s complexity 
have to be chosen carefully. Note that at higher resolutions, the 
threshold values discussed here can be reduced, but since the values to 
which the thresholds are applied decrease only for symmetric objects, 
the values given here can be retained without a significant loss of the 
algorithm’s sensitivity. 

V. CONCLUSION 
An algorithm for identifying symmetry of an arbitrary 3-D ob- 

ject represented by an octree is presented and implemented. It is 
applicable to any object regardless of its shape, and in general, it 
works solely with an object’s (possibly noisy) octree representation 
without any need for preprocessing or additional data (which may 
be necessary in some special cases). A wide range of symmetry 
types represented by groups of proper and improper rotations can 
be identified and evaluated by means of a continuous measure of 
symmetry called the symmetry degree. To the best of our knowledge, 
this is the first practical algorithm for symmetry identification of 3-D 
objects that can successfully handle noisy input data. The algorithm 
has been verified by selected examples using synthetic objects. 

Identification of spherical symmetry should be realized in a more 
efficient manner. To do this, the positioning of objects using higher 
order 3-D moments is presently under investigation. Recently, some 
complex 3-D moment forms were evaluated 1131, but almost all of 
them vanish in such a case. Thus, the general positioning scheme 
remains to be found. Once this is done, the procedure described here 
can be used for symmetry evaluation using the octree only (without 
additional data). 

Symmetry is a very important feature of objects, and we believe 
that its automatic identification will find numerous applications in 
computer vision, intelligent CAD systems, and other related fields. 
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Solving Satisfiability via Boltzmann Machines 

A. d’Anjou, M. Grafia, F. J. Torrealdea, and M. C. Hernandez 

Abstruct-Boltzmann machines (BM’s) are proposed as a computational 
model for the solution of the satistiability (SAT) problem in the propo- 
sitional calculus setting. Conditions that guarantee consensus function 
maxima for configurations of the BM associated with solutions to the 
satisfaction problem are given. Experimental results that show a linear 
behavior of BM’s solving the satistiability problem are presented and 
discussed. 
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I .  INTRODUCTION 
The problem of the satisfiability (SAT) of an expression in the 

propositional calculus, which is usually given in conjunctivc normal 
form, was one of the first problems to be characterizcd as NP 
complete in its general statement. Linear complexity algorithms have 
been proposed [9] for HORN-SAT, which is a special class of SAT 
problems in which the clauses of the expression are propositional 
Horn clauses. However, the general exact resolution algorithms (ei- 
ther the classical propositional version of the Davis-Putnam algorithm 
[7] or the more recent improvements of it by Purdom [20] and 
Monien {it et al.} [18]) are implicit enumeration algorithms. In the 
recent literature, relaxation schemes have been proposed in [ 101 to 
map instances of SAT into instances of HORN-SAT and to use 
the relaxed subproblems as a pruning device. Another approach 
that provides an improved, but still exponential nature, tester for 
nonclausal propositional expressions is studied in [ 1 I]. The work 
of Pinkas [19] deserves special mention because i t  gives formal 
foundations for the mapping of SAT problems into energy functions 
that can be realized as recurrent neural networks. 

The problem of tinding the maximum subset of clauses that 
can be satisfied simultaneously (MAX-SAT) can be viewed as a 
generalization of SAT. For the approximate rcsolution of MAX-SAT, 
some optimization methods have been proposed [ 121, [ 131, [17]. 
The present work can be framed under these trends to solve MAX- 
SAT. Approximate solutions of MAX-SAT arc used to answer SAT. 
Negative answers to SAT given on these grounds havc some degree 
of uncertainty due to nonzero probability of suboptimal resolution o f  

Boltzmann machines (BM's), which werc originally introduced in 
[6], have been proposed in [1]-[3], [SI, and [22] as a model for the 
massively parallel implementation of the simulated annealing algo- 
rithm [ 151, [ 161. Although i t  requires large computational resources 
[14], simulated annealing has proven to be a powerful algorithm for 
the approximate solution of combinatorial optimization problems. The 
intended application of a BM [6] was as associative memorics through 
a learning process. However, later works [4] have been addressed to 
the design of a BM for the approximate solution of combinatorial 
optimization problems such as the TSP. 

