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Abstract

Vascular-related diseases are among the most important public health problems in
developed countries. Recent advances on medical imaging provide high resolution 3D
images of the vessels, allowing the generation of accurate patient-specific geometric
vessel models. Image-based vessel analysis allows advanced computer-assisted diag-
nostic, intervention and follow-up of vascular-related diseases. It also provides valu-
able information for computer-assisted surgery planning and navigation, both to avoid
damaging vital structures and to use vessels as anatomical landmarks.

From the modelling point of view, this thesis proposes a Vessel Knowledge Rep-
resentation (VKR) model in the area of blood vessel analysis. It allows reusability of
software pieces through appropriate abstractions, facilitating the development of inno-
vative methods, procedures and applications. The VKR model is designed for its easy
integration with existing medical imaging and visualization software platforms.

Regarding 3D vascular detection algorithms in medical imaging, we provide a de-
tailed analysis of some well-known vesselness functions. We identify different types
of scaling parameters in these detectors, and tests their individual influence and their
relationship against synthetic and real datasets in order to establish some scale selec-
tion criteria. With respect to 3D vascular extraction methods on angiographic images,
we propose an architecture and process model for the subset of vascular tracking meth-
ods called Generalized Vascular Tracking (GVT). We demonstrate how the different
components and stages of the GVT model allows incorporating different components
into the system with increasing complexity. We also contribute a novel method for
optimized vascular section estimation during tracking procedures.

As a real life application and a particular case of vascular analysis we provide
a novel segmentation method for both the lumen and thrombus of abdominal aortic
aneurysms on CTA images after endovascular intervention and a method for the auto-
matic detection and quantification of endoleaks in the thrombus.

Finally, we developed the Image-based Vascular Analysis (IVAN) Toolkit, a set of
software libraries for vascular detection, analysis and modelling in medical imaging. It
implements many of the ideas developed in this thesis, and has been used extensively
in our experiments.
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Chapter 1

Introduction

This chapter provides the general introduction to the Thesis intended to allow a quick
appraisal of its contents, contributions, supporting publications and structure.

Section 1.1 provides the motivation behind this line of research. Section 1.2 enu-
merates the objectives set for the Thesis. Section 1.3 enumerates the contributions
of this Thesis. Section 1.4 presents the general processing pipeline of vascular im-
age analysis, Section 1.5 enumerates the publications obtained while working in this
Thesis. Finally, Section 1.6 details the structure of the Thesis.

1.1 Motivation
Vascular-related diseases are among the most important public health problems nowa-
days. Heart and cerebrovascular diseases are respectively the first and third cause of
death in 2006 in the U.S.A [59]. Malignant tumors are the second cause of death,
and their growth is directly associated with vessel recruitment and angiogenesis [61].
Besides, vascular diseases are one of the principal causes of death and disability in
people with diabetes [33]. These facts are enough justification for the research efforts
providing a better understanding of the structure of the vascular system and related
processes and diseases, and leading to any improvement of diagnostic and intervention
procedures.

The vessel structure of the blood circulatory system is one of the most complex
structures of the body. Blood vessel anatomy has been studied from castings and in-
vivo examinations in order to build models that provide valuable insight into the normal
and variant circulatory anatomy, helping to understand the causes, evolution and out-
come of several vascular-related diseases. However, many answers to simple questions
about vascular morphology and angiogenesis remain open [147].

Recent advances on medical imaging technology provide high resolution 3D im-
ages of the vessel structures, so that the generation of accurate patient-specific geo-
metric in-vivo vessel models [9] and related quantitative measurements has become
feasible. This has resulted in a wide range of new applications for computer-assisted
diagnostic, intervention and follow-up of vascular-related diseases. Image-based ves-
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sel analysis provides valuable information for planning and navigation during surgical
procedures, both to avoid damaging vital structures and to use vessels as anatomical
landmarks for orientation and localization of structures of interest. Moreover, compre-
hensive image-based vascular analysis has opened new horizons in the discovery and
understanding of the vascular structure and underlying processes, such as angiogenesis
and blood circulation, that may help to understand the evolution of diseases in which
vascular structures play an important role [17, 150].

In the recent years, a vast variety of methods and approaches has emerged dealing
with vascular extraction, analysis and modelling with increasing complexity [93]. In
order to accelerate the research in the area it is necessary to identify the constituting
components or building blocks of the different methods, their individual influence, their
relationship, and the influence and sensitivity of their parameters, so as to build robust
and efficient methods that can be used in a clinical setup. Moreover, it is necessary to
provide the scientific community with verified and well designed tools that allow com-
paring results obtained from different methods, replace some individual components
and reproduce the experiments without extra effort on implementation.

From the modelling point of view, we have detected the lack of a widely accepted
knowledge representation model for vascular networks allowing a structured storage
of the information obtained from the extraction algorithms in such a way that it can
readily be used in the clinical applications.

1.2 Objectives

1.2.1 General Objectives
• Develop a generic and versatile information model for storing and accessing in-

formation describing vascular structures.

• Develop methods for robust automated detection, extraction, quantification and
analysis of vessels depicted in volumetric angiographic modalities, such as Com-
puterized Tomography Angiography (CTA) or Magnetic Resonance Angiogra-
phy (MRA).

• Perform a clinical validation of the accuracy, robustness and speed of the devel-
oped methods, to ensure that can be used in clinical practice.

• Develop specific methods for the automated analysis of Abdominal Aortic Aneurysms
(AAA) after Endovascular Repair (EVAR) in CTA images for automated follow-
up.

• Contribute to the field of vascular image analysis by providing insight into exist-
ing methods through critical review and replication of experimental results.

1.2.2 Operational Objectives
• Develop an information model for vascular structures which
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– Accommodates easily the information obtained from the vascular struc-
tures by the extraction algorithms that take a vascular (angiographic) image
as source.

– Provides a versatile, intuitive and adequate structure for the development
and practice of clinical applications of vascular image analysis.

• Study the underlying components and parameter setup of the most successful
vascular detection algorithms:

– Medialness functions, providing measures of the likelihood of an image
point to be on the centerline.

– We explore both differential and integral approaches.

• Propose a generic framework for vascular tracking algorithms that allows

– Mapping existing approaches into this framework,

– Generating complex extraction schemes

– Studying the influence of components working individually or as a group,
such as the choice of section estimation algorithm or vesselness function.

• Develop a novel method for the segmentation of AAAs after EVAR, with special
focus on the thrombus segmentation. The method should be suitable for clinical
routine, which implies that is fast, robust, has a small set of parameters easy to
setup and with little sensitivity and allows for easy correction of the results.

• Build a free open source software toolkit for vascular image analysis, implement-
ing relevant popular approaches to vascular detection and extraction in a consis-
tent framework. It will ease independent comparison of different approaches in
a simple way for scientific discovery and rapid prototyping of vascular applica-
tions.

1.3 Contributions of the Thesis

We have set a state of the art through an extensive review at all levels of vascular
image processing, vascular morphology, vascular-related diseases, vascular imaging
(aka angiographic) modalities, techniques for vascular extraction and analysis from
these images and practical applications of vessel analysis. A detailed review of edge
and ridge detection techniques in images and their relationship with the detection of
curvilinear structures has been carried out.

The Thesis has been realized on implementations developed on open source free
software (ITK and VTK), allowing for extensive diffusion of the software developed,
reproducibility of the results by the research community, and contributing to building
a platform that will allow quick diffusion of working solutions.
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1.3.1 General Contributions
• We propose a Vessel Knowledge Representation (VKR) model suitable for rep-

resenting, in a compact and structured, manner the geometrical, topological and
contextual information obtained from the vascular analysis. The VKR is pro-
posed as the kernel for the development of systems with potential clinical appli-
cation.

• We have developed a novel taxonomy of vessel attributes to be incorporated into
high level information models for vessels.

• We provide a detailed analysis of the scales to be used when applying some
relevant vascular detection functions (aka vesselness functions). We identify dif-
ferent types of scaling parameters in these detectors, and tests their individual
influence and their relationship against synthetic datasets with different noise
levels, in order to establish some scale selection criteria for these detectors in
real datasets.

• We propose an architecture for a specific class of vessel extraction methods: the
vascular tracking processes, namely the Generalized Vascular Tracking (GVT)
Framework. We demonstrate how the different components and stages of the
GVT process model provides a systematic approach to vascular tracking that
incorporates different components into the system with increasing complexity.

• We propose a novel method for vascular section estimation during tracking pro-
cedures, incorporating an optimization stage that uses specific modified vascular
detectors as cost functions, in order to obtain accurate vascular sections when the
direct detection approach fails. This new approach is validated on real datasets.

1.3.2 Technical Contributions
• Detailed analysis and additional insight into existing ideal cylinder shape mod-

els for vascular image analysis, on the cylinder and toroid models. Providing
alternative reference frames and studying the behavior of the principal image
curvatures both theoretically and experimentally.

• A new Helix shape model allowing to study the influence of both, the geometric
shape curvature and torsion, in the image curvatures.

• Study of different section profiles for the shape models, allowing to infer con-
clusions about scale selection in the image analysis of real tubular shapes.

• A software for the generation of synthetic tubular shape images for their use in
the validation of the detection and extraction algorithms.

1.3.3 Real Life Application
The Thesis contains a real life application of most of the ideas developed, towards the
final implementation of a complete system for vascular image analysis. It also deals
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with the problem of image analysis of large vessels in the presence of abnormalities
.Specifically, the Thesis includes results on the image processing of AAA after EVAR
obtained on data provided by the medical specialists from the Hospital Donostia, in a
close collaboration which is leading to improved results and products that may end up
in clinical application.

• We provide a novel segmentation method for both the lumen and thrombus of
AAAs after EVAR on Computed Tomography Angiography (CTA) images.

• Propose a method for the automatic detection and quantification of endoleaks in
AAA thrombus as depicted in CTA images. To the best of our knowledge, there
were no previous works in the literature dealing with this specific task.

