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Graph coloring problem

• Application of swarm
intelligence to the k-
coloring of graphs.

• Minimize the number
of neighboring vertices
with the same color.

• NP complete for k≥3.

• Important problems in
graph theory.



Approaches to graph coloring

• Theoretical computer science: P=NP?

• Artificial intelligence: heuristic search.

• Computational Intelligence and Artificial Life:
– Searches for non deterministic algorithms that solve

the problem efficiently in polynomial times.

– Complex systems: Neural networks, swarm
intelligence, cellular automata…

– Biological inspiration increments expressiveness of
programming languages.

– Orientation to graph drawing techniques



Self-Organizing Particle Systems
(SOPS)

• Computational models of the navigation of swarms.

• As a behavior emerging from locally controlled movements.

• Based on decisions taken on local information.

• Approaches to swarm intelligence:

– Steering behaviors:  Reynolds .

– Stirmergy: Ant colony optimization solves the travel

salesman problem as an emergent behavior.

– Optimization of abstract functions:

• Self-organization: Particle swarm optimization (PSO).

• Self-organisation+Evolution=Stochastic diffusion search



Looking for biological inspiration
• General methods of optimization lose

biological inspiration when representing
some combinatorial problems.

• Steering behaviors are the simplest
approach to swarm intelligence.
– Perception:  position and velocity.

– Action: change position.



Hypothesis
• Steering behaviors could be useful to find graph drawing

algorithms that solve the problem of k-coloration:

– Toric 2D world.

– Agents are navigating nodes.

– Each color is a goal that attracts agents.

• The steering behaviors of pursue-evasion are enough to represent
coloration problem:

– Edges represent the relation of enmity.

– The enemies of the enemies are friends.

– An agent evades enemies and pursues friends.

• Attack as a mechanism to avoid suboptimal solutions and ensure
convergence if a solution does exist.

• For the sake of simplicity, center in k=3.

• The SOPS algorithm proposed will improve the correctness of the
results obtained by Brélaz algorithm.



Matlab application



The dynamics of pursue-evasion:

• Components:  separation, cohesion and alignment
• If each cluster were a color obtains a consistent coloration
• More clusters than the chromatic number of the graph

Enmity Enmity

Amity



Seek toward goals
• Without the attack mechanism the

system always converges either:

– To an optimal configuration.

– To a  sub-optimal one:

•  with few nodes wandering

around of the nearest goal.

• with few nodes in the middle.

– A sub-optimal configuration is

reached whenever the graph is

non 3-colorable



Attack: flee the goals

• Internal conflict:
– Enemies in the same goal

• External conflict:
– Enemies in all the goals



The rule of attack
• An internal counter of the degree of “desperation” or

“dissatisfaction” of the agent in a conflictive situation.
• Agents in a goal have an increasing degree of

satisfaction over time.
• In a conflict, the satisfaction level decreases  until the

counter reaches a value below a given threshold.
• In this case, the aggressive behavior is activated and the

node attacks.
• The attack consists in selecting randomly an enemy in

conflict which is less desperate than the aggressor.
• The node under attack is expulsed from the goal and the

aggressor takes its place.
• We have introduced a noise term in the velocity that

helps to generate mildly erratic trajectories for wandering
agents.



The FSM of individuals



Benchmarking Experiments: a
comparison to Brélaz heuristic

• The problem of 3-coloring of graphs has a
very simple formulation but it is very difficult
to solve.

• Conjecture of Steinberg (1979) open: every
planar graph without 4 and 5-cycles is 3-
colorable.

• We have made some experiments to verify
that SOPS algorithm is at least as precise as
Brélaz algorithm

• Meaning that the chromatic number given by
SOPS is less or equal than Brélaz chromatic
number.



Obtaining the sample

• Good results for benchmark
experiments.

• There is a class of graphs that are hard
for 3-coloration by Brélaz algorithm
Mizuno, K. and Nishihara, S. (2008).

• Constructive generation of very hard 3-
colorability instances.

• Algorithm implemented in Wolfram
Mathematica.



Hard graphs for 3-coloration
• Embedding:  combine

graphs to obtains new
ones.

• The grades of all nodes
are 3 or 4.

• For all of them the Brélaz
chromatic number is  4
while all of them are 3-
colorable

• We generated a sample of
100 graphs

• Each graph a mean of 110
nodes by 10 random
embeddings from basic
graphs.