A BM can be viewcd as a spccial case of the more general 
connectionist models. The computing elements arc interconnected 
logical units (with binary local states). A strength is associated 
with each connection, which givcs a quantitative measure of the 
desirability of the simultaneous activation of both units. A global 
state or configuration is a pattern of states of the logical units. A 
consensus function assigns to each configuration a real valuc that is 
the global quantitative measure of its goodness. The individual statc 
of each unit is determined through a stochastic function of the states 
of its neighbors and the strengths of their interconnections. When 
solving optimization problems, consensus maximization (through 
simulatcd annealing) provides the desired optimum. The potential 
for massive parallelism in BM's arises from the locality property of 
the computation of the consensus function incrcmcnts that guide thc 
search for its maximum. 

As stated previously, we consider SAT embedded in MAX-SAT. 
Solutions to MAX-SAT that equal the wholc set of clauses allow 
positive answers to SAT; the failure to find thcm provides spcculative 
negative answers to SAT. Bearing this idea in mind, we have 
concentrated our efforts in the definition of a class of BM fitted to the 
MAX-SAT problem. Final configurations of the BM formulated for a 
given set of clauses map into truth assignments that given partial or 
total satisfactions of it. The proposed formulation allows progressive 
construction, and changes in the set of clauses can be easily mapped 
into the BM. 

MAX-SAT. 

Although it is theoretically possible to guarantee the proper conver- 
gence of the BM, the approximate character of any finite realization 
introduces a nonzero probability of error that would occur when a 
set of clauses is declared as unsatisfiable when they are, in fact, 
satisfiable. In addition, the stochastic nature of a BM makes it 
quite unfit for applications where an exhaustive enumeration of truth 
assignments that satisfy the set of clauses is required. Nevertheless, 
this approach allows the solution of the SAT problem in its more 
general form and gives a model for its massively parallel computation. 
The most appealing result of our work is that BM's seem to 
behavc linearly on the number of propositions involved and are 
quite unaffected by other complexity factors: the number of clauses 
and their structure (whether they are Horn clauses, their size, etc.). 
This behavior can bc explained partially by the fact that some of 
the parametcrs that determine the computational complexity of the 
annealing algorithm are defined in this work in terms of the number 
of propositions involved. 

The remainder of this section introduces the notation employed 
in the statement of the satisfiability problem and BM's. Section 11 
prescnts the construction of a BM to solve an instance of SAT, 
which arc the conditions that guarantee that maximum consensus 
configurations correspond to solutions and our approach to the 
realization of these conditions. Section I11 presents the experimental 
framework. Section IV presents the discussion of the results gathered 
from the experiments. Finally, in Section V, we give our conclusion 
and some discussion over the material of previous sections. 

A. General Statement of the Satisfiability Problem 

normal form: 
Let f bc an expression of the propositional calculus in conjunctive 

c - 
L - A,=I YCC, 

where NC is the number of clauses, CJ = V,=l,.,,, C, is a clause in 
disjunctive form, ) t J  is the number of literals in clause C,, a literal 
C, can be either a proposition P, i E (l..NP} or its negation, and 
each proposition is a Boolean variable. 

The satisfiability problem can be stated as the search for a truth 
assignmcnt A : {'P, i E {l..Sl'}} + B such that the evaluation 
of f under A is true. 

The maximum satisfiability problem can be stated as the search for 
the maximum Lc' C E such that E' is satisfiable. Obviously when 
'C' - c - ', the answer to SAT poscd on f is yes. 

B. Definitions for BM's 

A BM with -1- logical units can be represented as an undirected 
graph G = ( L - .  C), where the vertex set I- = ( ~ 0 . .  . . . ( / . ~ - l }  is 
the set of units, and the edge set C' C I -  x I -  denotes the set of 
connections between the units. A connection ( U , .  U,) E C connects 
the units I /  I and t /  ,. C' includes connections of units with themselves. 

The statc of each unit can be either 0 or 1. A configuration k of 
the BM is univocally determined by the states of its units. The state 
of unit U ,  in configuration k is denoted by k (  U , ) .  The configuration 
space R denotes the set of all possible configurations ( I  RI = 2 ). 

A connection ( i t , .  I /  ,) is activated in the configuration k if 
k(u,)k)(u,) = 1. In a connection ( I / > . / / , ) ,  a strength . S ( U ~ . I / ~ )  is 
associated with a real number that is interpreted as a quantitative 
measure for the desirability that the connection is activated. 