1.3.4 Technological Contributions

The main technological contributions of this thesis are implemented in the Image-based
Vascular Analysis (IVAN) Toolkit, which is a set of C++ software libraries for vascu-
lar detection, analysis and modelling in medical imaging developed using concepts of
generic programming. Due to its design, this toolkit may provide the scientific com-
munity with an important tool to accelerate discovery and encourage reproducible in
the field of vascular image analysis. The IVAN toolkit provides the following specific
technological contributions:

• An implementation of the VKR model whose design allows for extension and
inclusion of new concepts.

• A repository of vesselness detectors which includes several popular approaches
in the literature, designed to be easily extended by incorporation of new methods
or modification of existing ones.

• An implementation of the GVT Framework whose design allows for the inter-
change of components or the addition of different stages so as to provide flexibil-
ity in the design of complex vascular tracking methods. This provides a means
to test the influence of the different components both individually and in con-
junction.

• A means of generating synthetic models of ideal shapes as volumetric images,
such as the cylinder, toroid or helix models of Chapter 4, with different cross-
sections, shape and image parameters and noise levels.

• A means of reproducing the experiments developed in this thesis.

Many of these functionalities have been used in the experiments developed in this the-
sis.

Another technological contribution is the implementation of a set of N-dimensional
discrete Gaussian derivative kernels, that have become part of the Insight Toolkit.
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Figure 1.1: Vascular Analysis Pipeline

1.4 Vascular Image Analysis Pipeline

The Vascular Image Analysis Pipeline, depicted in Figure 1.1, represents, in a very
compact manner, the different sources of information (in orange) and processes (in
blue) involved in the development of a clinical application of vascular image analysis.

The first stage of detection or enhancement of vascular structures is performed on
the source angiographic images. This stage is usually followed by an extraction stage
which isolates the vascular structures obtaining additional geometric, topological or
contextual information about the vascular structures. Depending on the approach, the
detection and extraction stage may be considered as a single operation. The informa-
tion resulting from the extraction process is stored in an information model of vascular
structures so it can be used efficiently by the clinical applications. The quantification
stage involves obtaining quantitative or qualitative information on the vascular struc-
tures and, depending on the operation performed, can follow the detection or extraction
stages or may only need the information stored in the model. In any case, the informa-
tion obtained in this stage is also stored in the model.

The information from the model may be used by the clinical applications in differ-
ent ways. For example, 3D models of vessels may be obtained for navegation purposes
during interventional procedures; information from the quantification stage may be
used directly or feed into a classification engine, providing advanced vascular diag-
nostic information; other examples include patient-specific blood flow simulation [10],
clinical studies of vascular morphometry [28] or intra-operative registration of pre-
operative images using vessels as landmarks [120], among others. This image analysis
pipeline can be used also for the study of other anatomical structures of similar struc-
ture and shape, such as airway trees.

Despite the direction of the processing pipeline is from left to right, the require-
ments are usually built the other way. The clinical application determines which infor-
mation is needed and in turn determines the imaging examination to be performed on
the patient. This in turn determines the most suited detection and extraction methods
methods used to obtain the necessary information for the clinical applications.
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1.6 Structure of the Thesis
The structure of this thesis follows the vascular image analysis pipeline depicted in Fig-
ure 1.1. Following this scheme, Chapter 2 introduces the general problem of vascular
image analysis, describing the clinical applications and the anatomical and algorith-
mic information that is used to build the vascular information model that is postulated
in Chapter 3. Chapter 4 introduces some concepts of image analysis of edge, ridge
and curvilinear structures. Chapter 5 focuses on the detection of vascular structures,
with special emphasis on the parameter and scale selection of some popular vesselness
functions. Chapter 6 postulates a framework for vascular tracking for direct vascu-
lar centerline extraction whose utility is tested experimentally in synthetic and real
datasets. Chapter 7 deals with the specific clinical application of analysis of AAA af-
ter EVAR. Due to the size of the vascular structures involved (the aorta), the shape of
the abdominal aneurysm (which is a blob-like structure) and the endoleaks (which can
be regarded as amorphous), this problem is treated separately since it requires specific
methods of analysis that are not described in the previous chapters. Complementar-
ily, Appendix A describes and analyzes some ideal shape models and section intensity
profiles of vascular structures that are used in the detection and extraction stages.



Chapter 2

Overall review

In this chapter we review some background ideas of the ensuing chapters of the Thesis.
To set the stage we review Vascular Morphology and some facts of vascular related
diseases serve as an introduction for the main applications in the field of modelling and
visualization of vessel structures. Next, we provide an overview of the angiographic
modalities for image-based diagnostic of vascular-related diseases, as well as the appli-
cations and vessel information which is considered relevant for diagnosis in the clinical
practice. We will comment on the current computational techniques for vessel infor-
mation extraction from the angiographic images. Finally we discuss the need for a
Knowledge Representation Model in this area of medical image processing.

The structure of the chapter is as follows: Section 2.1 introduces some biological
ideas about vascular morphology. Section 2.2 gives a short review of vascular diseases.
Section 2.3 is referred to image based diagnosis information and tools. Section 2.4
introduces the algorithms for vessel extraction from angiographic images. Section 2.5
introduces the Vessel Knowledge Representation (VKR) Model.

2.1 Vascular Morphology
The efficient distribution and collection of nutrients requires a blood vessel branching
tree structure, except at the level of the capillaries. Vascular networks are asymmetric
tree structures, in which each parent branch, with diameter D1, is bifurcated (except in
very rare cases) into two branches with smaller diameters (D2 and D3). The tree may
be also locally unbalanced regarding the diameters of child branches (D2 6= D3) and the
number of bifurcations along each path from the root to the leaves of the each subtree
[73]. Geometric models for the description of vessel bifurcations were first proposed by
Murray [124, 158] and later by Oka and Nakai [129] specifying relationships between
vessel widths and angles based on physiological observations.

Recent studies [74, 200] have discovered that the construction of the vascular trees
obeys a set of scaling laws which minimize both, the energy cost of fluid transporta-
tion, which decreases as the diameters increase, and the energy cost of construction
and maintenance of the vessel structure, which increases with larger diameters. These

9



10 CHAPTER 2. OVERALL REVIEW

scaling laws are morphometric relationships between the arterial volume, cumulative
length, and diameter of a branch and its distal subtree. In particular, it can be seen
that, in order to minimize the power needed to maintain the blood circulation operation
over the network, the diameter relationship between a parent branch and its two child
branches is:

Dk
1 = Dk

2 +Dk
3, (2.1)

with average values of k typically between 2 and 3.
With respect to the vessel sections, in a simplistic approach the vessel sections can

be assumed to be circular but, in fact, most of the times it has some smooth irregular
round shape. The thickness of the vessel wall is non-negligible, but most imaging
modalities only depict the vessel lumen, which is the space where the blood flows. Few
imaging modalities, such as Intravascular Ultrasound (IVUS), can image the vessel
wall.

In order to estimate the complexity and branching frequency of the human vascu-
lar trees [34, 162, 63, 65, 64, 66], several studies used and adapted the Strahler order
of branching complexity [166], defined originally for hydrology studies but applica-
ble to all branching, tree-like structures. The original Strahler ordering system assigns
the order 1 for the smallest branches. When two vessels join into a confluent vessel,
the order of the confluent vessel is increased by 1 if the two child vessels have the
same order; otherwise the parent assumes the order of the highest order child. How-
ever, the use of the original order as defined by Strahler encountered the problem of
diameter overlapping among vessels of consecutive orders in morphometry analysis of
very large trees. In order to take into account the vessel radius, the Diameter-defined
Strahler Ordering System [75] incorporated a new rule stating that: “When a vessel of
order n meets another vessel of order ≤ n, the confluent vessel is assigned order n+1
only if its diameter exceeds that of the lower order vessel by a certain amount, which
is determined by the statistical distribution of the diameters of each order”. In practice,
threshold computation must be iterative, since the diameter distribution has to be recal-
culated when the order is assigned. Applied to haemodynamic studies, this enhanced
ordering system provides a reasonable and systematic way to handle main arteries that
vary considerably in diameter along their length, such as the main pulmonary artery.
In a morphometric study of the human lung vasculature casts [66] it was found that,
in pulmonary arterial and venous trees, the relationship between the order of a branch
[75] and its diameter follows closely a logarithmic scale. They found a maximal order
of 15 for both arterial and venous trees of the human lung.

In order to represent the connectivity of asymmetric branches and to distinguish
serial and parallel branches of the same order, three new concepts were introduced
in [75]: Vessel Segment, Vessel Element and Connectivity Matrix. A Vessel Segment,
corresponding to a branch, is the portion of vessel between two bifurcations. A Vessel
Element is defined as a set of serially connected segments of same order. Statistical
data of diameters and lengths are obtained for segments and elements. Haemodynamic
flow circuits are composed of vessel elements. Ratios of segment/element can also be
calculated for each order. The Connectivity Matrix is an upper triangular matrix, in
which each element C(m,n) is the ratio of the total number of elements of order m
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whose parents are elements of order n divided by the total number of elements of order
n.

The advent of new imaging techniques such as Microcomputed Tomography and
advanced algorithms for vascular segmentation, quantification and analysis, has re-
cently improved the possibility of performing detailed studies of vascular morphology,
i.e. in the coronary [187], renal [127] and pulmonary trees [145], and the ability to
perform comparisons in populations [194], enhancing the understanding the structure,
and physiology and pathology of the corresponding organs.

2.2 Vascular-related Diseases

There are two main types of vascular accidents which occur with death consequences
in about 5% of the population over 65 years-old: hemorrhages and embolisms. Hem-
orrhages can be produced by vessel ruptures due to aneurysms. An aneurysm is a local
growth of the vessel diameter due to weakening of the vessel wall that suffers increased
local elasticity. Aneurysms occur most commonly in arteries at the base of the brain
(circle of Willis) and in the thoracic and abdominal aorta. Embolisms and thrombosis
are obturations of the vessels as a consequence of a progressive abnormal local re-
duction or the vessel diameter or stenosis (pl. stenoses). There are several causes or
conditions that lead to stenosis such as atherosclerosis, birth defects, diabetes, infec-
tion, inflammation or ischemia among others. Atherosclerosis is a condition in which
the arterial wall thickens, due to the accumulation of a mixture of substances such as
calcium, cholesterol fibrin and macrophage blood cells, which causes stenosis or occlu-
sion of the vessel or aneurysms due to excessive compensation by enlargement of the
vessel. The possibility of performing early diagnoses of aneurysms, stenoses or other
vascular accidents may avoid further complications and thus, will decrease the mor-
bidity and mortality associated to vascular-related diseases. There exists evidence [10]
that regions of the vessel wall exposed to disturbed flow, such as at bifurcations and re-
gions of high curvature, are prone to the initiation and development of atherosclerosis.
Identification of such regions by geometrical analysis may provide further insight into
the development of this disease.

