A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition

Olivier Pauplin and Jianmin Jiang

Digital Media & Systems Research Institute
University of Bradford, United Kingdom

Email: o.pauplin@bradford.ac.uk

Outline

- Background on probabilities
- Introduction to Static and Dynamic Bayesian Networks
- Machine Learning with DBNs
 - Parameter learning
 - Structure learning
- Models for handwritten digit recognition
- Results

Background

- *A*, *B*: random variables
- Prior probability of A: P(A)
- Joint probability of A and B: P(A,B)
- Posterior probability (or conditional probability): P(A/B) (conditional probability that event A occurs given that event B has occurred)
- Bayes' rule: P(A,B) = P(A | B).P(B) = P(B | A).P(A)

$$P(A \mid B) = \frac{P(B \mid A).P(A)}{P(B)}$$

Extension to n random variables:

$$P(X_1,...,X_n) = P(X_n \mid X_{n-1},...,X_1).P(X_{n-1},...,X_1)$$
$$= P(X_1).\prod_{i=2}^n P(X_i \mid X_{i-1},...,X_1)$$

BNs and DBNs

Bayesian networks (BNs) allow:

- Efficient representation of uncertain knowledge
 BNs represent the dependencies among variables and give a concise specification of any full joint probability distribution.
- Learning from experience

A simple BN:

Nodes of the graph = random variables -

Arrows between nodes link "parents" of X_i to X_i (In this example, A and B are the parents of C)

- An arrow between A and C means: "A has a direct influence on C"
- The effect on a node of its parents is quantified by:
- The graph has no directed cycles (DAG: Directed Acyclic Graph)

• Full joint probability of a BN: $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$

- The full specification of a BN requires:
 - → A topology (nodes, arrows);
 - \rightarrow For each node, a conditional probability table (discrete node) or a conditional probability distribution (continuous node) $P(Xi \mid parents(Xi))$ that quantifies the effects of the parents on the node.

The parameters (CPDs and CPTs) can be obtained from data analysis.

Dynamic Bayesian Network (DBN):

A temporal extension of Bayesian Networks

- Stationarity: DBNs are time-invariant (parameters are the same for all t)
- Markov property: The current state depends on only a finite history of previous states (usually only the previous state)
 - → 2 time slices are enough to describe the whole DBN

Learning with DBNs

Parameter learning

Principle of Maximum Likelihood (ML)

$$\Theta = \{\theta 1, ..., \theta m\}$$
 set of parameters
$$D = \{d1, ..., dn\}$$
 data (observations)
$$= \max[P(D \mid \Theta)]$$

In case of incomplete data: Expectation-Maximization

algorithm:

Initialize the parameters of the model

Structure learning

- In the general case, with hidden nodes: very computationally intensive
- To overcome that problem: links between consecutive time slices are learnt with the following restrictions:
 - 1- All nodes must be observed (no hidden node)
 - 2- All nodes must be discrete (data is binarised beforehand)

Links maximise the Bayesian Information Criterion (BIC score):

BIC = log[P(D/G,
$$\hat{\Theta}$$
)] - $\frac{\log[Ns]}{2} \times Np$

-D: data

- $\hat{\Theta}$: set of parameters maximising the likelihood of D

- Ns: number of data sample in D

- Np: dimension of graph G (number of free parameters)

Models for handwritten digit recognition

Kinds of models tested:

Observations are columns of pixels

Observations are lines and columns of pixels

Results

	Inter-slice links learnt from the data			
	Observations = columns of pixels			Columns+lines
	No hidden nodes	1 hidden node per time slice	1 hidden node per t + learnt intra- slice links	2 hidden nodes per t
Discrete evidence nodes	67.7	69.6	71.2	74.8
Gaussian evidence nodes	81.0	90.2	90.6	93.3

Thank you for your attention

Any questions?