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Graph coloring problem

Application of swarm
intelligence to the k-
coloring of graphs.

Minimize the number
of neighboring vertices
with the same color:

NP complete for k=3.

Important problems In
graph theory.




Approaches to graph coloring

* Theoretical computer science: P=NP?
* Artificial intelligence: heuristic search.

» Computational Intelligence and Artificial Life:

— Searches for non deterministic algorithms that solve
the problem efficiently in polynomial times.

— Complex systems: Neural networks, swarm
intelligence, cellular automata...

— Biological inspiration increments expressiveness of
programming languages.
— Orientation to graph drawing techniques




Self-Organizing Particle Systems
(SOPS)

Computational models of the navigation of swarms.
As a behavior emerging from locally controlled movements.
Based on decisions taken on local information.

Approaches to swarm intelligence:

— Steering behaviors: Reynolds .

— Stirmergy: Ant colony optimization solves the travel
salesman problem as an emergent behavior.

— Optimization of abstract functions:

» Self-organization: Particle swarm optimization (PSO).

» Self-organisation+Evolution=Stochastic diffusion search




Looking for biological inspiration

 General methods of optimization lose
biological inspiration when representing
some combinatorial problems.

« Steering behaviors are the simplest

approach to swarm intelligence.
— Perception: position and velocity.
— Action: change position.




Hypothesis

Steering behaviors could be useful to find graph drawing
algorithms that solve the problem of k-coloration:

— Toric 2D world.

— Agents are navigating nodes.
— Each color is a goal that attracts agents.
The steering behaviors of pursue-evasion are enough to represent

coloration problem:

— Edges represent the relation of enmity.

— The enemies of the enemies are friends.

— An agent evades enemies and pursues friends.

Attack as a mechanism to avoid suboptimal solutions and ensure
convergence if a solution does exist.

For the sake of simplicity, center in k=3.

The SOPS algorithm proposed will improve the correctness of the
results obtained by Brélaz algorithm.




Matlab application
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The dynamics of pursue-evasion:

Amity
Enmi sﬂm'ty g

« Components: separation, cohesion and alignment
* |If each cluster were a color obtains a consistent coloration
*~ More clusters than the chromatic number of the graph




Seek toward goals

« Without the attack mechanism the
system always converges either:
— To an optimal configuration.

— To a sub-optimal one:

« with few nodes wandering

around of the nearest goal.
. with few nodes in the middle.
— A sub-optimal configuration is

reached whenever the graph is
non 3-colorable




Attack: flee the goals

 Internal conflict: « External conflict:
— Enemies in the same goal — Enemies in all the goals




The rule of attack

An internal counter of the degree of “desperation” or
“dissatisfaction” of the agent in a conflictive situation.

Agents in a goal have an increasing degree of
satisfaction over time.

In a conflict, the satisfaction level decreases until the
counter reaches a value below a given threshold.

In this case, the aggressive behavior is activated and the
node attacks.

The attack consists in selecting randomly an enemy in
conflict which is less desperate than the aggressor.

The node under attack is expulsed from the goal and the
aggressor takes its place.

We have introduced a noise term in the velocity that
helps to generate mildly erratic trajectories for wandering
agents.




The FSM of individuals
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Benchmarking Experiments: a
comparison to Brelaz heuristic

The problem of 3-coloring of graphs has a
very simple formulation but it is very difficult
to solve.

Conjecture of Steinberg (1979) open: every
planar graph without 4 and 5-cycles is 3-

colorable.

We have made some experiments to verify
that SOPS algorithm is at least as precise as
Bréelaz algorithm

Meaning that the chromatic number given by
SOPS is less or equal than Brelaz chromatic
number.




Obtaining the sample

Good results for benchmark
experiments.

There is a class of graphs that are hard
for 3-coloration by Brelaz algorithm
Mizuno, K. and Nishihara, S. (2008).

Constructive generation of very hard 3-
colorability instances.

Algorithm implemented in Wolfram
Mathematica.




Hard graphs for 3-coloration

« Embedding: combine
graphs to obtains new
ones.

The grades of all nodes
are 3 or 4.

