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The classi�cation problem I

• In machine learning and pattern recognition, classi�cation
refers to an algorithmic procedure for assigning a given piece
of input data into one of a given number of categories.
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Names in Classi�cation I

• An algorithm that implements classi�cation, especially in a
concrete implementation, is known as a classi�er.

• The term "classi�er" sometimes also refers to the
mathematical function, implemented by a classi�cation
algorithm, that maps input data to a category.
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Names in Classi�cation II

• The piece of input data is formally termed an instance, and
the categories are termed classes.

• The instance is formally described by a vector of features,
which together constitute a description of all known
characteristics of the instance.
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Feature types

• Typically, features are either categorical (also known as
nominal), consisting of one of a set of:

• Unordered items
• Ordinal items
• Integer-valued items
• Real-valued items

• Furthermore, many algorithms work only in terms of
categorical data and require that real-valued or integer-valued
data be discretized into groups (e.g. less than 5, between 5
and 10, or greater than 10).
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Supervised learning I

• Supervised learning is based on determining a mapping
between particular attributes, or features, of the data [2]

• A set of data points (the training set) is used to estimate
(learn) the parameters of a model relating the features to the
target labels.

• Once the parameters are learned, the model can be applied to
predict the target label of a previously unseen data point.
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Supervised learning II

• The supervised learning problem is referred to as classi�cation
when the target labels comprise a set of discrete classes, and
as regression when the target labels assume continuous values.

• There are a number of di�erent classi�cation methods, each of
which makes a di�erent set of assumptions about the data and
posits a particular type of model relating the features to the
target labels, as well as a means of learning its parameters.
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Supervised learning, classi�cation and
Clustering

• Classi�cation normally refers to a supervised procedure, i.e. a
procedure that learns to classify new instances based on
learning from a training set of instances that have been
properly labeled by hand with the correct classes.

• The corresponding unsupervised procedure is known as
clustering, and involves grouping data into classes based on
some measure of inherent similarity. .
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Pattern recognition

• Classi�cation and clustering are examples of the more general
problem of pattern recognition, which is the assignment of
some sort of output value to a given input value.

• Other examples are:

• Regression, which assigns a real-valued output to each input;
• Sequence labeling, which assigns a class to each member of a

sequence of values
• Parsing, which assigns a parse tree to an input sentence,

describing the syntactic structure of the sentence
• etc...
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Supervised classi�cation

• The process of using samples of known classes (training sets)
and its labels to classify samples of unknown identity.
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Common supervised classi�cation
algorithms

• Linear discriminant analysis (LDA)

• Arti�cial neural networks:

• Multi-layer perceptron (MLP) trained with backpropagation
• Probabilistic neural networks
• Radial-basis function networks

• Learning vector quantization

• Support vector machines
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Common supervised classi�cation
algorithms applied in fMRI

• Several commonly used linear classi�ers in neuroimaging
include:

• linear support vector machine (SVM) [13, 17]
• linear discriminant analysis (LDA) [17]
• logistic regression (LR)

• There is no clearly �correct� choice of classi�er for a given
problem.

• LR and SVM are reported to have comparable performance
[18], though SVMs can more e�ciently handle
high-dimensional feature spaces [24].
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The two-class supervised classi�cation
problem I

• Given:

• a set of training/testing input feature vectors
X = {xi ∈ Rn, i = 1, . . . , l}

• the corresponding labels {yi ∈ {−1,1}, i = 1, . . . , l}, or
y ∈ {−1,1}l .

• The algorithms described next build some classi�er systems
based on this data.
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The nearest neighbor approach I

• The simplest algorithm is the 1-NN which involves no
adaptation and uses all the training data samples.

• The classi�cation rule is of the form:

c (x) = yi∗ where i∗ = arg min
i=1,...,l

{‖x−xi‖} ,

that is, the assigned class is that of the closest training vector.

17/60



Support Vector Machines I

• The Support Vector Machines (SVMs) have attracted
attention from the pattern recognition community owing to a
number of theoretical and computational merits derived from
[24].

