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Abstract. In this paper we explore the use of the Voxel-based Mor-
phometry (VBM) detection clusters to guide the feature extraction pro-
cesses for the detection of Alzheimer's disease on brain Magnetic Res-
onance Imaging (MRI). The voxel location detection clusters given by
the VBM were applied to select the voxel values upon which the clas-
si�cation features were computed. We have evaluated feature vectors
computed over the data from the original MRI volumes and from the
GM segmentation volumes, using the VBM clusters as voxel selection
masks. We use the Support Vector Machine (SVM) algorithm to per-
form classi�cation of patients with mild Alzheimer's disease vs. control
subjects. We have also considered combinations of isolated cluster based
classi�ers and an Adaboost strategy applied to the SVM built on the
feature vectors. The study has been performed on MRI volumes of 98
females, after careful demographic selection from the Open Access Se-
ries of Imaging Studies (OASIS) database, which is a large number of
subjects compared to current reported studies. Results are moderately
encouraging, as we can obtain up to 85% accuracy with the Adaboost
strategy in a 10-fold cross-validation.

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socioeco-
nomic importance of the disease in occidental countries it is one of the most
studied. The diagnosis of AD can be done after the exclusion of other forms of
dementia but a de�nitive diagnosis can only be made after a post-mortem study
of the brain tissue. This is one of the reasons why Magnetic Resonance Imaging
(MRI) based early diagnosis is a current research hot topic in the neurosciences.

Morphometry analysis has become a common tool for computational brain
anatomy studies. It allows a comprehensive measurement of structural di�erences
within a group or across groups, not just in speci�c structures, but throughout
the entire brain. Voxel-based morphometry (VBM) is a computational approach
to neuroanatomy that measures di�erences in local concentrations of brain tissue,

? Research partially supported by Saiotek research projects BRAINER and S-
PR07UN02, and the MEC research project DPI2006-15346-C03-03.



through a voxel-wise comparison of multiple brain images [1]. For instance, VBM
has been applied to study volumetric atrophy of the grey matter (GM) in areas
of neocortex of AD patients vs. control subjects [3,16,9]. The procedure involves
the spatial normalization of subject images into a standard space, segmentation
of tissue classes using a priori probability maps, smoothing to correct noise and
small variations, and voxel-wise statistical tests. Statistical analysis is based on
the General Linear Model (GLM) to describe the data in terms of experimental
and confounding e�ects, and residual variability. Classical statistical inference is
used to test hypotheses that are expressed in terms of GLM estimated regression
parameters. This computation of given contrast provides a Statistical Parametric
Map (SPM), which is thresholded according to the Random Field theory.

Machine learning methods have become very popular to classify functional
or structural brain images to discriminate them into normal or a speci�c neu-
rodegenerative disorder. The Support Vector Machine (SVM) either with linear
[10,15] or non-linear [6,11] kernels are the state of the art to build up classi�cation
and regression systems. Besides MRI, other medical imaging methods are being
studied for AD diagnosis. There are di�erent ways to extract features from MRI
for SVM classi�cation: based on morphometric methods [5,6], based on regions
of interest (ROI) [13,11] or GM voxels in automated segmentation images [10].
Work has also been reported on the selection of a small set of the most informa-
tive features for classi�cation, such as the SVM-Recursive Feature Elimination
[6], the selection based on statistical tests [13,15], the wavelet decomposition of
the RAVENS maps [11], among others.

Many of the classi�cation studies on the detection of AD were done with both
men and women. However, it has been demonstrated that brains of women are
di�erent from men's to the extent that it is possible to discriminate the gender
via MRI analysis [11]. Moreover, it has been shown that VBM is sensitive to the
gender di�erences. For these reasons, we have been very cautious in this study.
We have selected a set of 98 MRI women's brain volumes. It must be noted
that this is a large number of subjects compared with the other studies referred
above.

