
CLOUD POINT LABELLING IN OPTICAL MOTION CAPTURE SYSTEMS

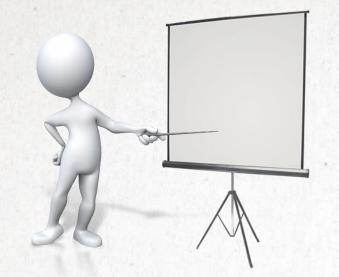
- THESIS DISSERTATION -

Juan Luis Jiménez Bascones

Advisor: *Prof. Dr. Manuel Graña Romay* Computational Intelligence Group University of the Basque Country (UPV/EHU)

Donostia – San Sebastián – Feb 15, 2019

ABSTRACT


- Provide a broad view of the Mocap State of the Art
 - Applications
 - Technologies
- Optical mocap pipeline
 - Role played by marker labelling
- Main contribution: brand new labelling algorithm for Optical Mocap Systems
 - Machine learning approach: use of machine learning techniques vs. rule-based
 - Get rid of predictive information: labelling vs. tracking
- Assessment of the algorithm against a ground truth harvested on purpose

SUMMARY

- **1.** Introduction
 - Motivation
 - State of the Art
 - Overview of an Optical Mocap workflow
- 2. Contribution
 - Problem statement
 - Correct labelling detection
 - Partial solvers
 - Solver ensemble
- 3. Results
- 4. Conclusions

1 INTRODUCTION WELCOME TO MOCAP

1 INTRODUCTION

Motivation State of The Art: • Interest in Mocap • Mocap technologies • Labelling techniques The Optical Mocap Pipeline

WHAT IS MOCAP

MOtion CAPture

- Set of methods and techniques
- Record and analyse the movement
- Fields of application: entertainment, medicine, sports, ...

Target movement

- ✓ Complete human bodies
- ✓ Specific parts (facial, hands capture)
- ✓ Machinery, tools, environmental objects
- ✓ Animals

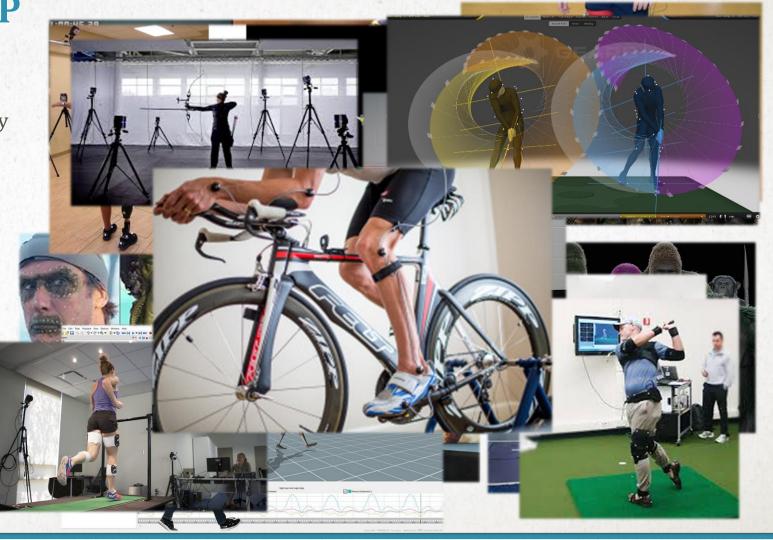
MOTIVATION

Optical marker labelling as a still open problem

- Professional background
- Problem hard to handle due to the fuzzy nature of both data and rules
- Scarce number of publications dealing with the issue
- Most of them from a kinematic-predictive model approach
- Existing algorithms hard to tune

Something should be done!

INTEREST IN MOCAP

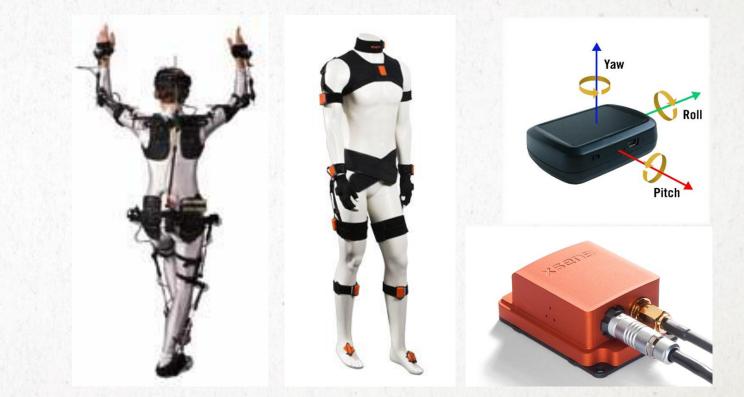

Applications

- Movies, TV and gaming industry
- Medical analysis
- Ergonomics
- Sport analysis
- Activity recognition
- ...