The consensus function C' : R - El is a measure of the global 
goodness of configuration k and is defined as follows: 

c ' ( X , )  = Y ( . h ( / / < .  / / J ) X , ( / / t ) k ( t / , )  

The set RI C R is thc neighborhood of configuration k and is 
defined as the set of configurations that differ from configuration k 



516 IEEE TRANSACTIONS O N  PATTERN ANALYSIS ANI) MACHINE INTEl.l.l(iENCE. VOL. 15, NO. 5, MAY 1993 

only in the state of one unit. Let k' E RI. be a neighbor of k .  and 
the states of the units A.' are given by 

A very interesting property of BM's is the locality of the com- 
putation of consensus variations between neighboring configurations. 
Let C, be the set of connections affecting unit ( I , ,  excluding the 
bias ( U , .  t! I ). The consensus variation between two neighboring 
configurations can be computed as follows: 

A C ' i k k ' )  = C ' ( k ' )  - C ' ( k )  

= (1 - 2 k ( u , ) )  

' [Yc. , .s(  U , .  o , , ) k (  ( I ,  ) + .s[ I / , .  U ,  ) ]  

This locality in the computation of consensus variations is at the 
heart of the proposition of a BM as a massively parallel computational 
model. 

The objective of the BM is to reach a configuration with global 
maximum consensus. In general, this is achieved through a siniu- 
lated annealing strategy. In its sequential (uniprocessor) realization, 
neighboring configurations are gencrated by random selection of the 
unit whose state is to be changed. The probability of accepting this 
generated configuration as the new configuration of the machine is 
defined as 

where AC' is the consensus increment AC(  k k '  ) whose expression is 
given above, and t is the control parameter, which is usually referred 
as temperature. In concurrent (multiprocessor) realizations, units are 
clustered in groups that proceed in parallel with their local annealing 
processes. In the limit, each unit changes its state concurrently and 
asynchronously (massive parallelism), following a local annealing 
process based on uncertain information about the states of the units 
connected to it. To our knowledge, the precise effects of concurrent 
computation on BM accuracy remain an open research topic. 

The simulated annealing algorithm is mathematically conceptual- 
ized as a sequence of Markov chains, where each Markov chain is 
a sequence of trials to change the configuration of the machine at a 
constant temperature value. Any finite realization of the simulated 
annealing algorithm thus requires the specification of a cooling 
schedule consisting of 1) the start value t o  of the temperature, 2) the 
decrement function of the temperature, 3) the length of each Markov 
chain, and 4) the stop criterion for the algorithm. In Section 111, we 
specify the cooling schedules used in our experimental work. 

11. BM's FOR SAT 

In this section, we present the definition of a class of BM fitted 
for the resolution of MPX-SAT posed on a given set of clauses. 
Solutions to MAX-SAT obtained via these BM's will be used in the 
experiments reported later to give answers to the SAT problem. In 
Section 11-A, we describe the construction of the BM for a given 
propositional expression. We also define the notion of consistent 
configuration. In Section 11-B, we give the conditions with which 
the forces associated; and what the connections must accomplish in 
order to guarantee the theoretical convergence to configurations that 
correspond to truth assignments giving maximum satisfaction of the 
propositional expression. In Section 11-C. we describe o u r  approach 
to the realization of the aforementioned conditions. 

A. Construction of the B M  

Let B M f  be the BM that will serve to approach the solution to 
MAXSAT posed on the propositional expression F. The set of units 

[: - U 

Yu 

U. 

E 

Fig. 1 .  Graphical rcprcaentation of units, connections, and their strengths. 

of BM:. is 

1-27 = ( 0 . .  . 2NP - 1) .  

Unit I /  E c-t. represents a literal that can either be the proposition 
if I /  <NP o r  the negation of proposition P,,-up+l if I /  2 NP. 

For convenience, let us define 

- ( I  = ( ( I  + NP) i i i o t l  2 X P .  

This function computes the unit that represents the literal that is 
the negation of the literal represented by unit U .  To ease the notation, 
we will assume that clause c', is described by the set of units that 
represcnt the literals that appear in it ,  and we denote this set by 
C', C [.:,, and its cardinality lC,l will be the number / I , .  

A configuration k E R of the BM is defined to be consistent if 
and only if the following holds in A.: 

L , ( / / ) = l - k ( K )  { O  . . .  N P - 1 }  

In words, for a configuration I .  to be consistent, any pair of units 
and (a literal and its negation) must be in different states. 