Our approach is to use the VBM detected clusters as a mask on the MRI
and Grey Matter (GM) segmentation images to select the potentially most dis-
criminating voxels. Feature vectors for classi�cation are either the voxel values
or some summary statistics of each cluster. We both consider the feature vector
computed from all the VBM clusters and the combination of the individual clas-
si�ers built from the clusters independently. We build our classi�cation systems
using the standard SVM, testing linear and non-linear (RBF) kernels. Best re-
sults are obtained with an Adaptive Boosting (AdaBoost) strategy tailored to
the SVM [12]. Section 1 gives a description of the subjects selected for the study,
the image processing, feature extraction details and the classi�er system. Section
1 gives our classi�cation performance results and section 1 gives the conclusions
of this work and further research suggestions.



Materials and Methods

Subjects

Ninety eight right-handed women (aged 65-96 yr) were selected from the Open
Access Series of Imaging Studies (OASIS) database (http://www.oasis-brains.org)
[14]. OASIS data set has a cross-sectional collection of 416 subjects covering the
adult life span aged 18 to 96 including individuals with early-stage Alzheimer's
Disease. We have ruled out a set of 200 subjects whose demographic, clinical
or derived anatomic volumes information was incomplete. For the present study
there are 49 subjects who have been diagnosed with very mild to mild AD and
49 nondemented. A summary of subject demographics and dementia status is
shown in table 1.

Very mild to mild AD Normal
No. of subjects 49 49

Age 78.08 (66-96) 77.77 (65-94)
Education 2.63 (1-5) 2.87 (1-5)

Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5 / 1 / 2) 31 / 17 / 1 0

MMSE 24 (15-30) 28.96 (26-30)
Table 1. Summary of subject demographics and dementia status. Education
codes correspond to the following levels of education: 1 less than high school
grad., 2: high school grad., 3: some college, 4: college grad., 5: beyond college.
Categories of socioeconomic status: from 1 (biggest status) to 5 (lowest status).
MMSE score ranges from 0 (worst) to 30 (best).

Imaging protocol

Multiple (three or four) high-resolution structural T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) images were acquired [7] on a 1.5-T
Vision scanner (Siemens, Erlangen, Germany) in a single imaging session. Image
parameters: TR= 9.7 msec., TE= 4.0 msec., Flip angle= 10, TI= 20 msec.,
TD= 200 msec., 128 sagittal 1.25 mm slices without gaps and pixels resolution
of 256×256 (1×1mm).

Image processing and VBM

We have used the average MRI volume for each subject, provided in the OA-
SIS data set. These images are already registered and resampled into a 1-mm
isotropic image in atlas space and the bias �eld has been already corrected [14].
The Statistical Parametric Mapping (SPM5) (http://www.�l.ion.ucl.ac.uk/spm/)



was used to compute the VBM which gives us the spatial mask to obtain the
classi�cation features. Images were reoriented into a right-handed coordinate sys-
tem to work with SPM5. The tissue segmentation step does not need to perform
bias correction. We performed the modulation normalization for grey matter,
because we are interested in this tissue for this study. We performed a spatial
smoothing before performing the voxel-wise statistics, setting the Full-Width at
Half-Maximum (FWHM) of the Gaussian kernel to 10mm isotropic. A GM mask
was created from the average of the GM segmentation volumes of the subjects
under study. Thresholding the average GM segmentation, we obtain a binary
mask that includes all voxels with probability greater than 0.1 in the average
GM segmentation volume. This interpretation is not completely true, since the
data are modulated, but it is close enough for the mask to be reasonable. We
design the statistical analysis as a Two-sample t-test in which the �rst group cor-
responds with AD subjects. The general linear model contrast has been set as
[-1 1], a right-tailed (groupN > groupAD), correction FWE, p-value=0.05. The
VBM detected clusters are used for the MRI feature extraction for the SVM
classi�cation.