•

Research in Mocap

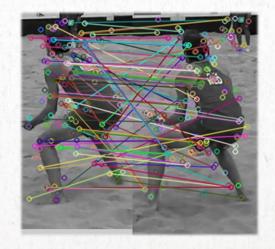
- System assessment
- More affordable solutions
- New detection methods

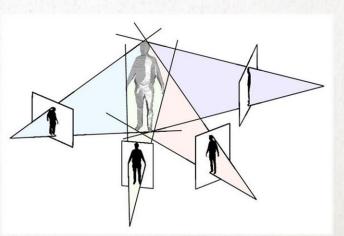


MOCAP TECHNOLOGIES (I)

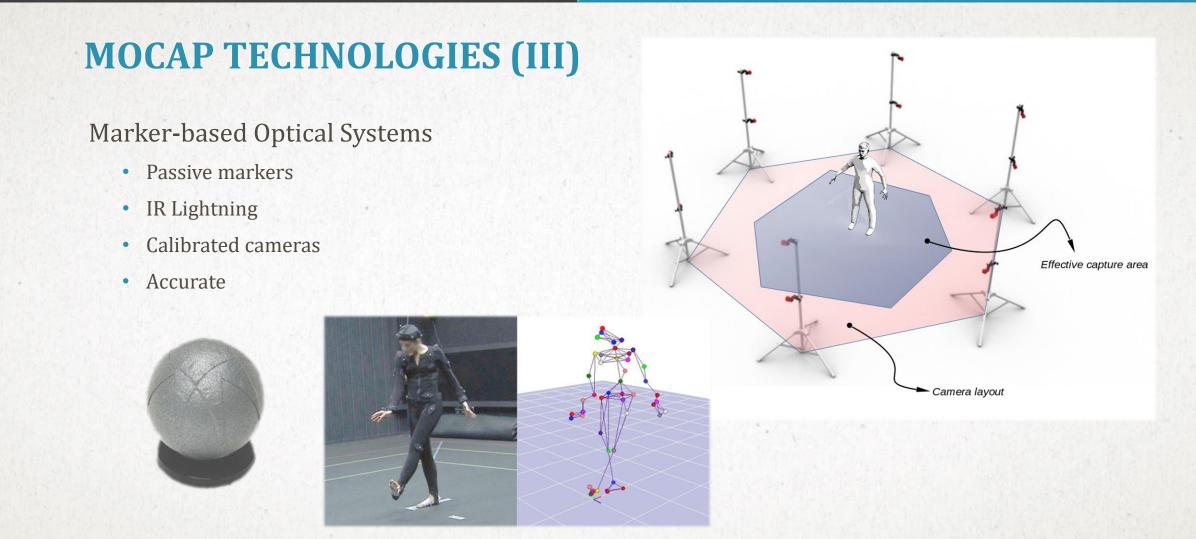
Wearables

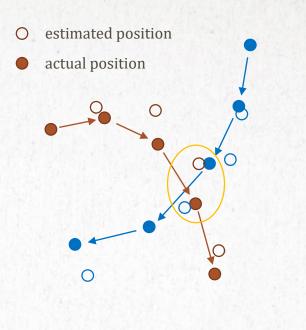
- Electromechanical
- Electromagnetic
- IMUs
 - Gyros, acc, mag;
 - Relative measurement
 - Drifting
- Alternative devices
 - Radio frequency
 - Optical fiber
 - Flexible nanomaterial

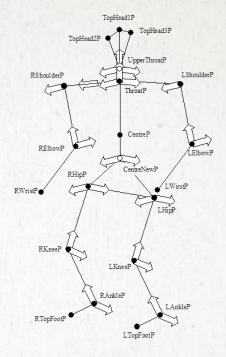

MOCAP TECHNOLOGIES (II)