Consistency defines a partition of the configuration space: 

R = Ri[-R 

where R+ denotes the set of consistent configurations and R- that 
of inconsistent ones. Consistent configurations can be associated with 
a t ruth value assignment AA on the propositions 'Pg i E { 1 . . . NP} 
as follows: 

T 
F 

if A.(; - 1)  = 1 and A.(*) = 0 
if k ( i  - 1)  = 0 and k ( i  - 1) = 1. c AA(?>) = 

__ 

The set of connections Ct- is partitioned into three sets: 
c"' = { ( U .  U )(U E 1 - 2 7 }  are the bias connections. 
C" = { ( u .  K )  I ( I  E { 0 .  . . NP - 1 } } are the exclusion connections 
between units representing a proposition and its negation. 
c'' = {(U. ( P ) ~ U .  I '  E [->. A # c} are the connections used to 
represent thc clauses. 
Connections in C"' and c" will play a definite role in the dynamic 

search for consistent configurations. For this reason, we detach their 
associated forces and denote them as - ,, = s( 1 1 .  i t  ) and ,Jc{ = s( i f .  U). 
Fig. l(a) shows the bias and exclusion connections and forces 
between a pair of complementary units. 

The partial forces that model each clause in the BM are as follows: 
for each pair of units representing literals in the clause C,, a force 
between the negations of the elements of the pair, a force r, between 
each element of the pair and the negation of the other one, and a 
force I , ,  between the elements of the pair. 
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This construction applies to clauses with two or  more literals 
( 1 1 ,  2 2) .  Fig. l(b) shows the partial forces that model a clause 
C, = { u .  v .  w }  C I-2.. The final construction of forces of the BM is 
obtained by adding up the partial forces due to each clause: 

This definition of the forces has two advantages: the first allows 
progressive construction and easy addition or subtraction of a clause. 
The second allows the expression of the consensus function in terms 
of a satisfaction function of each clause, which in turn allows us to 
reason in terms of clauses when analyzing the consensus variations 
in the next section. (Reference [ 8 ]  contains the dctails.) 

From the above construction of the Connections and forces, we 
can state that the generic expression of the consensus function 
can be decomposed into three addends: the summation of the bias 
forces, the summation of the excluding forccs, and the summation 
of the remainder forces. It must be noted that for al l  consistent 
configurations, the second addend will always be zero. 

B. Conditions on the Connection Strengths 

As stated in Section I-B, the dynamic behavior of BM's consists 
of the search for maximum consensus configurations. We want final 
configurations of the BM's, which were built up following the 
description in Section 11-A, to be consistent and to satisfy as many 
clauses as possible, all of them in the case of a satisfiable set of 
clauses. 

In order to guarantee that any final configuration is a consistent 
one, we must assure that consistent configurations correspond to local 
maxima of the consensus function. From now on, we will denote 
II E 1 - f  the unit whose state change gives way to the neighboring 
configuration. It must be noted that each neighboring configuration of 
a consistent one is inconsistent (Vk E R'. k" E RA + k" E K). 
Formally, we try to guarantee the following: 

Vk E R+ k" E h'r A C ' ( k k " )  = c'(1.") - c ' ( A * )  < 0. ( 2 )  

We find two distinguishable cases of transition to inconsistent 
neighbors from a consistent one: Either unit I I  becomes inactive or 
active in the new configuration. 

In the first case, the transition from consistency to inconsistency 
produces the disappearance of some forces: the bias - ,, of I /  and all 
the forces associated with connections from u to any other active unit. 
Again, (2) implies that -, L, must compensatc the summation of all the 
other forces incident on unit u that will disappear when i t  becomes 
inactive. Formally, for a given configuration k ,  this condition reads 

-,,, > -Yc.~l .s( l / .  I , ) k ( / . ) .  ( 3 )  

In order to guarantee (2 ) ,  irrespective of particular Configurations 
and units, we define a common value -, for the bias term of all the 
units as follows: 

-; > -s, (4) 

where SI = min { Y c . t , s ( c r .  ( , )  Vu E t-:.}. 
In the second case, the transition from the consistent configuration 

to the inconsistent one produces the activation of new forces: a force 
,jt, between units U and 11, the bias A, of (using (4)), and all the 
forces associatcd with connections between U and any other active 
unit. For the fulfillment of ( 2 ) ,  , j J z  must not be compensated by the 
value of the addition of the remainder new forces established by the 
activation of unit U .  Let c"' = { ( I / .  I , ) ! ! ,  E [ - A  ( 3  # I /  A r # J }  for a 
given unit ( 1 .  Formally, this condition on j,( can be written as follows: 

( 5 )  .',, < -[-; + rc.u.s(lr. / . ) k ( f ' ) ] .  