Support Vector Machine classi�cation

The Support Vector Machine (SVM)[18] algorithm used for this study is in-
cluded in the libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) soft-
ware package. The implementation is described in detail in [4]. Given training
vectors xi ∈ Rn, i = 1, . . . , l of the subject features of the two classes, and a vec-
tor y ∈ Rl such that yi ∈ {−1, 1} labels each subject with its class, in our case,
for example, patients were labeled as -1 and control subject as 1. To construct
a classi�er, the SVM algorithm solves the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi(wTφ(xi) + b) ≥ (1 − ξi), ξi ≥ 0, i = 1, 2, . . . , n. The dual
optimization problem is

min
α

1
2
αTQα− eTα

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. Where e is the vector of all
ones, C > 0 is the upper bound on the error, Q is an l by l positive semi-de�nite
matrix, Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)Tφ(xj) is the kernel function
that describes the behavior of the support vectors. Here, the training vectors
xi are mapped into a higher (maybe in�nite) dimensional space by the function

φ(xi). The decision function is sgn(
∑l
i=1 yiαiK(xi, x)+ b). C is a regularization

parameter used to balance the model complexity and the training error.
The kernel function chosen results in di�erent kinds of SVM with di�erent

performance levels, and the choice of the appropriate kernel for a speci�c ap-
plication is a di�cult task. In this study two di�erent kernels were tested: the



linear and the radial basis function (RBF) kernel. The linear kernel function is
de�ned as K(xi, xj) = 1+xTi xj , this kernel shows good performance for linearly

separable data. The RBF kernel is de�ned as K(xi, xj) = exp(− ||xi−xj ||2
2σ2 ). This

kernel is basically suited best to deal with data that have a class-conditional
probability distribution function approaching the Gaussian distribution [2]. One
of the advantages of the RBF kernel is that given the kernel, the number of
support vectors and the support vectors are all automatically obtained as part
of the training procedure, i.e., they do not need to be speci�ed by the training
mechanism.

Feature extraction

We have tested three di�erent feature vector extraction processes, based on the
voxel location clusters detection obtained from the VBM analysis.

1. The �rst feature extraction process computes the ratio of GM voxels to the
total number of voxels of each voxel location cluster.

2. The second feature extraction process computes the mean and standard de-
viation of the GM voxel intensity values of each voxel location cluster.

3. The third feature feature extraction process computes a very high dimen-
sional vector with all the GM segmentation values for the voxel locations
included in each VBM detected cluster. The GM segmentation voxel values
were ordered in this feature vector according to the coordinate lexicographic
order.

First, we have considered all the VBM detected clusters together, so that each
feature vector characterizes the whole MRI volume.

Combination of SVM

We have considered also the construction of independent SVM classi�ers for
each VBM detected cluster and the combination of their responses by a simple
majority voting, and to use the cluster with greatest statistical signi�cance to
resolve ties. This can be viewed as a simpli�ed combination of classi�ers. Fur-
thermore, we have de�ned a combination of classi�ers weighted by the individual
training errors, where the classi�er weights are computed as in the AdaBoost-
SVM algorithm in [12] (Algorithm 1), assuming an uniform weighting of the data
samples.

Adaptive Boosting

Adaptive Boosting (AdaBoost)[17,8] is a meta-algorithm for machine learning
that can be used in conjunction with many other learning algorithms to improve
their performance. AdaBoost is adaptive in the sense that subsequent classi�ers
built are tweaked in favor of those instances misclassi�ed by previous classi�ers.



Algorithm 1 Combining the independent SVM trained per cluster

1. Input: as many sets of training samples with labels as clusters in the sta-

tistical parametric map T k = {(x1, y1), . . . , (xN , yN )}, k = 1..C, where N is

the number of samples of each cluster.

2. Initialize: the weights of training samples: wki = 1/N , for all i = 1, ..., N
3. For each k cluster do

(a) Search the best γ for the RBF kernel for the training set Tk, we denote

it as γk.

(b) Train the SVM with Tk and γk, we denote the classi�er as hk.

(c) Classify the same training Tk set with hk.

(d) Calculate the training error of hk: εk =
∑N
i=1 w

k
i , yi 6= hk(xi).