There are some pathological conditions for which blood vessels play an important
role in their evolution. The most important case is the vascularization of malignant
tumors. In order for the cancer cells to obtain appropriate nutrients to grow and to get
rid of waste material, tumors need to be vascularized. Tumors achieve this by several
methods such as cooption (recruitment of pre-existing vessels) and angiogenesis [61].
Furthermore, most of the conditions induce changes in vessels at different levels. Can-
cer induces the development of abnormal, tortuous vessels [47], that can be reverted by
successful treatment [70]. Images of the retina may provide information on pathologi-
cal changes caused by local ocular diseases and early signs of certain systemic diseases
[7, 199, 29, 189]. Other examples may be hypertension and diabetes, which induce the
narrowing of the arteries. For example, a recent study has shown that retinal vessel
microvascular structure is associated to risk of mortality from ischemic heart disease
and stroke [189].
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2.3 Image-based Diagnosis

An introductory overview of medical imaging modalities is needed to understand their
ability to produce images of the blood vessels, their possible application as tools in clin-
ical and research studies, and the requirements that the image processing and knowl-
edge representation techniques need to take into account. The diagnostic support pro-
vided by the vessel structure images is further made concrete by the specification of
precise attribute measurements.

2.3.1 Angiographic Modalities

Nowadays, there are many medical imaging modalities and protocols devised specifi-
cally for the visualization of vessels, that are generally denoted with the term angiog-
raphy. Some of them include the injection of a modality-specific contrast agent that
enhances the visualization of blood vessels1.

• Digital Substraction Angiography (DSA) is an evolution of the original X-ray
Angiography (XA) technique, that digitally subtracts a pre-contrast image from
a contrasted images obtained after injection of a contrast agent. Until recently,
DSA has been considered the standard vessel imaging technique in many di-
agnostic and interventional procedures, such as assessment of renal and carotid
artery stenosis, cerebral aneurysms, acute limb ischemia or arterio-venous mal-
formations (AVMs) among others. The main advantage of DSA imaging is that it
allows real-time, live visualization of very thin vessel structures, and thus can be
used during interventional procedures. However, DSA involves radiation expo-
sure, is a 2D modality and, more importantly, is an invasive procedure and thus,
it has an associated risk of small complications. DSA is gradually being replaced
by some non-invasive 3D imaging techniques, such as Computerized Tomogra-
phy Angiography (CTA) and Magnetic Resonance Angiography (MRA).

• CTA images are standard Computerized Tomography (CT) images generated by
contrast injection simultaneously with the image acquisition. Depending on the
synchronization of the image acquisition with the flood flow, different contrasts
may be obtained, such as those corresponding to the arterial phase, venous phase,
post-constrast phase, etc., that depict several stages of the contrast inflow into the
vessels. Some of the applications of CTA imaging are analysis of stenosis in re-
nal arteries, aortic aneurysms, brain aneurysms or AVMs, atherosclerosis assess-
ment and detection of vein clots in legs. The main drawback of the technique is
the radiation dose that the patient receives during the scanning procedure. With
the advent of multidetector technology and improved computational image re-
construction schemes, acquisition haves increasing spatial resolution obtained in
faster times with less radiation dose.

1The first coronary X-ray angiography (XA) was performed accidentally by Sones and Shirey in 1958
[163]. While injecting contrast material in the right ventricle, the catheter slipped into the right coronary
artery and for the first time discovered the advantages of imaging the vessels.
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Figure 2.1: Examples of Angiographic Modalities. From left to right XA of the coro-
naries, DSA of the brain vessels, MRA in venous phase and CTA showing stent after
endovascular aortic aneurysm repair.

• MRA comprises several techniques based on Magnetic Resonance Imaging (MRI).
The techniques are based either on imaging flow effects or on using contrast
agents, like in Constrast-enhanced MRA (CE-MRA). Vessel images can also
be obtained by adequate pulse sequences without contrast. Time-of-flight MRA
(ToF-MRA) uses a short echo time and flow compensation to enhance contrast
of blood vessels. It is commonly used in the head and neck, where it gives very
high resolution image, but has problems in areas of slow blood flow such as
aneurysms. Phase-contrast MRA (PC-MRA) manipulates the phase of the MR
signal providing both, the vessel image and the corresponding flow speed. PC-
MRA has larger acquisition times, since the technique requires acquisitions in
the three basic orientations (axial, sagittal and coronal). Recent MRI techniques
include Fresh Blood Imaging (FBI) [123] and Susceptibility Weighted Imaging
(SWI), also called BOLD Venography [144, 195]. The main advantage of MRA
compared to CTA is the absence of radiation exposure while maintaining very
high image quality, though spatial resolution is lower in MRA than in CTA. How-
ever, as acquisition times are larger, motion artifacts are more likely to appear.

• Vessel Ultrasound imaging is a non-invasive procedure that allows live blood
vessel visualization. Combined with the technique of Doppler ultrasound, it also
gives measures of blood flow. It can help the physician to visualize and assess,
stenoses, aneurysms, varicose veins and many other vessel accidents. The main
problem is its low signal-to-noise ratio which gives poor image quality.

• Optical imaging can also be used to image vessels, as in Retinal Fundus images,
where vessel analysis is used in the assessment of retinopathy and as an early
sign of systemic diseases [7]. Other recent techniques, such such as non-invasive
Near-infrared (NIR) imaging can be used for visualizing vessels through the skin
[53].

• Intravascular Ultrasound (IVUS) provides a means of imaging the vessel wall
by using a catheter equipped an ultrasound transducer.

• A recent development is the study of the mechanic properties of vessel wall by
Magnetic Resonance Elastography [191].
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2.3.2 Applications of Vessel Analysis
As the technology of vessel imaging evolves, improving the quality and quantity of in-
formation about vessel structure that can be obtained, the applications have also flour-
ished. Here we enumerate some of the current ones, that will motivate the knowledge
representation and manipulation tools to be discussed below.

• Surgery:

– Surgery planning: allows the surgeon to evaluate the alternative actions and
prepare for the intervention [156].

– Planning and navigation [175] during interventional therapy and biopsy
: here vessel structures are critical by themselves, but also serve as spa-
tial reference or anatomical landmarks for planning and navigation. It has
strong real-time requirements, because the vessel structure may be chang-
ing during the intervention. Sometimes it requires fusion of diverse imag-
ing modalities to improve the interaction.

– Training of surgeons and interventional radiologists using annotated virtual
reality systems [174], virtual atlases, etc.

• Cancer studies:

– Non-invasive estimation of tumor malignancy and growth by vessel quan-
tification and localization of abnormal vessel clusters [26, 27].

– Simulation and study of vessel angiogenesis, which is an important factor
in malignant tumor growth [47].

• Diagnosis of vessel-related diseases:

– Characterization of retinal-related diseases such as diabetic retinopathy or
retinopathy of prematurity by induced changes in vessel attributes such as
diameter and tortuosity [29].

– Quantification of stenosis and aneurysms [72].

– Decision support systems [103] for vessel-related disease [90].

• Image registration using vessel as landmarks [120]. This is typically used in
non-rigid registration [86].

• Studies of vessel morphometry [66] and haemodynamics [171]:

– Construction of geometric models of vessel trees [73] which allow direct
visual diagnosis and fast and interactive visualization and exploration, and
provide by themselves a good understanding of the (patient-specific) vessel
network structure and morphology.

– Discovering of statistical properties of attributes of vessels in healthy and
diseased populations [28].
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– Performing comparative studies, possibly with the help of anatomical at-
lases, for assessment of vascular diseases, malformations and abnormali-
ties.

– Simulation of arterial flow and pressure in organs that cannot be accessed
by direct measurement [154], in aneurysms [178] or for detecting regions
of turbulent flow prone to atherosclerosis, such as bifurcations and high-
curvature regions [10].

2.3.3 Vessel Attributes

The main concern in this section is about measurements that can be somehow obtained
from the images and used as a basis for diagnosis or any of the applications enumerated
above. These measurements are the relevant attributes of the KRM proposed below for
the feasible applications, therefore their identification from the literature survey is an
important step in the KRM definition. We must also take into account the possibil-
ity that the user may specify some qualitative attributes, which are not the result of
any quantitative model, though the user may base its observation on results from com-
putational image processing. They are used by the clinician to perform diagnoses or
intervention decision upon their direct inspection. Structural attributes refer to the mor-
phological and structural description of the vessel network. They are mostly used for
intervention planning and some diagnoses based on structural morphology and com-
plexity, like angiogenesis. The quantitative description of each vessel branch and bi-
furcation are the bricks of the decision support and model building processes.

Qualitative Vessel Attributes

• Vessel Shape: provided by direct visualization of volumes containing (contrasted)
vessels, or surface reconstructions of the vessel walls.

• Vessel Section Shape: needs some processing and abstraction from the image in
order to obtain an adequate representation. It may include the vessel wall or not,
depending on the imaging modality.

• Anatomical Location:more important than the absolute anatomical position of
the vessels is the relative position of the vessels with respect to adjacent organs
or structures of interest, specially pathological structures. It may require some
image registration techniques to obtain the corrected relative location.

Structural Vessel Attributes

• Vessel Network Topology: the topological structure and interconnections of the
vascular network.

• Total Number of Branches: when restricted to a space, it is a measure of vessel
density.
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• Depth Level: this is the level of a branch with respect to the root branch of the
vessel network, that is, the minimum number of bifurcations that separate the
current branch from the root branch.

• Strahler Number: a numerical measure of branching complexity [166, 75].