Again, in order to guarantee (2) irrespective of particular con- 
for all the units figurations and the chosen unit 0 ,  we define 

ab 

1 < -[4 + S r ]  (6) 

where Sa = max { Y c , ' 5 s ( u .  1 3 )  VU E l - f } .  
Values of e, and ,j fulfilling (4) and ( 6 )  guarantee that the BM 

converges to consistent configurations. Condition (4) is trivial if 
SI > 0. In general, - will be a positive value, whereas , j  will be 
negative. 

To study the degree of satisfaction of final configurations, let us 
consider a new partition of the consistent configuration spacc: 

Rt = R " [ - R ' [ - .  . . 1-R" 

where R" = { X + ~ A  satisfies 1 1  clauses}. 
To assure that final configurations satisfy as many clauses as 

possible, we must define the forces that represent the clauses in such 
a way that the consensus function increases monotonically with the 
increase of the index in  this new partition: 

To analyze the form of the consensus variation between those 
regions of the configuration spacc, we devcloped an expression of i t  
in terms of the variations of the satisfaction function of each clause: 

k E R+ c ' ( k )  = NP-' + Y,=I yc ,@(C' , .k ) .  

The satisfaction function Q( C,. k )  computes the contribution to 
the consensus function due to the degree of satisfaction of the clause 
C', in the configuration A.. The way in which the forces of the BM 
are constructed (this is described in (1)) allows the computation of 
this function. Formally, the function reads 

where ~ ( j .  k )  denotes the number of units in C', that are activated 
in configuration A., and E ( j .  1.) = U ,  - x ( j .  A.). The clause C, 
would be satisfied under the truth assignment AA associated with 
the configuration k if x ( j .  k )  2 1. 

The variation of the consensus function between any two consistent 
configurations can be expressed in terms of the consensus variation 
between near-neighboring configurations, which only differ in the 
value assigned to one proposition by considering a chain of such 
near-neighboring configurations. In its turn, the consensus variation 
between near-neighboring configurations can be expressed in terms 
of the variation of the satisfaction function of the individual clauses. 

Let k and X.' be near-neighboring consistent configurations, and let 
us assume that x ( j .  k ' ]  = T ( , j .  l.)+l. This assumption does not affect 
the generality of the statements to follow, and it means that clause 
c', has a greater degree of satisfaction in configuration k ' ;  i t  also 
implies that Ti(j. k )  < n,.  From (7), the variation of the satisfaction 
function of clause C', between these configurations is of the form: 

A@(C',. kA.') = 7 i ( ~ . X . ) [ i < ,  - L)r, + 3,] + ( j t ,  - I ) [ T ,  - :,I. (8) 

In order for the BM to be able to discriminate between the regions 
of the partition (defined previously) over the consistent configuration 
space, the following conditions must be met by the satisfaction 
functions of the clauses (see [ 8 ]  for details): 

The variation of consensus introduced by the satisfaction of a 
clause must he a positive quantity (let us say (I); therefore, the 
increment of the satisfaction function must be greater than or equal 
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to Q. when the number of active units in C, (the clause) goes from 
0 to 1. Formally 

A@(C,. k k ’ )  > n when ~ ( j .  k )  = 0. (9) 

The variation of consensus introduced by a varying degree of 
satisfaction of a set of clauses cannot accumulate up to the point of 
compensating and covering a satisfaction or dissatisfaction. There- 
fore, the absolute value of the increment of the satisfaction function, 
when the number of active units goes from one onwards, must be as 
small as required in order to guarantee that. Formally 

IA%(C,. k k ‘ ) ]  < n/NCn,,, when T ( j .  I ; )  2 1 (10) 

where 7 1 , ~  = max{n, j = l . . . N C } .  
Conditions (9) and (10) cannot be met by a function such as the 

satisfaction function of the clauses whose increments are produced 
in a linear fashion. In the next section, we describe how we have 
approached the realization of these conditions from theoretical and 
implementation points of view. 

C. Realization of the Conditions 

To overcome the limitations in discrimination imposed by the 
linearity of the consensus increments, we proposed, in [ 8 ] ,  an 
extension of the BM definition, including a new kind of unit whose 
states are deterministic functions of the states of their neighbors. 
These new units would represent the clauses as a whole, and the 
activation of their bias force would produce the desired discontinuity 
in the increments of the consensus function. Our deterministic units 
are equivalent to high-order connections proposed in [21] and to 
sigma-pi units in [19]. 