• SVM separates a given set of binary labelled training data with
a hyperplane that is maximally distant from the two classes
(known as the maximal margin hyperplane).

• The objective is to build a discriminating function using
training data that will correctly classify new examples (x,y).
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Support Vector Machines II

• When no linear separation of the training data is possible,
SVMs can work e�ectively in combination with kernel
techniques using the kernel trick, so that the hyperplane
de�ning the SVMs corresponds to a nonlinear decision
boundary in the input space that is mapped to a linearised
higher-dimensional space [24].

• In this way the decision function can be expressed in terms of
the support vectors only:

f (x) = sign
(
∑αiyiK (si ,x) +w0

)
where K (., .) is a kernel function, αi is a weight constant derived
from the SVM process and the si are the support vectors [24].
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Support Vector Machines III
• Given training vectors xi ∈ Rn, i = 1, . . . , l of the subject
features of the two classes, and a vector y ∈ Rl such that
yi ∈ {−1,1} labels each subject with its class, in our case, for
example, patients were labeled as -1 and control subject as 1.
[4]

• To construct a classi�er, the SVM algorithm solves the following
optimization problem:

min
w ,b,ξ

1

2
wTw+C

l

∑
i=1

ξ i

subject to yi (w
T φ(xi )+b)≥ (1−ξi ), ξi ≥ 0, i = 1,2, . . . ,n. The dual

optimization problem is

min
α

1

2
α
TQα−eTα

subject to yTα = 0, 0≤ αi ≤ C , i = 1, . . . , l , where e is the vector of all ones,
C > 0 is the upper bound on the error, Q is an l × l positive semi-de�nite
matrix, Qij ≡ yiyjK(xi ,xj ), and K(xi ,xj )≡ φ(xi )

T φ(xj ) is the kernel function
that describes the behavior of the support vectors.
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Support Vector Machines IV

• Here, the training vectors xi are mapped into a higher (maybe in�nite)
dimensional space by the function φ(xi ).

• C is a regularization parameter used to balance the model complexity and
the training error.

21/60



Support Vector Machines V

• The kernel function chosen results in di�erent kinds of SVM
with di�erent performance levels, and the choice of the
appropriate kernel for a speci�c application is a di�cult task.
In this study two di�erent kernels were tested: the linear and
the radial basis function (RBF) kernel.

• The linear kernel function is de�ned as K (xi ,xj) = 1+xTi xj ,
this kernel shows good performance for linearly separable data.

• The RBF kernel is de�ned as K (xi ,xj) = exp(− ||xi−xj ||
2

2σ2 ). This
kernel is basically suited best to deal with data that have a
class-conditional probability distribution function approaching
the Gaussian distribution.
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Support Vector Machines VI

• One of the advantages of the RBF kernel is that given the
kernel, the number of support vectors and the support vectors
are all automatically obtained as part of the training
procedure, i.e., they do not need to be speci�ed by the training
mechanism.
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Multi-layer perceptron trained with
Backpropagation I

• Backward propagation of errors, or backpropagation (BP),
[20, 10, ?] is a non-linear generalization of the squared error
gradient descent learning rule for updating the weights of
arti�cial neurons in a single-layer perceptron, generalized to
feed-forward networks, also called Multi-Layer Perceptron
(MLP).

• Backpropagation requires that the activation function used by
the arti�cial neurons (or "nodes") is di�erentiable with its
derivative being a simple function of itself.

• The backpropagation of the error allows to compute the
gradient of the error function relative to the hidden units.

• It is analytically derived using the chain rule of calculus.

24/60



Multi-layer perceptron trained with
Backpropagation II

• During on-line learning, the weights of the network are
updated at each input data item presentation.

• We have used the resilient backpropagation, which uses only
the derivative sign to perform the weight updating.

• We restrict our presentation of BP to train the weights of the
MLP for the current two class problem.