(e) Compute the weight of the cluster classi�er hk: αk = 1
2 ln( εk

1−εk ).

4. Output: for each test data x its classi�cation is f(x) =
sign(

∑C
k=1 αkhk(x)).

AdaBoost is sensitive to noisy data and outliers. Otherwise, it is less susceptible
to the over-�tting problem than most learning algorithms.

AdaBoost calls a weak classi�er repeatedly in a series of rounds t = 1, ..., T .
For each call a distribution of weights Wt is updated and indicates the impor-
tance of examples in the data set for the classi�cation. On each round, the weights
of each incorrectly classi�ed example are increased (or alternatively, the weights
of each correctly classi�ed example are decreased), so that the new classi�er
focuses more on those examples.

Following these ideas, we have also tested a combination of SVM classi�ers
along the ideas from the Diverse AdaBoost SVM [12], presented as Algorithm
1. In this approach we built a sequence of SVM classi�ers of increasing variance
parameter. The results of the classi�ers are weighted according to their statistical
error to obtain the response to the test inputs in the 10-fold validation process.

Classi�er Performance indices

We evaluated the performance of the classi�ers built with the diverse strategy us-
ing 10 times the 10-fold cross-validation methodology. To quantify the results we
measured the accuracy, the ratio of the number of test volumes correctly classi�ed
to the total of tested volumes. We also quanti�ed the speci�city and sensitivity
of each test de�ned as Specificity = TN

TN+FP and Sensitivity = TP
TP+FN , where



Algorithm 2 Diverse AdaBoostSVM

1. Input: a set of training samples with labels {(x1, y1), . . . , (xN , yN )}; the
initial σ, σini; the minimal σ, σmin; the step of σ, σstep; the threshold on
diversity DIV.

2. Initialize: the weights of training samples: wti = 1/N , for all i = 1, ..., N
3. Do while (σ > σini)

(a) Calculate gamma: γ =
`
2σ2

´−1
.

(b) Use σ to train a component classi�er ht on the weighted training set.

(c) Calculate the training error of ht: εt =
∑N
i=1 w

t
i , yi 6= ht(xi).

(d) Calculate the diversity of ht: Dt =
∑N
i=1 dt(xi), where dt(xi) ={

0 if ht(xi) = yi

1 if ht(xi) 6= yi
(e) Calculate the diversity of weighted component classi�ers and the current

classi�er: D =
∑T
t=1

∑N
i=1 dt(xi).

(f) If εt > 0.5 or D < DIV : decrease σ by σstep and go to (a).
(g) Set weight of the component classi�er ht: αt = 1

2 ln( εt
1−εt ).

(h) Update the weights of training samples: wt+1
i = wtiexp(−αyiht(xi).

(i) Normalize the weights of training samples: wt+1
i = wt+1

i (
∑N
i=1 w

t+1
i )−1.

4. Output: f(x) = sign(
∑C
k=1 αkhk(x)).

true positives (TP) is the number of AD patient volumes correctly classi�ed;
true negatives (TN) is the number of control volumes correctly classi�ed; false
positives (FP) is the number of control volumes classi�ed as AD patients and
false negatives (FN) is the number of AD patient volumes classi�ed as control
subjects. The regularization parameter C of all the SVM classi�ers trained for
this study was set to 1.

Results

In this section we present for each experiment the following data: the number
of features, accuracy, speci�city, which is related to AD patients and sensitivity,
which is related to control subjects. We will give results on the global feature
vectors, the simple voting of independent classi�ers based on statistical signif-
icance of VBM, the weighted combination of individual cluster SVM based on
training errors, and an adaptive boosting strategy for combining classi�ers.