• Branching Frequency: the number of bifurcations and distance between them.

• Ratios of Branch Radii: several measures can be obtained as ratios of branch radii
in a bifurcation. The branching ratio and the area expansion ratio are related to
the portion of flux going into each branch in a bifurcation [6].

Quantitative Vessel Attributes

• Diameter: is an immediate indicative of an aneurysm or stenosis.

• Length: though the absolute length of a branch may not be significant by itself,
and its significance is relative, it can be used to calculate other important proper-
ties such as tortuosity.

• Size/Volume: volume and size of the vessels in a region of interest provides quan-
titative measurements of vessel growth.

• Tortuosity: is a property of a curve being twisted, having many turns. There
have been several attempts to quantify this property [185]. Tortuosity is a sign of
vessel abnormality usually associated to disease. Bullitt et al. [28] distinguish
three types of blood vessels tortuosity:

– Type 1: where vessels elongate and become tortuous. This may occur in
conditions such as retinopathy, prematurity, hypertension and aging.

– Type 2: vessels that make frequent changes of direction and may appear
as a “bag of worms”, as occurs in arteriovenous malformations and within
hypervascular tumors.

– Type 3: high-frequency low-amplitude oscillations or ’wiggles’, associated
to the neovascularity of malignant tumors.

• Surface Area: as arteries bifurcate and convert into arterioles and capillaries, the
total surface area for the same blood supply increases.

• Section Area: this is the area of the vessel cross-sections, which lie in the normal
plane to the medial line or centerline.

• Blood Velocity: differences in blood velocity can be measured or simulated in
order to find stagnancy regions or abnormal circulation patterns.

• Elasticity: of the vascular walls that may change due to plaque accumulation or
the presence of aneurysms.
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2.4 Vessel Extraction and Analysis in Angiographic Im-
ages

The literature on algorithms for vessel detection and extraction from angiographic im-
ages is huge [93, 132, 76, 18, 45]. The approaches differ in the assumptions made
about the shape and structure of the physical vessels, the medical imaging modalities,
the mathematical models describing the vessels, the image features used to detect them,
and the algorithmic schemes to extract them. In a recent outstanding review [93], ves-
sel lumen segmentation techniques are categorized according to the underlying models
(assumptions on appearance and geometry of the real vessels as shown in the images)
image features (quantitative image metrics used to detect the vessels), and extraction
schemes, (the algorithm used to extract the vessels, according to the assumed models
and defined image features), sometimes with the help of data mining algorithms [193].
We proceed to describe the most important angiographic image-based vessel modelling
and extraction (segmentation) techniques, emphasizing the most salient elements that
are are explicitly modelled in our knowledge representation framework.

2.4.1 Vessel Models in Image-based Analysis

In image-based analysis of vascular networks, there are two main types of assumptions
and models used for vessels: photometric models and geometric models. Photometric
models deal with the generation of vessel images in the corresponding angiographic
modalities. They are modality dependent, used for image processing, and outside the
scope of this paper. On the other hand, geometric vessel models describe elements such
as branches, corresponding cross-sections, bifurcations and relationships in the vessel
tree. They are relevant to the definition of our knowledge-based model which is more
influenced by geometrical considerations.

Surface-only models of vessels, defined by polygonal meshes, which may be ob-
tained directly from vessel segmentations by polygonal reconstruction [48], are not
relevant to our endeavor because they are rather difficult to manipulate and useless as
the basis for structural analysis and representation.

Vessels are elongated structures, except in some very specific (pathological) cases.
For this reason, one of the most common approaches is to use the centerline as the main
shape descriptor. The centerline corresponds to the medial loci of the vessel [19], cen-
tered inside the lumen, and constituting the centroid of successive cross-sections. The
centerline allows to describe objects in terms of a tree of “elemental figures” [140].
However, it is very sensitive to vessel boundary details, so there has been an exten-
sive research in algorithms that obtain smoother centerlines, such as Voronoi skeletons
[125], shock loci of reaction-diffusion equations [160], “cores” (height ridges of medi-
alness functions) [139] and distance transforms [22].

From the vessel’s centerline, the external contour can be modelled as a general-
ized cylinder [5], that is, a tubular shape with a curvilinear axis (the centerline) and
varying width along its length, which is usually defined by the cross-sections along the
centerline. Different shape descriptors can be used to define these cross-sections (see
figure 3.4). Constraints can be imposed on the successive sections in order to maintain
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spatial coherence when producing 3D models of vessels [128]. Sometimes the external
surface of the vessel can be modelled explicitly [48] or implicitly [173, 10] from the
vessel centerline. A mesh surface model of the vessel wall can also be obtained by
sweeping the cross-sectional contours [78, 126].

The tree structure of vessel networks is naturally described in the form of a graph,
more specifically as trees (directed acyclic graphs) [56, 25, 156, 4, 136, 121]. A vessel
graph is obtained from the segmentation by skeletonization (see 2.4.2) and analysis of
line structures. The graph description is useful for operations such as pruning, trim-
ming, correcting and reconnecting of vessel branches via graph-based techniques after
initial extraction. Graph-based representations can be mapped back into visual repre-
sentations providing a better insight into the vascular structure by means of symbolic
renderings [56] or surface reconstructions from centerline and section data [45].

2.4.2 Extraction Schemes
Because of its central importance, we dwell on the methods for centerline extraction
found in the literature. Note that initial vessel volume segmentation can be obtained
by techniques such as simple thresholding, region-growing [21], wave tracking [143]
or vessel-adapted level-sets methods [106] among others.

Centerline Extraction by Skeletonization: Centerlines can be extracted by 3D skele-
tonization of an initial volume vessel segmentation. Thinning algorithms [135] are
based on iteratively removing points on the border of the object that do not modify its
topology (simple points). The remaining set of points is the topological skeleton. The
problem is that they usually provide a centerline at a pixel/voxel level. Subvoxel ac-
curacy may be obtained by other methods, such as flux of gradient vectors of distance
functions [22].

Direct Centerline Extraction: In some cases, a rough estimation of each slice’s
centerline point is enough to provide an approximate segmentation of the vessel tree,
that may be useful for a more refined segmentation. This can be done by obtaining
complete surfaces from the centerline, or on a section-by-section basis, by fitting mod-
els of sections or by extracting the section image planes and obtaining the boundaries
by segmentation as in [88] (Figure 3.4).

The first approach to centerline extraction is interactive manual selection of center-
line points and interpolation with or without an underlying mathematical curve model,
such as a B-spline. However, this method is not very precise, and automatic algorithms
are desirable.

Direct centerline tracking algorithms start from a initial point or set of points, se-
lected manually or automatically in the centerline or its vicinity, and try to iteratively
extract consecutive vessel centerline points, usually by estimating vessel direction, un-
til the end of the branch or tree is reached. Most of these methods also estimate the
local vessel normal (section plane) and scale (approximate diameter) and differ mainly
in the image features used for centerline tracking, in their ability to handle bifurcations
and in their robustness to noise. We have found in the literature methods based on
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tracking multi-scale medialness2 features [11], analysis of connected components of
spheres [31], Kalman filtering [192], moments of inertia [58] and Bayesian tracking
[91] among others.

Centerlines can also be obtained as minimum cost paths (geodesic paths) between
start and end points detected on a branch or on the whole vessel tree. The inverse of
the features or metrics used to estimate medialness measures can be used in this case as
cost functions [186], minimized by optimization algorithms such as Dijkstra’s shortest
paths [41], graph-based schemes [130, 186], or the Fast Marching algorithm [3] used
in [40].

Global Centerline Detection: Centerlines can also be obtained by calculating ves-
selness or medialness features in the whole region of interest and by obtaining patches
of centerlines by connected local maxima (ridges) of these features [141]. These
patches are usually too wide and usually need to be skeletonized in order to obtain
the medial representation that corresponds to the centerline. Other operations involve
pruning, for removal of noisy branches, and reconnection of broken branches, as ves-
sel features sometimes yield low values at bifurcations. For the reconnection, local
strategies of the aforementioned minimum cost paths approaches can be used between
candidate reconnection points.

2.4.3 Vascular Feature Models

Several vessel (disease-related) features can also be modelled. Stenosis are usually
modelled as local diameter reductions [49, 95]. Aneurysms are more difficult to model
and quantify due to their shape variability. Specific models have been proposed for
cerebral [122] and aortic [113, 108] aneurysms. Calcifications and stents often ap-
pear as hyperintense structures. Recently, methods have been proposed that combine
appearance and geometric models for the segmentation of these structures from CTA
images [77, 177]. Recently, we proposed an automatic method for the detection of
endoleaks after endovascular repair of aortic aneurysms [112].

2.5 Knowledge Representation Model

There are some examples of specialized vessel representation systems in the litera-
ture. The Vascular Modelling Toolkit [138] focuses on the geometric modelling of
vascular structures in order to generate surface and mesh models suitable for struc-
tural and haemodynamic studies. Gerig et al. [56] proposed a symbolic model that
encodes shape features and structure relationships of vessels obtained from segmen-
tations of angiographic images, and applied it to the analysis of cerebral vasculature
in MRA images. The hybrid model proposed by Puig et al. [142] provides informa-
tion of the topological relationships of the vessels and incorporates vascular accidents
such as aneurysms and stenoses as special vessel segments. It is organized in three

2A medialness function quantifies to which degree a point is part of the centerline
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layers: global structure, which is a graph-based structure, vascular surface and vol-
ume model. The model is constructed from segmented MRA images with application
in a computer-assisted neurovascular system. The model proposed here tries to over-
come some limitations of these early models, through a general yet flexible knowledge
representation of vascular systems.

Common elements, components and stages found in our experience and literature
review.

• In most of the cases, it is valid the assumption that the vessels are elongated,
tube-like objects, whose length is much larger than the diameter.

• Vessels appear as hyperintense3 structures (sometimes hypo) in the vascular
imaging modalities, brighter that their neighboring tissues, though sometimes
we can find contrast agent inhomogeneity or imaging artifacts.

• Homogeneity in vessel size and photometric intensity is desirable, but usually it
is necessary to deal with varying vessel widths and intensity inhomogeneities.