• Let the instantaneous error Ep be de�ned as:

Ep (w) =
1

2
(yp− zK (xp))2 , (1)

where yp is the p-th desired output yp, and zK (xp) is the network
output when the p-th training exemplar xp is inputted to the MLP
composed of K layers, whose weights are aggregated in the vector
w. The output of the j-th node in layer k is given by:
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Multi-layer perceptron trained with
Backpropagation III

zk,j (xp) = f

(
Nk−1

∑
i=0

wk,j ,izk−1,i (xp)

)
, (2)

where zk,j is the output of node j in layer k , Nk is the number of
nodes in layer k , wk,j ,i is the weight which connects the i-th node
in layer k−1 to the j-th node in layer k , and f (·) is the sigmoid
nonlinear function, which has a simple derivative:

f ′ (α) =
df (α)

dα
= f (α)(1− f (α)) . (3)

The convention is that z0,j (xp) = xp,j . Let the total error ET be
de�ned as follows:
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Multi-layer perceptron trained with
Backpropagation IV

ET (w) =
l

∑
p=1

Ep (w) , (4)

where l is the cardinality of X . Note that ET is a function of both
the training set and the weights in the network. The
backpropagation learning rule is de�ned as follows:

∆w (t) =−η
∂Ep (w)

∂w
+ α∆w (t−1) , (5)

where 0< η < 1, which is the learning rate, the momentum factor
α is also a small positive number, and w represents any single
weight in the network. In the above equation, ∆w (t) is the change
in the weight computed at time t. The momentum term is
sometimes used (α 6= 0) to improve the smooth convergence of the
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Multi-layer perceptron trained with
Backpropagation V

algorithm. The algorithm de�ned by equation (5) is often termed
as instantaneous backpropagation because it computes the gradient
based on a single training vector. Another variation is batch
backpropagation, which computes the weight update using the
gradient based on the total error ET .
To implement this algorithm we must give an expression for the
partial derivative of Ep with respect to each weight in the network.
For an arbitrary weight in layer k this can be written using the
Chain Rule:

∂Ep (w)

∂wk,j ,j
=

∂Ep (w)

∂zk,j (xp)

∂zk,j (xp)

∂wk,j ,i
. (6)

Because the derivative of the activation function follows equation 3,
we get:
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Multi-layer perceptron trained with
Backpropagation VI

∂zk,j (xp)

∂wk,j ,i
= zk,j (xp)

(
1− zk,j (xp)

)
zk−1,j (xp) , (7)

and

∂Ep (w)

∂zk,j (xp)
=

Nk+1

∑
m=1

∂Ep (w)

∂zk+1,m (xp)
zk+1,m (xp)

(
1− zk+1,m (xp)

)
wk+1,m,j ,

which at the output layer corresponds to the output error :

∂Ep (w)

∂zK (xp)
= zL (xp)− yp. (8)
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Radial-basis function network I

Radial Basis Function networks (RBF) [5, 10] are a type of ANN
that use radial basis functions as activation functions. RBFs consist
of a two layer neural network, where each hidden unit implements a
radial activated function. The output units compute a weighted
sum of hidden unit outputs. Training consists of the unsupervised
training of the hidden units followed by the supervised training of
the output units' weights. RBFs have their origin in the solution of
a multivariate interpolation problem [?]. Arbitrary function
g (x) : Rn→ R can be approximated by a map de�ned by a RBF
network with a single hidden layer of K units:

ĝθ (x) =
K

∑
j=1

wjφ (σj ,‖x−cj‖) , (9)

where θ is the vector of RBF parameters including wj ,σj ∈ R, and
cj ∈ Rn; let us denote w = (w1,w2, . . . ,wp)T , then the vector of
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Radial-basis function network II

RBF parameters can be expressed as
θ
T =

(
wT ,σ1,c

T
1 , . . . ,σK ,c

T
K

)
. Each RBF is de�ned by its center

cj ∈ Rn and width σj ∈ R, and the contribution of each RBF to the
network output is weighted by wj . The RBF function φ (·) is a
nonlinear function that monotically decreases as x moves away from
its center cj . The most common RBF used is the isotropic
Gaussian:

ĝθ (x) =
p

∑
j=1

wj exp

(
−
‖x−cj‖2

2σ2
j

)
.