Global feature vectors

The VBM performed for this study was described in section 1. We present in ta-
ble 2 the results of the three feature computation processes applied to the whole
set of VBM clusters to obtain a single feature vector for the whole volume. Each



table entry contains the SVM results using the linear (lk) and RBF (nlk) kernels
upon the corresponding feature vector set. The table rows correspond to the fea-
ture extraction processes described in section 1. Table 2 best accuracy result is
80.6% with the RBF kernel, but this result is not too far from the results of the
linear kernel SVM. This best accuracy result is obtained with a rather straight-
forward feature extraction method: the mean and standard deviation of the MRI
voxel intensities. This means that MRI intensities may have discriminant value.

Feature extracted #Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Speci�city (lk/nlk)

GM proportion 12 69.39 / 68.36 0.63 / 0.61 0.88 / 0.90

Mean & StDev 24 78.57 / 80.61 0.72 / 0.75 0.88 / 0.89

Voxel intensities 3611 73.47 / 76.53 0.72 / 0.77 0.75 / 0.76

Table 2. Classi�cation results with a linear kernel (lk) and a non-linear RBF kernel (nlk). The

values of γ =
`
2σ2´−1

for non linear kernel were 0.5, 0.031, 0.0078 for each feature extraction

process, respectively.

Overall the sensitivity results in table 2 is much lower than the speci�city. We
believe that the source of error is the confusion of mild demented AD patients
with control subjects. Upon inspection, this hypothesis seems to be correct for
this data.

Combination of individual cluster SVM

Table 3 presents the results of the combination of SVM classi�ers built up over
each cluster independently, searching for the best kernel parameter σ in each
classi�er independently. The voxel clusters are selected according to the VBM
performed as described above. The results do not improve over the ones obtained
with the whole image feature vector. We note that, contrary to the global feature
vector, the results improve when considering the whole collection of MRI voxel
intensities.

Feature extracted #Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Speci�city (lk/nlk)

Mean & StDev 24 74% / 75% 0.51 / 0.56 0.97 / 0.95

Voxel intensities 3611 77% / 78% 0.74 / 0.76 0.80 / 0.82

Table 3. Majority voting classi�cation results with linear kernel (lk) and non-linear kernel (nlk)

SVM built independently for each VBM cluster.

Table 4 presents the results of the combination of individual weighted SVM
classi�ers. Each SVM classi�er was trained with one VBM cluster feature set
and the weights were computed according to its training error. We obtain a



Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Speci�city (lk/nlk)

Mean & StDev 24 71% / 79% 0.54 / 0.78 0.88 / 0.80

Voxel intensities 3611 73% / 86% 0.76 / 0.80 0.70 / 0.92

Table 4. Weighted individual SVM per cluster classi�cation results. The value of the RBF kernels

for the nonlinear (nlk) classi�ers were searched for the best �t to the training set.

signi�cant improvement of the accuracy when considering the voxel intensities
as features for the non-linear RBF SVM.

Table 5 shows the results of the Diverse . The σmin is set as 0.1, the σini is
set as 100 and σstep is set as 0.1. The DIV value is set as as 0.6.

Feature extracted Features Accuracy Sensitivity Speci�city

Mean & StDev 24 85% 0.78 0.92

Voxel intensities 3611 78% 0.71 0.85

Table 5. Diverse AdaBoostSVM classi�cation results.

Conclusions

In this work we have studied feature extraction processes based on VBM analysis,
to classify MRI volumes of AD patients and normal subjects. We have analyzed
di�erent designs for the SPM of the VBM and we have found that the basic GLM
design without covariates can detect subtle changes between AD patients and
controls that lead to the construction of SVM classi�ers with a discriminative
accuracy of 86% in the best case. The weighted cluster SVM and the Diverse
AdaBoostSVM methods improved remarkably the results, mainly the sensitiv-
ity of the classi�cation models. In [5] they compare their results on a smaller
population of controls and AD patients to the ones obtained with a standard
VBM analysis, using a cluster and found a classi�cation accuracy of 63.3% via
cross-validation. Therefore, the results shown in this paper, along with the care-
ful experimental methodology employed, can be of interest for the Neuroscience
community researching on the AD diagnosis based on MRI. Further work may
address the extraction of features based on other morphological measurement
techniques, such as the Deformation-based Morphometry.
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