Markerless Optical Systems

- Range image
- Image-matching
 - SIFT, SURF
- Silhouette extraction



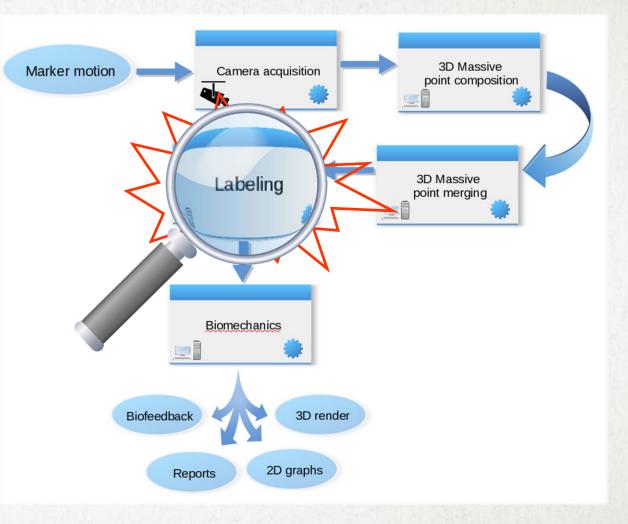




TRACKING TECHNIQUES

Usual approaches

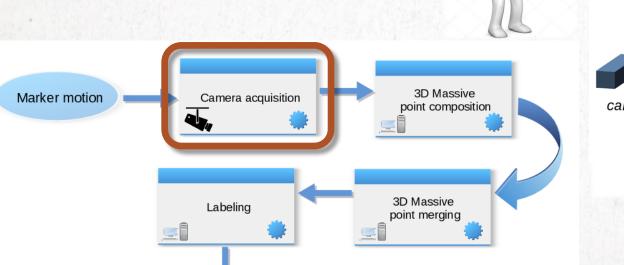
- Trajectory continuity along the time
- Geometric restrictions: pairwise distances, means and standard deviations
- Kinematic constraints: underlaying bone-joint mechanism
 - DOFs as unknowns
 - flesh misleading effect
 - sometimes use true rigid body targets
- Target function and iterative minimisation methods
- Hard to tune: tolerances

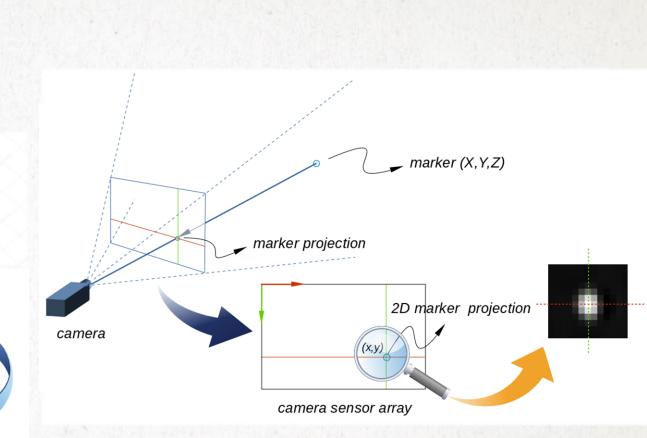


PROCESS STAGES (I)

Optical Mocap workflow

- Known efficient solutions for each stage
- Centred in labelling not extensive description
- Get to known the problem boundary conditions

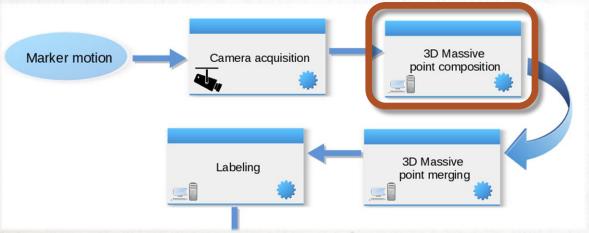


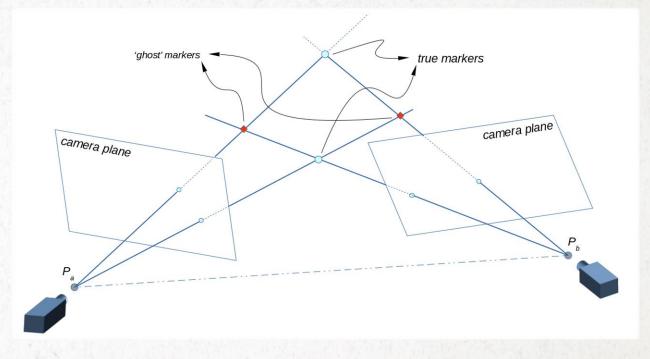


PROCESS STAGES (I)

Marker detection

- IR lightning and reflectivity
- 2D segmentation
- Anonymous XY pixel coordinates

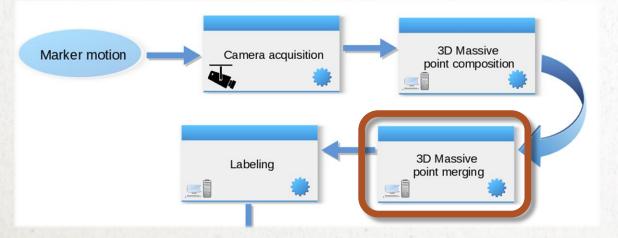


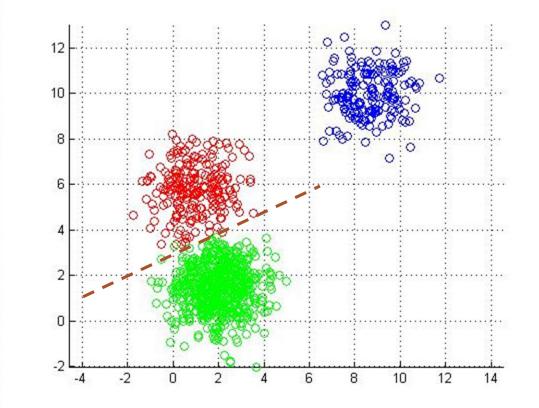


PROCESS STAGES (II)

3D composition (photogrammetry)