Experimental constrains

• An experiment consists in:
– 25 runs of one graph.

– Registering the best configuration for each run:
the one that has minimum number of individuals in
conflict.

– Each run ends either when a 3-coloring solution is
reached (success).

– or when 5000 iterations are completed in cascade.

– The number of iterations is registered.

• Parameters are set in the default values.



Cascade coloration strategy
• To obtain a faster convergence.
• The execution of the program has two stages :

– First, the system attempts to find a 4-coloration
(maximum 1500 iterations)

– Second, eliminate the less populated goal. The
individuals newly freed wander to seek a new goal

• until a 3-coloring is reached or the limit number of
iterations (in this case 3500) are completed.

• This procedure of cascading coloration is based on
known works in reaction-diffusion particle systems (Turk,
1991)

• To find the chromatic number of a graph, is sufficient to
start the process of coloring successively the graph with
colors k, k-1,…



Number of correct colored vertices in cascade
iteration of one experiment

4 colors 3 colors



Results over 100x25=2500 runs

• Mean number of boids: 110
• Mean number of iterations: 3761 

• Average of succeeding runs: 51%



Success of SOPS 3-coloring



Counting errors

• Brélaz algorithm gives 4 colors for the 100 samples.
• Errors in Brélaz coloration:  percentage  of nodes of

color 4.
• Errors in SOPS coloration: Take the best

configuration through an iteration.
– Minimum percentage of conflicting nodes.

• Average results over 100 experiments:
– Brélaz algorithm colors well the 95,82% of the nodes with a

standard deviation of 1.45%,
– SOPS reaches a mean of the 99.17% and standard deviation

0.60%.

• Pearson coefficient of 0.30 has been found and in
consequence, correlation does not exists between the
results.



Brélaz versus SOPS for
the benchmark hard graphs



Conclusions

• Self-Organizing Particle System solving the graph
coloring problem.

• Cascading procedure of coloration makes the extension
to k-colorations be an immediate consequence.

• We chose the problem of 3-coloring graphs because of
the important open questions around the problem:
– Is NP-complete
– Steinberg's conjecture is giving an important research

• Other biologically inspired approaches to this problem:
– (Dowsland and Thompson, 2008), ant colony optimization

approach. identifies an individual in a population to a whole
coloration of the graph, losing the biological inspiration if
favor of cognitive abstraction.

• We do not know of any other attempt to solve the
problem using flocking birds.



Conclusions

• Our approach to the coloration of graphs is
mainly geometrical: graph drawing.

• The solution to the graph coloring emerges from
the whole population configuration, which means
a great economy of representation, and of
computational power needed to implement the
approach.

• The geometrical approach can be a source of
experimentation and inspiration to improve
sequential algorithms and heuristics for 3-
coloration, which is important from the point of
NP-completeness.



Questions?



Examples of the Matlab application

• fpsol2_i_1_colGRAPH.wmv: benchmark
problem, 496 nodes and 11654 vertices,
0 fails.

• PetersenGraph.wmv. 10 nodes, 0 edges,
0 fails.



Results over 100x25=2500 runs

• Mean number of boids: 110=n
o(n)≤Complexity of one step ≤ o(n2)

• Mean number of iterations: 3761 

o(n)≤ 3761 ≈ 34x110 ≤ o(n2)

• Average of succeeding runs: 51%

One of each two runs is successful
n3=n2xn<Order of complexity < 2xn2xn2=n4



Percentage of well colored
nodes

• It is well known that Brélaz algorithm needs two
colors for a bipartite graph, being particularly
efficient in this case.

• SOPS solves also correctly two complete bipartite
graphs of 100 elements: 50-50 nodes and 25-75.

• In the 25 runs of each graph, the run was successful
in both cases the 100% of the times.

• Regarding computing time measures, the mean
number of iterations

• for graph 25-75 was 1266 and the minimum length of
• a successful run was 715.
• For graph 50-50 the average final step was 1172

being the minimum 654.