The network can be thought as the composition of two functions
ĝθ (x) = W ◦Φ(x), the �rst one implemented by the RBF units
Φ : Rn→ RK performs a data space transformation which can be a
dimensionality reduction or not, depending on whether K > n. The
second function corresponds to a single layer linear Perceptron
W : RK → R giving the map of the RBF transformed data into the
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Radial-basis function network III

class labels. Training is accordingly decomposed into two phases.
First a clustering algorithm is used to estimate the Gaussian RBF
parameters (centres and variances). Afterwards, linear supervised
training is used to estimate the weights from the hidden RBF to the
output. In order to obtain a binary class label output, a hard limiter
function is applied to the continuous output of the RBF network.
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Probabilistic neural networks I
A Probabilistic Neural Network (PNN) [23] uses a kernel-based
approximation to form an estimate of the probability density
function of categories in a classi�cation problem. In fact, it is a
generalization of the Parzen windows distribution estimation, and a
�ltered version of the 1-NN classi�er. The distance of the input
feature vector x to the stored patterns is �ltered by a RBF function.
Let us denote the data sample partition as X = X1∪X−1, where
X1 =

{
x11, . . . ,x

1
n1

}
and X1 =

{
x−11 , . . . ,x−1n−1

}
. That is, superscripts

denote the class of the feature vector and n1 +n−1 = n. Each
pattern xij of training data sample is interpreted as the weight of
the j-th neuron of the i-th class. Therefore the response of the
neuron is computed as the probability of the input feature vector
according to a Normal distibution centered at the stored pattern:

Φi ,j (x) =
1

(2π)
n/2

σn
exp

−
∥∥∥x−xij

∥∥∥
2σ2

 , (10)

33/60



Probabilistic neural networks II
Therefore the output of the neuron is inside [0,1]. The tuning of a
PNN network depends on selecting the optimal sigma value of the
spread σ of the RBF functions, which can be di�erent for each
class. In this paper an exhaustive search for the optimal spread
value in the range (0, 1) for each training set has been done. The
output of the PNN is an estimation of the likelihood of the input
pattern x being from class i ∈ {−1,1} by averaging the output of
all neurons that belong to the same class:

pi (x) =
1

ni

ni

∑
j=1

Φi ,j (x) . (11)

The decision rule based on the output of all the output layer
neurons is simply:

ŷ (x) = argmax
i
{pi (x)} , i ∈ {−1,1} . (12)
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Probabilistic neural networks III

where ŷ (x) denotes the estimated class of the pattern x. If the a
priori probabilities for each class are the same, and the losses
associated with making an incorrect decision for each class are the
same, the decision layer unit classi�es the pattern x in accordance
with the optimal Bayes' rule.
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Learning vector quantization I

Learning Vector Quantization (LVQ) [11, 22] as introduced by
Kohonen [12] represents every class c ∈ {−1,1} by a set
W (c) = {wi ∈ Rn; i = 1, . . . ,Nc} of weight vectors (prototypes)
which tesselate the input feature space. Let us denote W the union of
all prototypes, regardless of class. If we denote ci the class the weight
vector wi ∈W is associated with, the decision rule that classifies a
feature vector x is as follows:

c (x) = ci∗

where
i∗ = argmin

i
{‖x−wi‖} .

The training algorithm of LVQ aims at minimizing the classi�cation
error on the given training set, i.e., E = ∑j (yj − c (xj))2, modifying
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Learning vector quantization II

the weight vectors on the presentation of input feature vectors.
The heuristic weight updating rule is as follows:

∆wi∗ =

{
ε·(xj −wi∗) ifci∗ = yj

−ε·(xj −wi∗) otherwise
, (13)

that is, the input's closest weight is adapted either toward the input
if their classes match, or away from it if not. This rule is highly
unstable, therefore, the practical approach consists in performing an
initial clustering of each class data samples to obtain an initical
weight con�guration using equation 13 to perform the �ne tuning
of the classi�cation boundaries. This equation corresponds to a
LVQ1 approach. The LVQ2 approach involves determining the two
input vector's closest weights. They are moved toward or away the
input according to the matching of their classes.
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Combination of classi�ers: AdaBoost I

• Adaptive Boosting (AdaBoost)[21, 8] is a meta-algorithm for
machine learning that can be used in conjunction with many
other learning algorithms to improve their performance.