- Among all camera and XY combinations
- Anonymous XYZ metric coordinates
- Measurement noise
- Random movement (flesh, clothing, ...)
- Ghost markers and occlusions



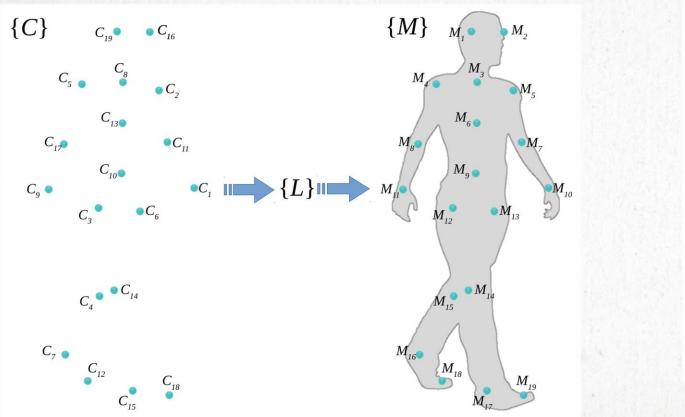


PROCESS STAGES (III)

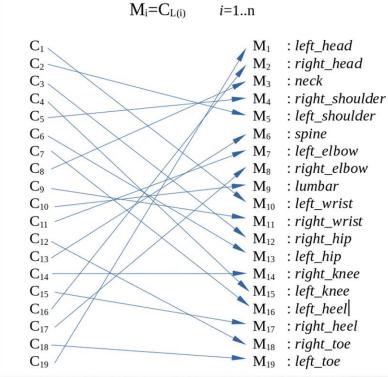
3D merging

- One point instance per camera pair
- One point per *actual* point
- Remove duplicates
- Make out too near points

2 PHD THESIS CONTRIBUTION


TAMING THE MARKERS

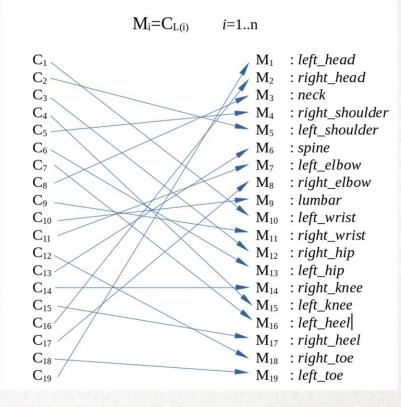
2 PHD THESIS CONTRIBUTION


Problem statement Correct labelling detection Partial solvers Solver mining Solver ensemble

PROBLEM STATEMENT (I)

$L = \{19, 16, 8, 5, 2, 13, 11, 17, 10, 1, 9, 3, 6, 14, 4, 7, 15, 12, 18\}$

17


PROBLEM STATEMENT (II)

Marker connection

- Input: anonymous candidate list (the cloud)
- Coded as a vector of integers: the **unknown**
- Each integer is either:
 - One candidate index (>0): labelling assignment
 - Zero (=0): occlusion assignment
- Up to n! different choices for *L* (in a simplified scenario)

 $L_t = \{l_1^t, l_2^t, ..., l_n^t\}$ $l_i^t \in \{\mathbb{N}, 0\}, \ 0 \le l_i^t \le m$ $(l_i^t \ne 0) \Rightarrow (l_i^t \ne l_j^t \ \forall j \in \{1, ..., n\} - \{i\})$

$L = \{19, 16, 8, 5, 2, 13, 11, 17, 10, 1, 9, 3, 6, 14, 4, 7, 15, 12, 18\}$

PROBLEM STATEMENT (III)

Goal:

• Algorithm to calculate feasible labelling *L* for each each frame, given a set of candidates *C* and a marker distribution *M*:

 $\mathcal{L} = \mathcal{L}(M, C_t)$

Subject to some requirements:

1. Hit rates in the number of correct candidate assignments above a given target:

 $P_i(l_i) > \tau_i \qquad \begin{array}{c} l_i \neq 0 \\ \tau_i \gg 99\% \end{array}$

- 2. Keep the false occlusion assignment as low as possible
- 3. Suitable for real time processing (up to 100 frames per second)

THE ROAD MAP

The problem has been addressed in **two** main stages:

- 1. Initially, we work under the **no occlusion hypothesis**
 - We take on the assumption that not marker is missing in the candidate list
 - Devise a mechanism (oracle) to tell between a correct and a wrong labelling *L*
 - Algorithm (*solver*) to generate all the feasible correct labelling, where no occlusion assignments are possible
- 2. Then, we undertake the real case: occlusion happens
 - Divide and conquer: split the marker model into smaller ones (partial solvers mining)
 - Apply the algorithm from 1. to generate partial labelling on each subset, when possible
 - Assemble (*solver ensemble*) the partial labelling into a global solution, assuming unidentifiable subsets and thus being its markers assigned as occluded