The set of units of B M ;  (the extended BM used to solve MAX- 
SAT posed on .’) is 

where I’“ = { 2SP. . . . . 2 N P +  NC} are the new units that represent 
the clauses as a whole. The set of connections is constructed as 

where C“ = { ( c .  ~ r ) I c  E I T a  A t /  E C r }  are information connections 
between the ‘‘clause units” and the “literal units,” whose strengths are 

s (c .  U )  = 0 ( e .  U )  E C“ 

The bias forces of the “clause units” are defined as 

s ( c . c )  = n c E rn.  
The remaining forces are constructed following ( 5 )  and (6) ,  re- 

lated to consistent configurations, and (lo), on the variation of the 
satisfaction functions of the clauses. 

The determination of the state of the “clause units” in a configu- 
ration k is as follows: 

k ( c )  = 1 - rIC,(l - k ( c r ) ) .  

For the experiments reported in this paper, we decided to realize 
this extension through a modification of the simulated annealing 
algorithm. For a given set of clauses f, the BMf is built up 
as described previously, and the computation of the acceptance 
probability for a transition takes into account the number of clauses 
being unsatisfied by the destination configuration. 

are selected in such 
a way that the increment in the satisfaction function produced by 
the activation of a unit belonging to a clause is a fixed quantity 

More precisely, the forces 5). r,, and 

H = [ ( I /NC~, , , ] .  These values can be obtained, from (8), using the 
following equations: 

( , I ,  - 1)[T,  - -,I = 8 
f ’ ,  - 2T,  + 5, = 0. 

The consensus increment is computed as usual. For each clause un- 
satisfied by the destination configuration, a penalty quantity ONCn r71 
is subtracted from the ‘‘legal’’ consensus variation to compute the 
acceptance probability. This second operation is performed only when 
the destination configuration is a consistent one. This test improves 
the performance of the algorithm and avoids ambiguities about the 
interpretation of the satisfaction of the clauses in configurations that 
arc inconsistent. This approach follows the philosophy proposed in 
[4] of introducing penalty functions to avoid subtours in the solutions 
given by the BM in the LAP formulation of the TSP problem. The 
results presented in the next section have been obtained using this 
approach. 

111. EXPERIMENTAL FRAMEWORK 
Section 111-A presents the experimental methodology: measures 

observed and the general structure of experiments. Section 111-B 
presents the concrete BM construction used for the experiments. 
Section 111-C presents the cooling schedules used in this work. 

All the experimental work has been done on SIMULA, installed 
on a VAX11/750, a MICROVAX, and a VAX STATION 2000. 

A .  Experimental Methodology 

Our experimental work tries to gain insight into two topics: 1) 
the performance of BM’s when used to verify the satisfiability of a 
propositional expression and 2) their reliability. We have performed 
three collections of experiments: 

1) Experiments addressed to the tuning of the cooling scheduling 
of the simulated annealing strategy to be applied to the BM’s 

2) experiments addressed to assess the performance 
3) experiments addressed to assess the reliability. 
Our view of performance tries to make an abstraction from any 

implementation-dependent factors. For this reason, we have not 
gathered any account of actual CPU times, which are strongly 
dependent on the language used, the available hardware, and the 
quality of the programming, that would make it quite difficult to 
replicate and verify the results presented here. Instead, we have 
observed the number of trials in each simulated annealing of the BM 
and the number of annealing processes needed to find a satisfaction. 
The first measure is referred to from now on as “time” and the 
second as “iteration.” From these two measures, a global performance 
measure, which is the total number of trials per satisfaction or “total 
time,” can be deduced. 

The criterion to decide that a propositional expression is unsatis- 
fiable is that a maximum number of annealing processes have been 
attempted and that none has resulted in a satisfxtion configuration. 
The reliability question, which is posed once this happens, is whether 
the expression is really unsatisfiable or if it is satisfiable, and the 
cooling schedule is responsible for such a misleading response. 
To gather information on this matter, a rough version of the DPL 
algorithm was implemented to verify the negative responses to SAT. 