• The use of a vessel centerline, as a descriptor of the shape of the vessel and
extraction and modelling of sections, is also a common element.

• Some schemes reuse well-known features, such as medialness functions. or in-
termediate representations, such as medial-based representations or skeletons.

• Some common processing stages can be identified in families of algorithms, for
example, in vessel tracking procedures.

In fact, as emphasized in [93] many vessel algorithms rely on increasingly complex
combinations of existing techniques, sometimes operating at different levels of abstrac-
tion. The identification of the building blocks that constitute the extraction schemes and
the explicitation of some hidden assumptions and abstractions used in their conception
is a crucial step for a better understanding of the underlying concepts for the improve-
ment existing methods. This explicitation can be performed through the development
of unified frameworks, which implement the most commonly used models, features
and algorithms and identifying their appropriate settings.

In ensuing chapters of this Thesis, we propose a unified framework focused on the
modelling of vascular vessel networks and related qualitative and quantitative informa-
tion. The framework models the vessel network in such a way that is easy to be handled
by extracting schemes based on image analysis, but also to be converted into other rep-
resentations suitable in several applications (see Figure 3.1). Such a framework will
allow:

• an increased automation of the processes, which, in turn, increases the repro-
ducibility of the experiments and allows to perform large quantitative studies
which would be impossible to tackle otherwise.

3Hypointense vessel can be converted to hyperintense just by inverting the image intensities.
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• a quantitative comparison of the performance of different techniques under the
same conditions and with known implementations, that may provide better in-
sight into their behavior and that may lead to their optimization.

• an efficient reusability of components that will allow faster prototyping and more
reproducibility in research studies.
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Chapter 3

Vessel Knowledge
Representation

We have detected the lack of a widely accepted knowledge representation model in the
area of Blood Vessel analysis. We find that such a tool is needed for the future devel-
opment of the field and our own research efforts. The model should accommodate the
vascular information obtained from the image analysis stages in such a way that can be
used efficiently in the clinical applications. It will allow easy reuse of software pieces
through appropriate abstractions, facilitating the development of innovative methods,
procedures and applications. After the identification of the key representation elements
and operations, we propose a Vessel Knowledge Representation (VKR) model that
would fill this gap. We give insights on its implementation based on standard Object
Oriented Programming (OOP) tools and paradigms. The VKR would easily integrate
with existing medical imaging and visualization software platforms.

The structure of the chapter is as follows: Section 3.2 describes the requirements
for a Vessel Knowledge Representation (VKR) model. Section 3.3 gives details of the
VKR. Section 3.4 provides some implementation details. Section 3.5 gives some final
conclusions of this chapter.

3.1 Introduction
The diversity of medical and biological applications and the availability of huge amounts
of high-quality information for vessel analysis has raised the problem of vascular
knowledge representation in its full multi-faceted complexity . The purpose of this pa-
per is to discuss appropriate knowledge representation and manipulation tools for ves-
sel structures which could serve as a common ground for the development of compati-
ble and reusable systems. We frame this study in the diversity of applications found in
the literature, and in our actual research experience [112, 90, 116, 115, 113, 117, 114].
We contribute a Vessel Knowledge Representation (VKR) model that, due to its effi-
ciency and versatility, may be used for a wide variety of image-based vessel extrac-
tion schemes and vessel analysis applications. This model aims to fill an information

23
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management gap that we have detected in the literature dealing with vessel structures
computerized extraction and analysis of vascular structures.

We have in mind two objectives when proposing the Vessel Knowledge Represen-
tation (VKR) Model:

1. to ease the definition of new algorithms, providing a kind of road map of tools
and applications.

2. to allow the easy reuse of previously generated pieces of software. The visu-
alization of image processing as a kind of pipeline, allows the visualization of
software reutilization as building blocks in this pipeline. This approach is com-
mon to some other medical imaging processes, like brain mapping.

3.2 Requirements of the Vessel Knowledge Representa-
tion (VKR) Model

The VKR model is being defined through a process of identification and abstraction of
structural, geometrical and morphological properties of vessels in the literature and in
our own research experience. This leads to the identification of data structures, opera-
tions and components used in the most common models and schemes for vessel extrac-
tion. This model can then be converted into an appropriate data representation, such
as a mesh surface model, a refined segmentation or a symbolic visual representation.
When rendered, these representations can be used for localization and for interactive
exploration of the VKR model and underlying properties in some of the applications
described above. Alternatively, these derived data representations can also be used,
for example, for numerical studies, such as simulations of haemodynamics, structural
analysis or other medical and research applications out of the scope of this paper. The
VKR model must include the geometry and topology of vessel trees with constitut-
ing branches, bifurcations and sections, as well as vascular accidents such as stenoses,
aneurysms and abnormal regions, such as those feeding neighboring tumors. Models
of these physical entities and related concepts used in vessel analysis applications must
be devised and structured by using object-oriented design techniques.

We can make more precise some desired properties of our VKR model design:

• Versatility:

– Modelling of low level entities, such as vessel centerlines or sections, with-
out compromising higher level elements, such as the global graph-based
model of the vessel tree and its traversal mechanisms.

– Allowing several coexisting representations of the same vascular system,
providing easy transformation among representations. This idea is illus-
trated in Figure 3.2 where different graph-based representation of the same
vascular tree are shown.

– Decoupling algorithms from underlying data structures. Abstract mech-
anisms must be provided for accessing, traversing and manipulating the
data.
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• Efficiency: as data amounts are huge in this kind of applications, and time re-
quirements are increasingly tight, efficiency in terms of computational time and
use of resources is highly desired.

• Utility: to be useful the VKR must take into account actual design practices and
constraints from:

– The actual state of the art vessel extraction algorithms (see section 2.4.2)
that may have been used for generating the vessel data structure from the
angiographic image data.

– A broad range of clinical and research applications that will be increasing
in complexity and response time requirements.

• Complexity Hierarchy: the framework should be able to provide different levels
of complexity and abstraction in order to represent the vessel structures at differ-
ent levels. The structures need to be represented at least at the tree, branch and
section level and at each level geometric, topological and semantic information
layers need to be managed.

• Integration : we require that the knowledge representation framework can be
easily integrated with pre-existing frameworks which deal with certain specific
models, processes and data structures efficiently, such as the Insight Toolkit (ITK)
[196], for medical image segmentation, registration and analysis and the Visu-
alization Toolkit (VTK) [152], for visualization of resulting vascular structures
together with image data.

3.3 Model Description

3.3.1 The VKR Model in Context

The VKR model is the core of the diverse operations and functions related with vessel
analysis techniques, as shown in the workflow diagram depicted in Figure 3.1. The
boxes in this diagram correspond to data types of some kind, while the labeled arrows
correspond to transformations or manipulations of the data. We have omitted the closed
operations, such as branch pruning or image filtering. The VKR vessel representation
can be obtained directly (see section 2.4.2) from the angiographic image or volume or
indirectly from the results of an intermediate image segmentation process. In the latter
case, the segmentation detects the image/volume regions corresponding to the vessels,
from which the vessel representation can be obtained by skeletonization (see 2.4.2), to
obtain the centerlines, followed by section or boundary estimation. Alternatively, a set
of disconnected volume vessel regions can be obtained by a global detection process
of vessel features, followed by pruning and/or reconnection of centerline patches (see
section 2.4.2). We include in the diagram obvious storage and retrieval operation of
the VKR to/from a file or database. The VKR model is the natural domain to perform
measurements which can be added to it as an enrichment.
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Figure 3.1: VKR Workflow Diagram

By assigning symbolic graphical representations or glyphs (such as lines, spheres,
cones or more complicated shapes...) to the underlying components of the VKR model,
a symbolic visual representation of the vessel tree can be obtained. This may be used
as a roadmap, for agile exploration and interaction, or may be directly overlaid or
projected onto the angiographic images, slices, or volumes in order to provide visual
cues.

The VKR model can be the basis to build up a surface mesh of the vessel bound-
aries1 by several techniques such as contour sweeping of the cross-sections or by an
explicit or implicit surface model as explained in 2.4.1. The VKR model can also be
used to generate a mask or Region of Interest (ROI) on the CTA/MRA volume for fur-
ther processes. The VKR data can be then converted into a mesh surface by iso-surface
reconstruction [104]. Generated surface meshes can then be used for direct visual-
ization and navigation, possibly mixed with other symbolic, surface, volume or slice
renderings, in a kind of Augmented Reality computational environment. In the same
spirit, the identified and labeled branches can be mapped into the CTA/MRA volume
or mesh surface, allowing increased interaction via direct structure picking. The map-
ping can go both ways, allowing the access to the VKR model from the visualization
of the CTA/MRA volume, and visualization of CTA/MRA data corresponding to VKR
selections.

3.3.2 Data Structures

The data structures of the model are designed in order to describe qualitative (i.e. sec-
tion shape, anatomical location, diagnostic annotations) and quantitative (section area,

1This is only feasible with volumetric angiographies, but the model is able to handle 2D representations
too
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curvature) information (Figure 3.5) in such a way that can be handled efficiently both
by the extraction schemes and by the final applications while keeping a high degree of
versatility. The data structures represent vessel information at different levels ranging
from a complete vascular network to a vessel center or boundary point.

3.3.2.1 Vessel Graph

In general, we can consider the vessel network as a binary tree structure since in most
cases bifurcations split a branch into two [66], with some exceptions like the Circle of
Willis in the brain [154]. Therefore, a graph representation is the natural choice for the
structural representation in the VKR.

A graph typically consists of nodes, representing the modelled concepts, and edges,
that connect the nodes and represent their relationships, which is in terms of par-
ent/child for tree structured graphs. In our case, a VesselNode represents an abstraction
of an element used for vessel representation and analysis at graph level. Such an ele-
ment may be a vessel branch, bifurcation or vessel accident, among others. Anatomical
vessel branches are modelled as nodes2 (BranchNode) and if we need to assign proper-
ties to the bifurcations, we can also explicitly model them (BifurcationNode). In order
to provide more modelling flexibility, we define also Composite nodes, which make use
of the Composite Pattern [55] in order to group nodes. This way the group of nodes
acts as a single entity, hiding their internal relationships and offering the possibility of
building a hierarchy of several levels of abstraction complexity in the graph.