CORRECT LABELLING DETECTION (I)

The *Oracle*:

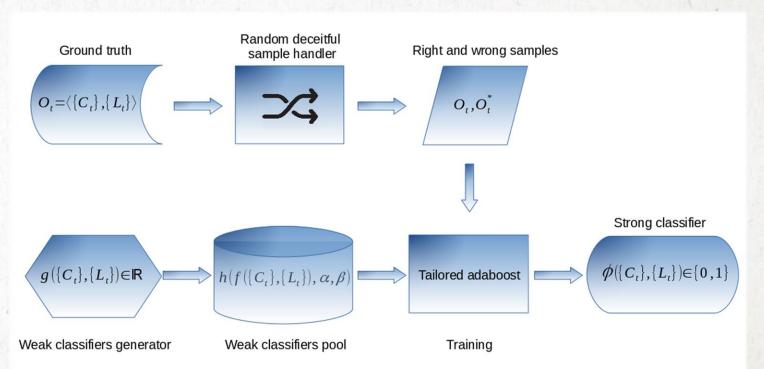
- Tell whether a given *L* is correct or not
- Tackled as a classification problem:

 $\phi(M, C_t, L_t) = \begin{cases} L_t \text{ is correct } \to 1\\ L_t \text{ is no correct } \to 0 \end{cases}$

We define weak classifiers:

- Geometric features over marker sets
- Combinatoric formulation: thousand of instances are available
- Adding a valid range \rightarrow weak classifier
- n! different choices (simplified scenario)

Geometric property	g	# points	points	expression
Angle between consecutive angles	g_1	3	A,B,C	$\operatorname{arccos}\left(\frac{AB\cdot AC}{ AB \cdot AC }\right)$
Distance between points	g_2	2	А, В	AB
Similarity ratio between segments	g 3	4	A, B, C, D	$2\frac{ AB - CD }{ AB + CD }$
Height difference between two points	g_4	2	Α, Β	$A_y - B_y$
Distance ratio between consecutive segments	g_5	3	А, В, С	$\frac{ AB }{ AC }$
Angle between two segments	g_6	4	A, B, C, D	$\operatorname{arccos}\left(\frac{AB \cdot CD}{ AB \cdot CD }\right)$
Angle between a segment and the vertical	<i>g</i> 7	2	А, В	$\operatorname{arccos}\left(\frac{AB\cdot Y}{ AB }\right)$
Triangle area	g_8	3	A,B,C	$\frac{1}{2} AB \times AC $
Y component of cross vector	g_9	3	А, В, С	$ A\tilde{B} \times AC \cdot \{0,1,0\}$



CORRECT LABELLING DETECTION (II)

How to build a strong classifier

- Selection by an AdaBoost approach
- Algorithm to automatically gather an ensemble of weak classifiers
- Input data: ground truth and target ratio
- Output: strong classifier

$$\phi(M, C_t, L_t) = \begin{cases} L_t \text{ is correct } \to 1\\ L_t \text{ is no correct } \to 0 \end{cases}$$

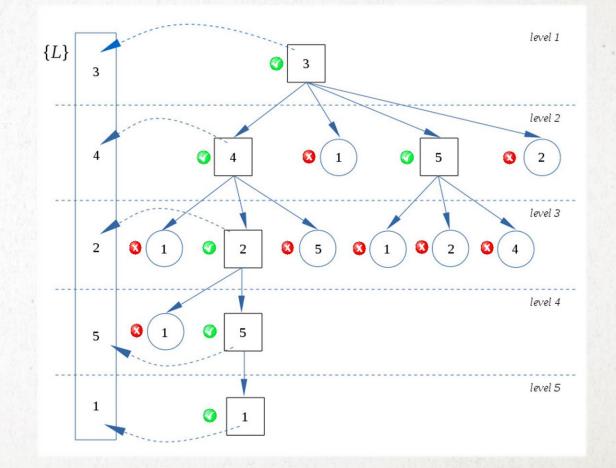
GENERATING RIGHT LABELLING

The solver

• Form

$$\mathcal{L} = \{L^1, L^2, ...\} = S(C, M, \phi)$$

- Input data: candidate cloud
- Output data: set of feasible labelling


 $\phi(M,C,L^i)=true$

Cannot deal with occlusions!