The experimentation has consisted of the random generation of 
a large collection of propositional expressions and application of 
BM’s as described above to determine their satisfiability. The set 
of clauses of each expression were randomly generated along three 
parameters: number of clauses NC, number of propositions NP, 
and the distribution of the number of literals per clause. We have 
considered several distributions with clauses of constant size (two, 
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five, six, and seven literals per clause) and a distribution with clauses 
of varying sizes (between two and seven with almost the same 
probability). This last one is referred as uniform distribution in the 
figures that follow. The reason to consider this parameter explicitly 
was to evaluate its influence on the behavior of the BM. 

Our work producing 30 propositional expressions for each combi- 
nation of parameter values tried has been done. In other words, each 
point in the figures that follow is computed as the mean of a sample 
of 30 sets of clauses. This sample size was assumed as reasonable 
for the computation of the rough confidence estimates, which are 
also shown in the figures. 

B. Construction of the BM 
Given a propositional expression described by a set of clauses, 

a BM that satisfies its satisfiability is constructed as described in 
previous sections. The concrete values assumed for the partial forces 
used to compute the strengths associated with the connections remain 
to be specified. 

In order to meet (ll), for each clause C,, the values 5,. T ~ ,  and 7’]  

used to define the partial forces s,( I ! .  0 )  are computed as follows: 

CJ = - 8 / 2 ( n ,  - 1) 

T, = 0 / 2 ( T I j  - 1) 

L’, = 3 1 9 / 2 ( ~ 1 ,  - 1). 

We have assumed that the parameter 6’ has a value of 10. As de- 
scribed in Section 11-A, the strengths associated with the connections 
that map the clauses into the BM are computed as follows: 

s ( u .  P )  = Y,=l y ( . s J ( u .  ( 7 )  ( U .  t ’ )  E C‘. 

The values for the bias forces -; and the exclusion forces J are 
computed to meet (4) and (6), respectively. 

C. Cooling Schedules 
A very conservative cooling schedule has been used. It was set 

after careful experimentation, which will be discussed in Section IV- 
A, over the set of clauses used by Purdom [20] to illustrate his own 
algorithm. This set of clauses was chosen because of its manageable 
size. In addition, the fact that it has a unique solution gives it some 
hard character. The cooling schedule parameters were specified so 
that an annealing gives satisfaction for this instance with a probability 
whose value is close to 0.5. This cooling schedule has the following 
specifications: 

The initial temperature value t ,  is computed as the summation 
of the absolute values of the forces divided by the number of 
units. 

The decrement function of the temperature is of the form 

t t  = f t , -1  

where f = 0.95 is the cooling factor. 
The length for each Markov chain is variable; its termination 
is produced either when the number of accepted transitions is 
IIrI or when the number of trials in this chain is 100(171. 
The annealing is stopped when a chain without accepted 
transitions occurs. 
The maximum number of annealing processes attempted before 
declaring the set of clauses as unsatisfiable is 5. 
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Time versus cooling factor. Fig. 2. 
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Fig. 3. Iteration versus cooling factor. 

Iv. DISCUSSION OF RESULTS 
In this section, we present the results from the experiments realized 

in the setting described above. We first discuss the tuning of the 
cooling schedule used along the experimentation. Then, we discuss 
the results gathered from the experiments addressed to assess the 
performance and reliability of the BM built up to give answers to the 
SAT problem for random instances of propositional expressions. 

A .  Tuning of the Cooling Schedule 
To determine the appropriate value for the cooling factor f, a 

collection of experiments with different values of it were conducted 
on the set of clauses given in [20]. This instance of SAT has a 
unique satisfaction truth assignment; therefore, the results gathered 
on the experimentation with it can be assumed to be valid for “hard” 
instances and conservative for “softer” ones, which have nonunique 
satisfactions. 

Fig. 2 shows how the time taken for each annealing increases as 
the cooling factor is increased towards 1. In Fig. 3, the number of 
iterations needed to obtain the satisfaction of the clauses is shown 
at increasing values of the cooling factor. In order to provide a 
termination criterion for the overall process, we need a strong bound 
on the number of iterations required for a successful search. As show 
in the figure for values of the cooling factor from 0.90 onwards, 
the machine provides a success every two iterations. From these two 
figures, it must be apparent that the choice of values specified in 
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Section 111-C for the cooling factor and number of iterations is quite 
conservative. 

B. Performance Results 

Fig. 4 shows the most important performance result. This figure 
shows the time of solution of the sets of clauses against the number 
of propositions involved. This performance measure has a linear 
behavior over the region we have tested. It must be noted that this 
measure does not include the time involved in the examination of 
the clauses needed for the correction of the consensus increment, but 
nevertheless, it suggests that this approach can lead to some kind of 
approximate “near linear” complexity solution of the SAT problem 
in its most general form. 