For all of them the Brélaz

chromatic number is 4
while all of them are 3-
colorable

We generated a sample of
100 graphs

Each graph a mean of 110
nodes by 10 random
embeddings from basic
graphs.




Experimental constrains

 An experiment consists in:
— 25 runs of one graph.

— Registering the best configuration for each run:
the one that has minimum number of individuals in
conflict.

— Each run ends either when a 3-coloring solution is
reached (success).

— or when 5000 iterations are completed in cascade.
— The number of iterations is registered.

o Parameters are set in the default values.




Cascade coloration strategy

To obtain a faster convergence.
The execution of the program has two stages :

— First, the system attempts to find a 4-coloration
(maximum 1500 iterations)

— Second, eliminate the less populated goal. The
individuals newly freed wander to seek a new goal

until a 3-coloring is reached or the limit number of
iterations (in this case 3500) are completed.

Thisprocedure of cascading coloration is based on
known works in reaction-diffusion particle systems (Turk,
1991)

To find the chromatic number of a graph, is sufficient to
start the process of coloring successively the graph with
colors k, k-1,...
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iteration of one experiment
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Results over 100x25=2500 runs

* Mean number of boids: 110
* Mean number of iterations: 3761

* Average of succeeding runs: 51%




Success of SOPS 3-coloring

Percentage of success for each experiment
inincreasing order
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Counting errors

Brélaz algorithm gives 4 colors for the 100 samples.

Errors in Brélaz coloration: percentage of nodes of
color 4.

Errors in SOPS coloration: Take the best
configuration through an iteration.

— Minimum percentage of conflicting nodes.

Average results over 100 experiments:
— Brélaz algorithm colors well the 95,82% of the nodes with a
standard deviation of 1.45%,
— g(ﬁ)gg reaches a mean of the 99.17% and standard deviation
. 0.
Pearson coefficient of 0.30 has been found and in
consequence, correlation does not exists between the

results.




Brelaz versus SOPS for
the benchmark hard graphs
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Conclusions

Self-Organizing Particle System solving the graph
coloring problem.

Cascading procedure of coloration makes the extension
to k-colorations be an immediate consequence.

We chose the problem of 3-coloring graphs because of
the important open questions around the problem:

— Is NP-complete

— Steinberg's conjecture is giving an important research

Other biologically inspired approaches to this problem:

— (Dowsland and Thompson, 2008), ant colony optimization
approach. identifies an individual in a population to a whole
coloration of the graph, losing the biological inspiration if
favor of cognitive abstraction.

We do not know of any other attempt to solve the
problem using flocking birds.




Conclusions

Our approach to the coloration of graphs is
mainly geometrical: graph drawing.

The solution to the graph coloring emerges from
the whole population configuration, which means
a great economy of representation, and of
computational power needed to implement the
approach.

The geometrical approach can be a source of
experimentation and inspiration to improve
sequential algorithms and heuristics for 3-
coloration, which is important from the point of
NP-completeness.



Questions?




Examples of the Matlab application

» fpsol2 i 1 colGRAPH.wmyv: benchmark

problem, 496 nodes and 11654 vertices,
0 fails.

* PetersenGraph.wmv. 10 nodes, 0 edges,
0 fails.




Results over 100x25=2500 runs

* Mean number of boids: 110=n
o(n)sComplexity of one step = o(n?)
* Mean number of iterations: 3761

o(n)= 3761 = 34x110 < o(n?)
* Average of succeeding runs: 51%

One of each two runs is successful
n3=n2xn<Order of complexity < 2xn2xn2=n4




Percentage of well colored
nodes

It is well known that Brélaz algorithm needs two
colors for a bipartite graph, being particularly
efficient in this case.

SOPS solves also correctly two complete bipartite
graphs of 100 elements: 50-50 nodes and 25-75.

In the 25 runs of each graph, the run was successful

in both cases the 100% of the times.

Regarding computing time measures, the mean
number of iterations

for graph 25-75 was 1266 and the minimum length of
a successful run was 715.

For graph 50-50 the average final step was 1172
being the minimum 654.




Iterations for 2 colorable graphs

Bipartite Graphs




Discussion

Our aim was the research of the behavior arising from endowing the individuals in a swarm with
another elementary cognitive ability: the perception of the affinity of another individual.