 $l_j \in L^i \qquad l_j > 0$

- Efficient three search algorithm exploiting the trained strong classifier
- Evaluable hit ratio per marker

 $P(S, m_i) = P_i(S) \in [0, 1]$

PARTIAL SOLVER

Partial solver

• Definition

 $S(C, M_s, \phi_s)$

 $L_s \subseteq L$ $M_s \subseteq M$

• Size: number of marker it work on

Facts:

- 1. Null hit ratio
- if $m_i \notin M_s \Rightarrow P_i(S_s, m_i) = NaN$
- 2. Increasing hit ratio with solver size

 $m_i \in M_A \subset M_B, |M_B| > |M_A| \Rightarrow P_i(S_B) \ge P_i(S_A)$

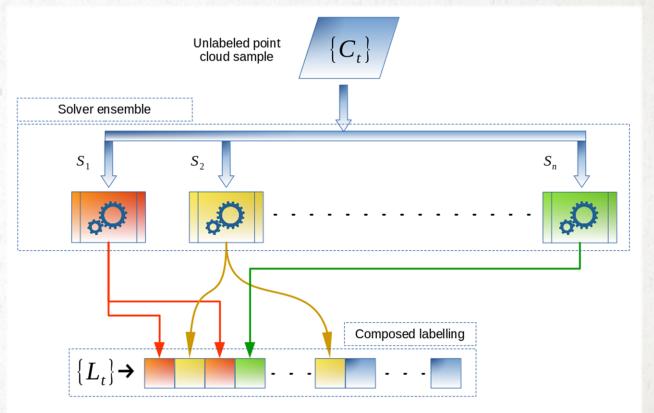
- 3. Existence of small solvers showing high hit ratios
- 4. Optimal model design rule

if $M_s \equiv M \rightarrow \exists S \setminus P_i(S_s(C, M_s, \phi_s)) = P_i(S(C, M, \phi)) = 1$

PARTIAL SOLVER ENSEMBLE

Definition:

$$\Omega = \{S_1, S_2, ..., S_N\}$$

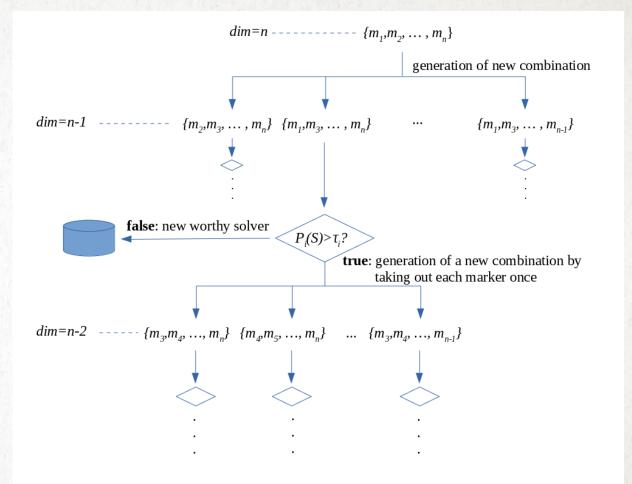

$$M_{s_1} \cup M_{s_2} \cup \ldots \cup M_{s_N} = M$$

Facts:

- <u>Can</u> deal with occlusions!
- Size of the members and hit ratio: a trade off
- Combinatoric enumeration: thousand of them available

$$\sum_{i=1}^{n_m} \binom{n_m}{i}$$
, where $n_m = |M|$

i. e., for n=15 \rightarrow 32767 different possibilities



PARTIAL SOLVER MINING (I)

Greedy search algorithm

- Bottom-up
- Up-bottom
- Efficient but thorough search
- Target hit ratio as tuning parameter

PARTIAL SOLVER MINING (II)

Genetic search algorithm

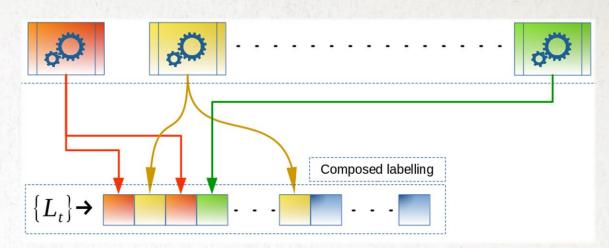
- Each solver treated as specimen
- Chromosome: array of Booleans $\{b_i\}$

 $b_i = 1 if m_i \in M_s, 0 otherwise$

 $L_{S} = \{l_{3}, l_{5}, l_{7}, l_{10}\} \rightarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]$

Genetic operations

- Crossover, mutation, biased towards small size solvers
- Selection: hit ration as fitness function
- Massive die out after a number of generations


Rather hard to tune

- Multiple simulations
- Usually converges to tantamount valid solutions

SOLVER ENSEMBLE LABELLING

- Each *elite* solver contributes to the complete labelling *L*
- The consensus is determined by means of a decision matrix
 - ✓ A row per candidate, a column per marker
 - Each cell holds the suggestion of each solver
 - ✓ Single null entry: assignment
 - Empty column: null assignment (occlusion)
 - ✓ More than a not-null entry: ambiguity \rightarrow null assignment
- Target hit ratio ↔ null assignment trade off
 - − \uparrow hit ratio, \uparrow solver size, \uparrow occlusion assignments
 - − \downarrow hit ratio, \downarrow solver size, \downarrow occlusion assignments

	m_1	m_2		m_j	•••	m_{n_m}
c_1	Ø	$\left\{S_s^{1,2}\right\}$	•••	Ø	•••	Ø
c_2	Ø	Ø		Ø	•••	Ø
:	:	÷		÷		÷
c_i	Ø	Ø		$\left\{S_s^{i,j}\right\}$		Ø
:	:	÷		:		÷
c_n	ø	Ø		Ø		$\{S_s^{n_c,n_m}\}$