Iterations for 2 colorable graphs



Discussion
• Our aim was the research of the behavior arising from endowing the individuals in a swarm with

another elementary cognitive ability: the perception of the affinity of another individual.
• The individual perceives another individual as belonging to We or to Them.
• We found that amity- enmity dynamics allows to model the solving process for coloring graphs.
• Complexity of swarms, understood as the complexity of the
• behavior of the emergent super-organism with respect to
• the computational capabilities of individuals. This work has
• been made in the last years in the field of theoretical computer
• science (Csuhaj-Varju et al., 1994; Kelemen and Kelemenov,
• 1992; Kelemenov´a and Csuhaj-Varj´u, 1994). We
• have attempted to discover the lowest computational capabilities
• of individuals that allows the swarm to perform a
• coloration of a graph. Revisiting the work of Rodriguez and Reggia (2004) may lead a strong

theoretical basis for furthers
• developments in the convergence with grammar systems.
• The experimental results on hard coloring graphs with
• known chromatic number 3, show that the proposed approach
• can be very effective and competitive with state of
• the art algorithms. The Br´elaz algorithm algorithm is the
• common benchmark algorithm. Our approach improves on
• it over a sample of hard graphs.



Discussion
• We have designed and implemented a Self-Organizing Particle
• System that may interpreted as solving the graph colouring
• problem. We addressed the problem of 3-coloration of
• graphs, but the cascading procedure of coloration presented
• before makes the extension to k-colorations be an immediate
• consequence. We chose the problem of 3-coloring graphs
• because of the important open questions around the problem:
• it is NP-complete and Steinbergs conjecture is giving
• arise an important research nowadays (Borodin et al., 2005).
• A recent biologically inspired approaches to this problem
• has used the ant colony optimisation approach (Dowsland
• and Thompson, 2008), but we do not know of any other attempt
• to solve the problem using flocking birds. Their approach
• that identifies an individual in a population to a whole
• coloration of the graph, that is a tuple (u1; :::; un) where ui
• is the colour of node i, losing in this way the biological inspiration
• if favour of cognitive abstraction. On the other hand,
• our approach to the coloration of graphs is mainly geometrical,
• attending to the representation of the nodes of a graph
• as a flocking bird situated geographically. The solution to
• the graph coloring emerges from the whole population configuration,
• which means a great economy of representation,
• and of computational power needed to implement the approach.
• The geometrical approach can be a source of experimentation
• and inspiration to improve sequential algorithms
• and heuristics for 3-coloration, which is important from the
• point of NP-completeness.
• Second, we do not proceed in the direction of creating a
• model of colouring graphs from an existing model. Our aim
• was the research of the behaviour arising from endowing the
• individuals in a swarm with another elementary cognitive
• ability: the perception of the affinity of another individual.
• The individual perceives another individual as belonging to
• We or to Them. The first class is attractive while the second
• is repulsive. The first class is associated with amity, security
• and comfort while the second is interpreted as danger,
• enemies and things to avoid . We found that amity- enemity
• dynamics allows to model the solving process for coloring
• graphs, and not the other way around.
• The third contribution of this paper has to do with the
• complexity of swarms, understood as the complexity of the
• behaviour of the emergent super-organism with respect to
• the computational capabilities of individuals. This work has
• been made in the last years in the field of theoretical computer
• science (Csuhaj-Varju et al., 1994; Kelemen and Kelemenov,
• 1992; Kelemenov´a and Csuhaj-Varj´u, 1994). We
• have attempted to discover the lowest computational capabilities
• of individuals that allows the swarm to perform a
• coloration of a graph. Revisiting the work of Rodriguez and
• Reggia (2004) may lead a strong theoretical basis for furthers
• developments in the convergence with grammar systems.
• The experimental results on hard coloring graphs with
• known chromatic number 3, show that the proposed approach
• can be very effective and competitive with state of
• the art algorithms. The Br´elaz algorithm algorithm is the
• common benchmark algorithm. Our approach improves on
• it over a sample of hard graphs.



Brélaz Algorithm

• Greedy algorithm for graph coloring.
• Colors={1, 2, …, k}
• D(v)=degree of node v= number of neighbors.

• S(v)=saturation=number of different colors for neighbors.
– Start in a vertex of maximum degree with color 1.
– Color first the nodes v with maximum S(v)
– Color node with maximum D(v) if saturation is the same.
– Use the minimum available color.

• Brélaz is a function provided by Wolfram
Mathematica.



Basic rules of
Reynold’s model of boids



Seek and flee toward goals