The individual perceives another individual as belonging to We or to Them.

We found that amity- enmity dynamics allows to model the solving process for coloring graphs.
Complexity of swarms, understood as the complexity of the

behavior of the emergent super-organism with respect to

the computational capabilities of individuals. This work has

been made in the last years in the field of theoretical computer

science (Csuhaj-Varju et al., 1994; Kelemen and Kelemenov,

1992; Kelemenov’'a and Csuhaj-Varj'u, 1994). We

have attempted to discover the lowest computational capabilities

of individuals that allows the swarm to perform a

coloration of a graph. Revisiting the work of Rodriguez and Reggia (2004) may lead a strong
theoretical basis for furthers

developments in the convergence with grammar systems.
The experimental results on hard coloring graphs with

known chromatic number 3, show that the proposed approach
can be very effective and competitive with state of

the art algorithms. The Br’elaz algorithm algorithm is the
common benchmark algorithm. Our approach improves on

it over a sample of hard graphs.




Discussion

We have designed and implemented a Self-Organizing Particle
System that may interpreted as solving the graph colouring
problem. We addressed the problem of 3-coloration of

graphs, but the cascading procedure of coloration presented
before makes the extension to k-colorations be an immediate
consequence. We chose the problem of 3-coloring graphs
because of the important open questions around the problem:
it is NP-complete and Steinbergs conjecture is giving

arise an important research nowadays (Borodin et al., 2005).
A recent biologically inspired approaches to this problem

has used the ant colony optimisation approach (Dowsland

and Thompson, 2008), but we do not know of any other attempt
to solve the problem using flocking birds. Their approach

that identifies an individual in a population to a whole
coloration of the graph, that is a tuple (u1; :::; un) where ui

is the colour of node i, losing in this way the biological inspiration
if favour of cognitive abstraction. On the other hand,

our approach to the coloration of graphs is mainly geometrical,
attending to the representation of the nodes of a graph

as a flocking bird situated geographically. The solution to

the graph coloring emerges from the whole population configuration,
which means a great economy of representation,

and of computational power needed to implement the approach.
The geometrical approach can be a source of experimentation
and inspiration to improve sequential algorithms

and heuristics for 3-coloration, which is important from the
point of NP-completeness.

Second, we do not proceed in the direction of creating a

model of colouring graphs from an existing model. Our aim
was the research of the behaviour arising from endowing the
individuals in a swarm with another elementary cognitive
ability: the perception of the affinity of another individual.

The individual perceives another individual as belonging to

We or to Them. The first class is attractive while the second

is repulsive. The first class is associated with amity, security
and comfort while the second is interpreted as danger,
enemies and things to avoid . We found that amity- enemity
dynamics allows to model the solving process for coloring
graphs, and not the other way around.

The third contribution of this paper has to do with the
complexity of swarms, understood as the complexity of the



Brelaz Algorithm

Greedy algorithm for graph coloring.
Colors={1, 2, ..., k}

D(V)=degree of node v= number of neighbors.

S(V)=saturation=number of different colors for neighbors.

— Start in a vertex of maximum degree with color 1.

— Color first the nodes v with maximum S(v)

— Color node with maximum D(v) if saturation is the same.
— Use the minimum available color.

Brelaz is a function provided by Wolfram
Mathematica.




Basic rules of
Reynold’s model of boids

o Separation: steer to avoid crowding local lockmates.

ve=— Y (B —pi)

&y =y

e Cohesion: steer to move toward the average position ci of
local Hockmates

1
ve = — pi Where ¢; = i > P
T
byEd,

o Alignment: steer in the direction of the average heading
of local flockmates.

1
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Seek and flee toward goals

Seek and flee: seek attempts to steer a vehicle so that it
moves toward a static goal. Here ||p|| denotes the norm
of a position or vector p and frgoelociy 15 2 non-negative
parameter that limits the norm (the length in the Euclidean
distance ) of vector Vaeeg.

Vaeeh = Vgoal — Vj where

Pi — Do
lpi — pol|

Vgoal = bt fmar.wl-:n:'ir_'r

Flee velocity is definided simply as the opposite of seek,

Urlee = —Vacek