Points in Fig. 4 have been obtained over sets of clauses with 
uniform distribution of clause sizc. Figs. 5-7 provide the justification 
for that. Fig. 5 shows the independence of the BM efficiency from 
the distribution of clause sizes. The distributions sampled were fixed 
size of 2, 5 ,  6, and 7 propositions per clause and the uniform (II) 
distribution. The figure also shows thc direct dependence of the 
efficiency on the number of propositions (NP) involved for a given 
number of clauses (NC). 

Fig. 6 shows the relative insensitivity of the BM efficiency to the 
NC involved for a given NP. As the relation NP/NC decreases, in 
this case by the increase of NC, it could be expected that the sets 
of clauses being generated would have smaller satisfaction regions 
so that satisfaction configurations would be more sparse and difficult 
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Fig. 6. Insensitivity to  thc number of clauscs. 
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Fig. 7. Depcndence of thc number  of iterations. 

to find. Fig. 6 shows that this has n o  effect on the time employed 
for cach annealing, but Fig. 7 shows that this shortening of the goal 
region has some effect on the number of iterations required to find a 
satisfaction, thus increasing it. Nevertheless, the effect does not seem 
to be very strong. 

The observation of Figs. 5-7 givcs support to the idea implicit in 
Fig. 4: The main performance factor is the number of propositions 
involved. An intuitive reason for that result is that the complexity 
factors of the BM (number of units and connections, Markov chain 
length, and initial temperature) can bc expressed as functions of 
the number of propositions, whcreas the clauses are embedded in 
the connection strengths and mainly affect the magnitude of the 
consensus function. 

C. Reliability Krsu1l.s 

The experiments discussed in Section IV-B did not  produce un- 
satisfiable cases. To systematically explorc the error introduced by 
the approximation given by a cooling schedule, we have planned 
another set of experimcnts. We selected a number of propositions 
(NP=20) and a constant distribution of the clausc size of two literals 
per clause (2-Distribution), We cxpected that this small clause size 
will increase the probability of generating unsatisfiable instances. We 
generated in the usual way propositional expressions with diverse 
numbers of clauses (NC from 25 to 50) and then applied the BM to 
them. Those sets of clauses declared as unsatisfiable wcre processed 
for verification by the DPL algorithm. 
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The construction of the BM for a given instance of SAT has been 
described. The conditions for proper convergence to solutions have 
been stated and their sequential realization presented. Experimental 
results show that the BM’s proposed behave linearly on the number of 
propositions involved, irrespective of the number of clauses or their 
structure. On the other hand, the existence of a nonzero probability 
of error, when declaring an expression unsatisfiable, is also shown 

Although our work has been done on sequential conventional 
computers, the main appeal of BM’s is their massively parallel 
character. Further work must be addressed at the parallel realization 
of BM’s proposed in this paper and the experimental evaluation of 
the performance of parallel implementations. 

zL by the experimcnts. 
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NC 
Fig. 9. Percentage of error incurred by the BM. 

Fig. 8 shows the results of these experiments. The DPL bars show 
the number of truly unsatisfiable instances found for each size of 
the set of clauscs. The BM bars show the number of instances 
declared as unsatisfiable by the BM. For the sake of clarity, we have 
represented in Fig. Y the percentage of erroneous negative answers 
to SAT produced by the BM. 

The first feature to be noticed is the increase of the probability 
to generate an unsatisfiable instance as the number of clauses is 
augmented. This confirms the intuitive idea that the ratio NP/NC 
is statistically relatcd to the size of the satisfaction region of the 
instances being generated. The study of the error incurred by the 
BM shows that it reaches its maximum value when the probability of 
generating an unsatisfiable instance approaches 0.5. Our interpretation 
of this fact is as follows: It is at this point where the probability of 
generating satisfiable instances, whose satisfaction is a unique truth 
assignment, reaches a maximum value. This is, obviously, the worst 
context for the evaluation of any algorithm and the cause for its 
greater error figure. 

In summary, the results show a relatively high reliability of 
the approach, although they also show the existence of a nonzero 
probability of a erroneous response, which is a distinctive feature of 
any approximate method. 

V. CONCLUSIONS 

A class of Boltzmann machines has been proposed for the res- 
olution of the SAT problem in the propositional calculus setting. 
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