By inheritance of node objects we are also able to model conditions that occur in
the branches themselves or in the surroundings (FeatureNode). We allow also nodes to
model some abstract concepts, such as annotations that may be of interest in diagnostic
applications. The properties of each node type are defined by specific attributes and
operations and the use of OOP techniques such as polymorphism.

Our graph-based model, however, is not restricted to a tree structure, to provide
the flexibility in its definition, that is necessary in some applications. For example,
the number of parents of a node is not limited to one, although anatomical branches in
general have a single parent. This flexibility allows for several types of representation
of the same vessel network. The structure of these representations is open, since nodes
can be, in principle, arranged in any desired manner. However, our model was designed
at least to support a few representations that have been found useful for many vessel
analysis applications. We will proceed to describe these representations and introduce
the node types involved.

Branch Vessel Graph Representation The Branch Vessel Graph Representation
(BVG) is the simplest representation of a vessel network in VKR. It consists of a
graph of interconnected nodes of type BranchNode. This type of node is the most
conspicuous in VKR models, since it represents the geometry and properties of ves-
sel branches, which are the main constituents of physical vessel networks. The rest
of the vessel network is in fact an abstraction of the relationship of vessel branches

2This differs from other works where nodes are modelled as graph edges [142]
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Figure 3.2: Vessel Graph Representations. a) Symbolic depiction of a vessel tree b)
BVG rep. c) BBVG Rep and OEVG after incorporating an Element supernode.

(such as bifurcations), related features, groupings of branches, etc. The most impor-
tant part of a BranchNode is the Centerline Model that is described in section 3.3.2.3.
Several BranchNode instances can be connected in series, in order to divide a branch
into different segments. This might be useful to model parts of a branch which require
special attention, such as regions with stenosis or aneurysm, and separate them from
the healthy regions.

Branch-bifurcation Vessel Graph Representation The Branch-bifurcation Vessel
Graph Representation (BBVG) explicitly models the bifurcations using a Bifurca-
tionNode. In this case, the parent and children of a BifurcationNode need to be a
BranchNode or any subclass of it.

Ordered Element Vessel Graph Representation The Ordered Element Vessel Graph
Representation (OEVG) is most suited for morphometric and haemodynamic stud-
ies, since serial branches of the same order, with the order defined according to the
Diameter-defined Strahler Ordering System [75], are grouped into a CompositeNode
called ElementNode. In an OEVG representation, BranchNodes that are not grouped
can also be considered as ElementNodes since they also represent an element in Strahler’s
system. In haemodynamic circuits, a series of vessel branches of the same order are
the equivalent to an electric circuit composed of resistances in series.

3.3.2.2 Vessel Branch

A virtual vessel branch is represented in VKR by a BranchNode, and it corresponds
to the vessel segment that extends between consecutive bifurcations. A physical ves-
sel branch may also be represented by several concatenated BranchNode instances.
This would be useful when the user wants to make a difference between different parts
along the length of a physical branch, for example by indicating that part of a branch
is stenosed. This is performed by associating corresponding accident node represen-
tations, such as the StenosisModel, to the BranchNode. This will be better described
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in section 3.3.2.7. The core of a vessel branch in our model is represented by the
Centerline Model described next.

3.3.2.3 Centerline Model

The vessel centerline or medial loci [19] is an important part of our model, since it is a
good descriptor of elongated objects. Compared to other descriptors, such as boundary
descriptors, the centerline captures better the vessel shape and provides a straightfor-
ward way of obtaining the relationships between the different branches of the vessel
tree [161], since the centerline can be easily converted into a graph structure. Further-
more, it serves as a reference for calculating and storing local properties, both inside
and on the boundaries of vessels. For example, the vessel length is measured along
the centerlines and diameters are measured over sections whose center is the center-
line. Therefore, we provide an explicit, yet flexible and agile, representation of the
centerline.

The Centerline Model is designed to provide several degrees of increasing repre-
sentation complexity, as shown in Figure 3.3 left. The simplest level of representation
complexity is to define a centerline by its point descriptors, where a point descriptor is
anything that may identify the location of a geometrical point on the centerline. Ex-
amples of point descriptors may be geometrical points in physical coordinates, image
pixel indexes, chain-codes, etc. The next level of complexity involves defining the
vessel normal section that defines the cross-sectional planes. On a third level, we can
define a section model, thus allowing further levels of flexibility and complexity.

Our point-based Centerline Model is independent from the mathematical model
used to define the centerline curve, whose points need to be defined explicitly in our
model. The reason is that the centerline curve needs to be discretized in order to store
local quantitative properties of the vessel centerline and sections, and to localize vessel
accidents or other features of interest that need to be referred to some point on the curve.
However, this does not preclude the definition of an interpolation mathematical model
that can be assumed as a curve point generator. Examples of this could be a centerline
curve defined as a B-spline by using control points. This can be implemented either by
subclassing Centerline class or, as will be described in section 3.3.3.6, by decoupling
the curve generation from its defining points, by providing an external generator by
subclassing the CenterlineAlgorithm class.

Finally, the Centerline Model provides a placeholder for optionally storing local
centerline metrics which may provide valuable quantitative information about the local
shape of the centerline. The most common and useful local centerline metrics, that
can be defined at every point of the centerline, are the curvature, torsion (3D) and
Frenet frame of reference, which includes the tangent, normal and binormal vectors
(Figure 3.3 right). We contemplate an implementation (LocalCurveMetrics class) that
generalizes this reference system to N-dimensions.

3.3.2.4 Section Model

Vessel Sections are localized at centerline points and they are assumed to vary along
the vessel length. This variability is reflected in the parameters that define the section,
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Figure 3.3: Centerline Models (left) and Frenet reference frame for a 3D curve (right).

for example, the diameter.
As we can see in Figure 3.4, vessel sections, like centerlines, can also be defined

at increasing levels of complexity. The simplest level is to define the section as a cir-
cle, giving its center and radius/diameter. Since our sections are defined at explicit
centerline points, the center is already given. The next level of complexity is an ellipti-
cal shape. More advanced mathematical models include radial functions and B-spline
contours. The section can also be implicitly defined by a segmentation mask image or
by level-sets of a higher dimensional function, that can be obtained by the level-sets
method, based on evolution of implicit curves or surfaces [133]. Another possibility is
that a section may define more than one contour. This is for example the case when
we want to model the shape of the external and internal vessel wall or when we want
to model the lumen and the aneurysm contour in abdominal aortic aneurysms ). In
the latter special case, the section is modeled in such a way that it can be shared by
at least two different branches (SharedVesselSection) since a single aneurysm contour
may extend to both iliac arteries.

These are just a few examples that demonstrate the versatility of the model. In this
sense, our section model does not impose any shape model, the only condition is that
it can be referred to centerline points.

3.3.2.5 3D Surface and Voxel Models of Vessels

So far we have dealt with explicit modelling of cross-sections. Another possibility,
when dealing with 3D image data, is to directly generate a 3D surface mesh from the
centerline. If the 3D mesh is generated for the complete vessel tree, it can be referred
to branches or even to centerline points (and thus to sections) of the VKR model by
proximity to the corresponding centerline. This reference can be direct, by splitting
the model into surface patches and keeping references to them, or indirect, simply by
associating a scalar value, acting as identifier, to the mesh points that corresponds to
referred branches. This way a forth-and-back relationship may be kept between the
VKR and surface models. Explicit sections may also be obtained by intersection with
corresponding section planes.
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Figure 3.4: Section Models

If a segmentation is available, obtained either a priori or from the VKR model, it
can be referred to corresponding branches by just labeling the mask pixels/voxels with
corresponding branch identifiers. In this case, keeping references to separate volume
“patches” seems to be more difficult to handle but it is a possibility that could be useful
in cases where the source angiographic volumes are huge. The reason is that, in most
software frameworks, only arrays corresponding to rectilinear volumes can be stored,
and for sparse structures such as the vessels, sometimes many of these voxels are empty.
Another possibility is to store these labeled voxels as sparse images, which is currently
not implemented.

3.3.2.6 Vessel Bifurcations

Bifurcations may be represented explicitly in the VKR model by means of the Bifur-
cationNode object that defined at graph level. The use of this node type is optional
(see BBVG representation in section 3.3.2.1), and may be required when we want to
model special features of the bifurcation, when (quantification) operations need to be
assigned to the bifurcation, such as estimation of branch angles, and when there may
exist more than one parent branch.

3.3.2.7 Vessel Features

In the VKR model, vessel “features” (FeatureNode) represent special characteristics
of the vessels that need to be highlighted. Their definition may include models for
vessel accidents or simply comments used for diagnostic. A feature may affect or may
be associated to a part of a branch, a whole branch or a set of branches, entirely or
partially. In order to make explicit these relationships, two mechanisms are devised:

1. FeatureNodes are assigned as children (or alternatively as parents) of affected
BranchNodes. This is illustrated in Figure 3.2.
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2. FeatureNodes keep a VesselRegion structure that indicates which vessel branches
are affected and to which extent. This is achieved by keeping a set of Vessel-
Branch node identifiers, and for each identifier, the starting and end indexes of
the points in corresponding centerlines that comprise the area affected by the
feature.

Since a feature may affect more than one branch, FeatureNodes are treated in a spe-
cial manner and are not even visited when performing many operations that require
traversal of the graph. In this sense, FeatureNodes can be treated as “hypernodes” and
their relationship with VesselBranch nodes (or possibly other nodes) is not that of a
parent-child relationship but merely a reference.

An example of use of a FeatureNode is to perform an annotation, such as a diagnos-
tic remark in a application for computer aided vascular diagnosis. The clinician would
choose the branches affected by a given feature, for example, those feeding a tumor or
included on it, and assign them the corresponding nodes comment. Another possibility
is to assign specific models of vessel accidents or disease, such as a StenosisModel, to
a FeatureNode which are described next.