3 RESULTS WHEN THE RUBBER MEETS THE ROAD

3 RESULTS

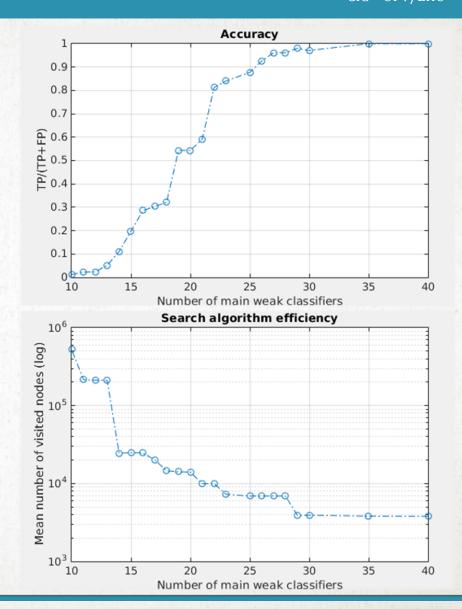
Ground truth Partial solver performance Solver ensemble performance

EXPERIMENTAL DATA

Ground truth

- Helen Hayes marker system 15 markers
- Clinical gait analysis purposes
- Six mocap cameras, native resolution 800x800 pixels

- Sampling frequency: 100Hz
- Database size: 71 recordings between 1.5 and 7 seconds long, summing up more than 20.000 frames
- Manually verified
- Openly available at zenodo.org


R. Femoral wand 6 0 7 R. Femoral epicondyle R. Tibial wand 5 R. Heel 2 0 3 R. Malleolus L. Metatarsal head II 0 R. Metatarsal head II X	L. ASIS 14 L. ASIS 14 L. Femoral wand 13 L. Femoral epicondyle L. Tibial wand 11 L. Metatarsal 8 bead II Y
C û a https://zenodo.org/record/1486208#.XF6n	ncc2CGUk 🗉 🕶 🖸 🕼
November 12, 2018 Mocap gait motion samples -	Upload Communities Design op Detaset Open Access Optical 131 11 © views \$ downloads
Marker trajectories Jiménez Bascones, Juan Luis; Graña Romay, Manuel Thesis supervisor(s)	See more details
Manuel Graña Romay	Indexed in
Summary This database gathers a set of optical marker-based motion capture (mocap) sample corresponds to a single acquisition containing the 3D trajectories of a continuous interval of time.	
Keywords: Motion capture, mocap, Gait analysis, marker tracking.	Publication date:
Data description	November 12, 2018
Several persons wearing small reflective balls (markers) were asked to walk n using motion capture cameras. These cameras, previously calibrated, are tho pixel image position of the markers against the background thanks to IR light with. The XYZ position can be afterwards recovered by means of photogramm	normally while recorded bught to detect the 2D tring they are provided tring they are provided
the second of the second second second	

STRONG CLASSIFIER

- Holds the labelling knowledge used by the solver: makes out between a given labelling is right or wrong
- The most relevant are selected by an tailored Adaboost implementation
- Direct effects in the solver performance:
 - 🗸 Hit ratio
 - ✓ Processing time
- Do not deal with occlusions

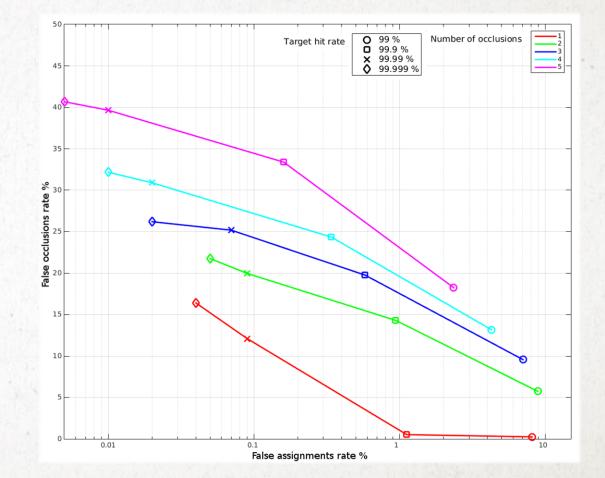
	Weak classifier	Score (%)	Sum score (%)
1	$TriangleNormal_Y(R_asis, L_asis, sacrum)$	18.82	18.82
2	$Dist(R_malleolus, R_heel)$	12.91	31.74
3	$Dist(L_malleolus, L_heel)$	12.84	44.59
4	$Dist(R_femoral_epicondyle, R_tibial_band)$	11.85	56.45
5	$Dist(L_femoral_wand, L_femoral_epicondyle)$	11.51	67.96
6	$Dist(L_tibial_wand, L_meta_h)$	10.87	78.84
γ	$CoordDiff_Y(R_femoral_wand, R_meta_h)$	10.43	89.28
8	$TriangleNormal_Y(sacrum, R_meta_h, L_meta_h)$	1.90	91.17
9	$Dist(R_femoral_wand,R_femoral_epicondyle)$	1.84	93.02