• AdaBoost is adaptive in the sense that subsequent classi�ers
built are tweaked in favor of those instances misclassi�ed by
previous classi�ers. AdaBoost is sensitive to noisy data and
outliers. Otherwise, it is less susceptible to the over-�tting
problem than most learning algorithms.

• AdaBoost calls a weak classi�er repeatedly in a series of
rounds t = 1, ...,T . For each call a distribution of weights Wt

is updated and indicates the importance of examples in the
data set for the classi�cation.
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Combination of classi�ers: AdaBoost II

• On each round, the weights of each incorrectly classi�ed
example are increased (or alternatively, the weights of each
correctly classi�ed example are decreased), so that the new
classi�er focuses more on those examples.

• Following these ideas, we have also tested a combination of
SVM classi�ers following the the Diverse-AdaBoost-SVM [?].

• In this approach we built a sequence of SVM classi�ers of
increasing variance parameter.

• The results of the classi�ers are weighted according to their
statistical error to obtain the response to the test inputs in the
10-fold validation process.
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Unsupervised classi�cation

• The identi�cation of natural groups, or structures/patterns,
within data.

• Clustering is one form of unsupervised learning, which identi�es
groups within the data based on the similarity of their features.
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Common unsupervised classi�cation
methods

• Most common algorithms:

• k-nearest neighbors (k-NN)
• k-means
• Self organizing maps (SOM)
• Hierarchical clustering
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Common unsupervised classi�cation applied
in fMRI studies I

• K-means clustering

• assigns each data point to one of k groups, and has been
applied to discover relationships among the time series of
voxels in fMRI data. [16]
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Common unsupervised classi�cation applied
in fMRI studies II

• Hierarchical clustering methods [7, 14]

• build a succession of clusters:
• data-points are �rst grouped into clusters,
• and the clusters themselves are merged into groups at a second

level according to their similarity,
• and so forth, building a tree depicting the hierarchical

dependence structure across data points.
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Common unsupervised classi�cation applied
in fMRI studies III

• Thus, while:

• k-means clustering is informative of major subdivisions in the
data.

• hierarchical clustering provides a more complete
characterization of relationships between data points and may
be used to identify more subtle patterns.
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Common unsupervised classi�cation applied
in fMRI studies IV

• However, some of the relationships discovered by hierarchical
clustering:

• may be driven by attributes speci�c to the dataset to which it
is applied,

• and may not generalize across other datasets.
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Independent Component Analysis (ICA) I

• Independent component analysis (ICA) is another popular form
of unsupervised learning. [6]

• ICA can be applied to decompose a set of fMRI time courses
into a set of spatially distinct �networks�.

• ICA has provided insight into the functional organization of
the brain [1] and suggested key functional di�erences across
clinical populations [19].
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Independent Component Analysis (ICA) II

• In addition to exploring the spatiotemporal structure of brain
activity within individuals and groups,

• the spatial networks and time courses derived using ICA can
also be used to derive features within the framework of
supervised learning [15].
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Independent Component Analysis (ICA) III

• Calhoun et al. (2008) [3] applied ICA to the data of bipolar
and schizophrenic patients, extracting two networks from each
subject (�default-mode� and �temporal lobe�).

• The networks were then used as input to a classi�cation
algorithm, which demonstrated high accuracy in classifying
between the patient groups.
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Lattice Independent Component Analysis
(LICA) I

• The lattice sources discovered by the ILSIA are equivalent to
the GLM design matrix columns, and the unmixing process is
identical to the conventional least squares estimator.

• Therefore, LICA is a kind of unsupervised GLM whose
regressor functions are mined from the input dataset.

• If we try to establish correspondences to the ICA, the lattice
sources correspond to the unknown statistically independent
sources and the mixing matrix is the one given by the
abundance coe�cients computed by least squares estimation.
[9]
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Available tools

• Quick-R

• PyMVPA

• LibSVM

• SVM-light

• Weka

Software para clasi�cación (GIC Wiki)
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