3.3.2.8 Models of Vessel Accidents or Disease

The VKR model offers the possibility of providing representation models for vessel
accident or disease. Examples of these models are the StenosisModel and Aneurysm-
Model. These models contain the quantitative morphological measurements and other
properties that are typical of a given vessel accident or related disease. We provide
flexibility for defining application-specific models of this kind.

There are two main possibilities for incorporating these models in the vessel graph:
in a BranchNode or in a FeatureNode. The first option is more suitable for cases
in which the accident affects a whole branch or a part of it. In this case, the af-
fected area is modelled by a subclass of BranchNode (for example StenosisBranchN-
ode or AneurysmBranchNode) that is connected serially in both extremes either to other
BranchNodes or to BifurcationNodes. This configuration can be seen in Figure 3.6 and
is further commented in section 3.3.3.6. Another possibility is incorporating the model
into a FeatureNode as explained in the previous section. This is more appropriate in
cases in which the accident affects more than one branch.

3.3.3 Supported Operations
Operations that can be performed on the VKR model data structures can be classified
by their nature or by the type of object they operate on. For example, quantification
operations can be performed at graph, branch, centerline or section level, among others.
Based on their nature we distinguish the following types:

• Access Operations: these are abstract access mechanisms that allows to perform
other types of operations. For example, graph traversal is an operation that allows
to access nodes on the vessel graph and perform other operations on them.

• Edition Operations: allows to change the internal structure and properties of the
model.
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• Quantification Operations: evaluation of quantitative measurements over differ-
ent elements of the model.

• Input/Output Operations: used to load and save the model data.

• Data Transformation Operations: include generation of the VKR model and
transformation into another representation that can be useful for intended appli-
cations.

• Model-specific Operations: these are internal operations that are specific to cer-
tain elements of the model, such as the centerlines or sections.

3.3.3.1 Access Operations

Graph Traversal The most important access operation is graph traversal. Graph
traversal operations can be performed efficiently by using the Visitor Pattern [55]
object-oriented technique (GraphVisitor). This pattern allows to decouple the structure
of the graph and corresponding nodes from the operations performed of them. This is
desirable because it constitutes and efficient manner of extending the framework with
new operations. The visitor abstracts the mechanism of traversing the graph according
to a set of rules that are defined by the user. For example the user may choose to visit
only some specific type of nodes, such as bifurcations or may use node masks to en-
able/disable visiting specific nodes. Subclasses define specific traversal rules and the
operation to be performed. Operations at any depth level that need to be performed on
the whole vessel tree are implemented this way.

Model Picking Picking operations are those that allow to access structures of the
VKR model by selecting them from a derived representation, either symbolic or geo-
metric. They constitute the random access means to any part of the VKR.

Picking operations are based on established relationships between the target struc-
tures of the model (nodes, branches or sections) and their representation. This can be
performed directly, by keeping references (pointers) to the structures on the model, or
by assigning corresponding identifiers . Another possibility to establish this relation-
ship is by proximity in terms of Euclidean distance. For example, a user could pick a
point on the surface and the closest centerline point or section could be selected and its
properties displayed.

3.3.3.2 Model Editing Operations

Most edition operations can be implemented in a straightforward manner by expos-
ing the internal structure of the data after a picking operation. Of particular interest
are graph editing operations, which alter the structure of the graph by changing the
relationships between nodes and insert or delete nodes on demand. Graph editing op-
erations can be performed interactively by the user, i.e. to correct artifacts in VKR
models produced during its extraction, or by autonomous algorithms, i.e. deleting
noisy branches based on their absolute length or underlying image values.
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3.3.3.3 Quantification Operations

Quantification operations can be performed once the initial graph structure of the ves-
sels has been created. Some of these quantitative measures are calculated and stored in
the model on-the-fly, when they are part of the necessary calculations performed by the
vessel extraction algorithms. Some other quantification operations are only performed
on demand, on the whole vessel tree or on a part of it, since they may be compu-
tationally expensive. Whole tree calculations are performed via specific graph visi-
tors. These visitors may incorporate other specific objects to perform quantification at
deeper levels. For example, a CenterlineMetricsCalculatorVisitor object traverses the
tree searching for centerlines of BranchNodes. At each centerline, a CenterlineMetric-
sCalculator object calculates local centerline metrics. If we want to calculate metrics
for a single centerline, we can access it directly and use this latter object instead of
using the visitor object.

Quantification can be performed at almost every level in the VKR model. A refer-
ence diagram of some of the attributes that can be measured is shown in Figure 3.5. The
diagram shows the data model on which the operations are performed and the locality
and type of measurement (i.e. geometrical, topological, image-based...) in a hierarchi-
cal manner. Some of the measurements are directly stored in the corresponding data
structures or placeholders of the VKR model. Others can be obtained from the object
that performs the operations.

3.3.3.4 Input/Output Operations

Input/Output (I/O) operations are intended to store/recover instances of the VKR model
data structures. Two main types of I/O operations are initially considered: file and
database I/O operations. The chosen format for file operations has been GraphML [24].
It is an XML-based format specifically designed for serializing graph information and
that can be extended for custom needs. It allows to explicitly define the graph nodes, its
relationships as edges3. Attributes can also be assigned to nodes and edges, allowing
to store properties. Input/output of structures such as images or meshes is out of the
scope of the model. As it may easily integrate with other toolkits, these operations
are should be performed by third-party libraries. Other types of data may require the
design of custom I/O routines, sometimes application specific. On the other hand,
application-specific relational databases can be designed, mimicking the data structures
of the VKR model, and allowing operations such as performing queries or keyword
search of semantic qualitative attributes [137], or advances multimodal interfaces such
as those described in [80].

3.3.3.5 Data Transformation Operations

Data transformation operations involve conversions between high-order vessel repre-
sentations and are summarized in the VKR workflow diagram in Figure 3.1. Except for
graph-to-graph operations, they consist of generation of the VKR model from external

3In our model, graph edges are implicitly defined as references or pointer to nodes
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Figure 3.5: Quantitative and qualitative attributes



36 CHAPTER 3. VESSEL KNOWLEDGE REPRESENTATION

image data and transformations to other types of data representations used in corre-
sponding applications. Many of these external operations are not yet implemented,
but for the sake of completeness, we describe some of these operations and important
considerations here.

Graph-to-graph Operations These operations convert a vessel graph into another
vessel graph in which the configuration of the nodes has changed. This is possible
because the nature and openness of the graph representation in the VKR model allows
the definition of different types of graphs and nodes, and thus, conversion operations
between graph types. We do not include here operations that transform inner data struc-
tures only, such as the centerlines. Typical graph operations are conversions between
vessel graphs representations.

Another operation of this type is converting a disconnected set of branches obtained
by global detection algorithms into a vessel graph (see Figure 3.1). This is the equiva-
lent of having a container of disconnected nodes which are organized into a complete
graph by establishing the links.

Image-to-graph Operations These correspond to the VKR model construction from
the image/volume by using vessel extraction schemes. Some schemes may use inter-
mediate representations, such as a segmentation mask or a disconnected set of nodes
(see Figure 3.1).

Graph-to-image Operations Sometimes it is necessary to convert the graph into a
voxel representation (segmentation) that also involves branch labeling. This can be
used, for example, for overlaying and blending this labeled segmentation on top of
the original image and assigning a color to each label. These labels can also be used
as region of interests, to limit further processing operations on the source image to
corresponding branches.

Another set of graph to image operations is projection on 2D images (see Figure
3.1). A typical example is when we have a VKR model obtained from a 3D angiog-
raphy (such as CTA or MRA) and we want to project part of the model, such as the
centerline on a 2D X-ray angiography, in order to visualize the real paths of some
vessels that may be occluded.

Graph-to-mesh Operations These operations convert a vessel graph into a surface
mesh. The conversion depends on the actual representation of the graph. It can be
obtained by contour sweeping or by using a predefined mesh model either explicitly or
implicitly as described in section 2.4.1 among other techniques.

3.3.3.6 Model-specific Operations

We describe some model-specific operations that are not included in the previous classes
of operations and that are exclusive of the corresponding representations.
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Figure 3.6: Example of branch splitting operation to indicate an stenosis. A single
BranchNode is split into three serial nodes, where the middle node incorporates a
StenosisModel.

Graph Operations We consider here operations that modify the attributes of com-
mon nodes only, because graph operations will be specified in terms of node operations
and visitor patterns.

Graph Labeling is a straightforward operation that assigns unique labels to nodes.
Node Wrapping/Unwrapping are operations that transform a vessel graph into another
vessel graph in which some nodes are wrapped into a supernode (subclass of Compos-
iteNode) and viceversa. Node wrapping may require specific rules by which nodes are
merged into a single supernode. On the other hand, node unwrapping may work with-
out setting any rules by simply restoring the underlying nodes. A specific wrapping
operation is defined in order to convert a (B)BVG rep. into a OEVG rep. (see section
3.3.2.1) as defined in [66].

Branch Operations Operations that affect the branches as a whole are included here.
A specific operation for branches is assigning them an order in the (modified) Strahler
ordering system . This involves traversing all branches from the leaves to the roots.
If the diameter-defined method is used, this requires iteratively assigning orders and
calculating diameters.

Branch splitting is the operation of dividing a branch into several branches. This
operation (see Figure 3.6) may be performed, for example, to mark a region of a branch
as having a specific accident or disease model. Branch merging is the contrary opera-
tion, where several branch patches are merged into a single branch node. They can be
also considered as edition operations (see section 3.3.3.2).

Section interpolation is an operation that needs to be considered at branch level,
since it involves both, generation of new intermediate centerline points, that define
the section location, and estimation of section normal and boundary according to the
corresponding model.

Centerline Operations Centerline operations involve modification of the points that
define a centerline. Centerline generation operations, such as centerline tracking or
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skeletonization (see section 2.4.2 and 2.4.2), lie in this group, but they are usually
part of the vessel extraction schemes that explicitly deal with centerlines and are not
considered here.

Centerline interpolation is the process of resampling an existing centerline, or one
that is being created, following a given mathematical model of curve. For example, if
the distance between centerline points is not uniform, a linear resampling may produce
uniform sampling. Another possibility is to fit the centerline curve to a set of connected
B-spline curves.