SOLVER ENSAMBLE (I)

- Worthy solvers mining
- Wished hit ratio as tuning parameter or the mining
- Samples taken from the ground truth with occlusion simulation
- Assessment of the solver ensemble in terms of:
 - ✓ False positive assignments (FA)
 - ✓ False occlusion assignments (FO)

Test conditions	
Number of markers	15
Target hit rate	99.99%
Target failure rate	0.01%
Occlusions per frame	4
Number of test frames	16384

Marker ID	FA $\#$	FA $\%$	FO $\#$	FO $\%$
r_ asis	2	0.02%	300	6.38%
l_asis	2	0.02%	254	5.55%
s2	0	0.00%	286	6.11%
r_l_thigh	0	0.00%	3564	45.03%
l_l_thigh	1	0.01%	220	4.85%
r_knee	0	0.00%	1912	30.03%
l_knee	1	0.01%	3532	44.58%
r_calf	1	0.01%	194	4.20%
l_calf	3	0.03%	218	4.71%
r_ankle	3	0.03%	2302	34.02%
l_ankle	1	0.01%	4348	49.30%
r_heel	4	0.05%	3195	42.14%
l_heel	1	0.01%	3579	45.06%
r_toe	4	0.04%	2332	34.67%
l_toe	4	0.05%	3627	45.13%
Average	1.8	0.02%	1991	31.16%



SOLVER ENSAMBLE (II)

- False assignment False occlusions trade off
- Hit ratio as tuning parameter

]	False	e assignmer	nts rate		
Target marker hit rate	<u>)</u>	99.000%	99.900%	99.990%	99.999%
	1	8.13%	1.12%	0.09%	0.04%
Number of true occlusions per frame	2	8.89%	0.94%	0.09%	0.05%
	3	7.04%	0.58%	0.07%	0.02%
	4	4.28%	0.34%	0.02%	0.01%
	5	2.35%	0.16%	0.01%	0.00%

	Fals	se occlusior	ns rate		
Target marker hit rate)	99.000%	99.900%	99.990%	99.999%
Number of true occlusions per frame	1	0.25%	0.52%	12.10%	16.40%
	2	5.74%	14.30%	19.96%	21.76%
	3	9.56%	19.76%	25.18%	26.20%
	4	13.16%	24.35%	30.90%	32.17%
	5	18.25%	33.39%	39.65%	40.67%

33

DISCUSSION

- Algorithm behaviour
 - Lack of individual discriminating characteristics for identifying the markers separately (XYZ as only information)
 - Sort of community: the ID for each members is supported by the guess on the ID given to its partners by means of weak classifier
 - The solver mining is a sort community finder
- Algorithm benefits
 - ✓ Works on each frame independently
 - ✓ Parallelizable
 - ✓ Scalable

4 CONCLUSIONS

... AND WHAT'S NEXT

4 CONCLUSIONS

Achievements Limitations Future work

ACHIEVEMENTS

- Fulfilment of requirements
 - ✓ Reliable against severe and lasting occlusions
 - Released from previous mistakes robust recovery (tracking vs labelling)
 - ✓ Efficient
 - ✓ Trainable to specific cases
- Contribution
 - ✓ Original approach, breaking away from traditional *tracking* skeleton-driven algorithms
 - ✓ Approach according to the fuzzy nature of the problem: learning vs. hand-coded rules
 - ✓ Windfalls:
 - substantiation of the awareness of mutual maker ID backup
 - disclosure of hit ratio-false occlusions trade off
 - suitability (*capturability*) of a maker distribution
 - per-marker customizable hit ratio

LIMITATIONS

Associated to the learning process itself

- × Supervised not that easy to gather a big enough ground truth
- × Sensitive to ground truth corruption errors hard to catch
- × Sticks to the given samples wont work with atypical ones
- × Does not take advantage of timed information ...
- ✓ ... but it could be easily accommodated

$$g_k = g_k (M_i, M_j, \dots, \dot{M}_i, \dot{M}_j, \dots, \ddot{M}_i, \ddot{M}_j, \dots)$$

$$\dot{M}_{i} = \left\{ \frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial y}{\partial t} \right\}$$

FUTURE WORK

New research topics:

- Unsupervised learning
- Further testing with different kind of movements
- Treatment of cases out of the learning set
- Testing of the parallelizable version of the algorithm
- Incorporation of temporal information
- Incorporation of dynamic descriptors

QUESTIONS ... & ANSWERS

QUESTIONS ? ?? ??? ???