Centerline filtering may also be used to convert a rough, noisy centerline into a
smoother centerline, by removal of points or by several types of smoothing filters, such
as average, median or anisotropic diffusion filters that operate on centerline points.

Centerline registration is the process of converting a centerline into another cen-
terline by applying a rigid or elastic transform to the points of the centerline. This
transform is obtained by minimization of a cost function, that is usually based on
image-values. Examples of centerline registration applications are comparison of ves-
sel geometrical features between different patients [146] or quantification of aneurysms
and stenosis [72].

Section Operations Section operations involve generally modification of the geom-
etry of the section, or re-estimation of the section normal4. As in the previous case,
these operations can be performed after or during the vessel extraction procedure. In
the second case, section generation can be considered as an inherent part of the extrac-
tion schemes described in section 2.4.2 but, like in the case of the centerline, some of
the algorithms can be applied at a post-processing stage.

Section interpolation can be performed in two ways, either by interpolating the
section geometry according to its mathematical representation (resampling of points,
etc.) or by interpolating sections by creating new intermediate sections. In the later
case, it also involves a modification of the centerline and as such, can be considered a
branch operation (see section 3.3.3.6).

Section filtering involves geometric filtering of noisy boundaries. It is similar to
centerline filtering and depends greatly on the section model.

3.4 Implementation Details

3.4.1 Programming Languages and Tools

The current implementation of the ideas presented in the paper is being developed in
cross-platform C++, and is fully compatible with ITK[196] from which the lowest level
structures are borrowed. We want to remark this compatibility since ITK is becoming a
de-facto standard for developing research and commercial applications based on med-
ical image analysis. The implementation is also fully compatible with CMake [119],
a cross-platform build tool that facilitates the use of a broad range of platforms and
compilers, increasing the potential number of users.

4re-estimation of the section center corresponds to a centerline operation
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3.4.2 Data Structures

In Figure 3.7 an Unified Modeling Language (UML) diagram of the most important
objects in the VKR model is depicted. We give an overview of the main object defini-
tions and their relationships. According to their function, we can distinguish two main
types of objects: data representation objects (left), that describe the vascular structure,
and algorithmic objects (right), that implement operations on the data representation
objects. As can be seen, there is almost a one-to-one correspondence between data
objects and algorithms. This separation between data objects and algorithmic objects
provides more flexibility, since it makes easy to define new algorithms without affect-
ing the data representations. Other more straightforward operations are implemented
as methods of the corresponding data objects. In Figure 3.7 we have set a horizontal
line that separates the depth level of the objects: data structures and algorithms above
this line correspond to graph level whereas those below the line operate at underlying
modelling levels.

The highest level data structure is the VesselGraph which may contain one or sev-
eral root nodes. All vessel graph nodes are subclasses of the GraphNode abstract class,
which provides generic node-handling operations and metadata such as node identi-
fiers, and VesselNode which is an abstract class specific for nodes of vessel graphs.
We chose not to model explicitly the edges of the graph. Thus, the graph consists of
nodes, that are connected by virtual links, which are implemented as references (point-
ers) to the corresponding nodes. GraphNodes contain a set of children nodes, as strong
references, and a set of parent nodes, as weak references 5.

Due to their importance, we provide a brief description of some salient imple-
mented node types:

• BranchNode: is the most important node type, which represents the physical
vessel segment that extends between two bifurcations. A BranchNode contains a
Centerline. We decided to implement the centerline as a placeholder of Section
objects, where the simplest section model is a point that represents the center-
line, instead of keeping a list of points on the centerline model itself. This forces
a one-to-one mapping and provides the flexibility for a non-explicit centerline
definition. Centerline points are thus the centers of Section objects, and can be
defined with any descriptor that identifies their geometrical position, such as eu-
clidean coordinates, image indexes, chain-codes, etc.. The same applies for the
points that define the section boundaries. This provides much flexibility in defin-
ing the centerline and section for a wide range of applications. In general, this
type of flexibility is provided in the VKR model by using Generic Programming
techniques [42].

• BifurcationNodes are more simple in their definition. They explicitly reference
confluent branches as parent/child nodes and their use is optional (see Figure
3.2). Algorithms may be devised to operate on bifurcation nodes to take advan-
tage of the direct access to confluent branches.

5Strong references imply a composition relationship and weak references an aggregation
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• CompositeNodes are nodes obtained by wrapping other nodes and exposing the
internal links only. The information about internal nodes and links is kept when
wrapping is performed, so the situation can be reversed easily. This ability may
provide several types of simultaneous representations of the vessel graph, as can
be seen in Figure 3.2 (right). One direct application is converting the branch
nodes of the same (modified) Strahler order into a single element using the node
type ElementNode.

• FeatureNodes indicate relevant features in vessels and incorporate an optional
feature model that describes the corresponding feature such as an stenosis (Steno-
sisModel) or aneurysm (AneurysmModel). They incorporate a VesselRegion struc-
ture that indicates the area affected by the feature in corresponding branches.

With respect to the algorithms, those that operate at graph level are subclasses of
GraphNodeVisitor and VesselGraphNodeVisitor. The use of the Visitor Pattern [55],
allows to separate the node definition from the operations on the graph by decoupling
the graph traversal from the node operations. These graph-level algorithms can be clas-
sified according to the objects they ultimately operate on. An algorithm may operate
at graph level because only graph elements are involved in the corresponding algo-
rithms. An example is calculating the number of nodes in the branch, or computing the
(modified) Strahler order of BranchNodes. Another possibility is that they encapsulate
algorithms that operate at deeper levels (such as the level of centerline or section) but
are applied to the corresponding structures on the whole graph and not only locally. In
this sense, the level of encapsulation of the data structure finds a correspondence in the
level of encapsulation of the algorithms. This makes possible to reuse local algorithms
and apply them to the whole graph. An example is the family of CenterlineAlgorithm
classes, which perform operations on a single centerline. These operations can be
performed for all the centerlines of the BranchNodes of a vessel graph by defining a
specific visitor (CenterlineAlgorithmVisitor) which encapsulates the former.

In Figure 3.8 we can see a representation of the external operations (we call them
“filters” here) that can be performed in order to create the VKR Model and to convert
it to other (3D) representations, such as surface meshes or segmentation masks. Ob-
jects of type correspond to the vessel extraction schemes commented in section 2.4.2.
Such an extraction scheme, may use the VKR Model as an intermediate representa-
tion and then use an algorithms of type VesselGraphToImageFilter to obtain the final
segmentation or a VesselGraphToSurfaceFilter object to obtain a surface mesh.

Finally, most high-level objects, such as filters, nodes, centerlines or sections are
implemented using reference counting, so they can be shared by many objects without
unnecessary copies and additional overhead.

Needless to say, implementation is an on-going never-ending process, evolving as
applications, imaging resources and computational algorithms evolve. Therefore, the
description given of current state and trends of our implementation must be assumed as
a core implementation aiming at a continuing incremental process incorporating new
algorithms, accepting new imaging resources and addressing innovative applications.
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Figure 3.7: VKR Model. Internal Implementation

Figure 3.8: VKR Model. External Implementation
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3.4.3 Prototype Execution Example

We are currently developing several vascular applications that make use of our VKR
model. As an example, a prototype is being developed to demonstrate some of the ca-
pabilities of the model. Once a 3D image is loaded, the user may trace the correspond-
ing centerlines, branch by branch, by means of a set of control points. These points
are interpolated by using a BSpline curve model by means of a Centerline operation
(see Section 3.3.3.6). The integration of our model with the model/view framework
of the user interface toolkit (Nokia Qt) is straightforward, and allows displaying sev-
eral views of the defined model, being the tree view the most intuitive for exploration.
Once a branch is selected in the tree, the properties of the corresponding sections may
be displayed also.

In Figure 3.9 we can see an interactive definition of the hepatic vein branches in
a 3D contrast-enhanced MRI of the liver. The projections of the resulting centerlines
are displayed in 2D orthogonal views (the vessel segments in green lie on the current
slice) and the corresponding 3D renderings are overlaid on a volume rendering of the
dataset. This allows an intuitive exploration and visualization, by displaying branches
in their real position and selecting them directly in the corresponding visualizations
via picking operations. Local plane sections may be calculated from the centerline
points, and the corresponding section images displayed. Furthermore, a curved planar
reformatting may be obtained from the centerlines that displays the vessel along their
whole length in a single plane. Obtained section images and curved reconstructions
may be stored within the model if necessary by simply subclassing the section and
centerline models, without modifying the existing algorithms, due to the adequate use
of generic programming techniques.

Currently we are extending the capabilities of the prototype for allowing different
types of sections and nodes, editing of branches and points, improved visualizations,
etc. We are developing similar prototypes for other applications that require different
models of sections, such as follow-up after aortic aneurysm repair, which requires a
delineation both of the aorta lumen and aneurysm thrombus. As mentioned before,
combining the definition of several types of vessel sections is eased by the versatility
of the model.

3.5 Conclusions

The evergrowing applications and techniques of Blood Vessel Analysis have produced
a complex landscape of algorithms and data representations that hinders the composi-
tion of procedures, the reuse of software and the comparative analysis in terms of com-
putational efficiency and quality of final results (visualization, measurement, edition,
and others). We have detected the need of proposing a foundational Vessel Knowledge
Representation (VKR) model that may allow the exchange of data among applica-
tions and users. One of the goals of VKR is the reuse of software pieces, providing
a ground functional layer that may serve as the basis for new developments, thus al-
leviating development efforts. The model can be used as an intermediate representa-
tion between image-based extraction schemes and clinical and research applications,
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Figure 3.9: Screen capture of the visualization given by the modeling application under
development. Lines correspond to vessel centerlines created interactively by a user over
a liver CTA.

to perform quantitative measurements on extracted vessel structures and to provide the
necessary vessel representation and handling tools for the target applications. In this
paper we have identified, from the literature and our own research work, the key knowl-
edge representation items, as well as the key operations that are the building blocks for
nowadays and future vessel analysis processes and applications.

VKR provides a versatile and efficient object-oriented representation of vessel struc-
tures and associated algorithms and quantitative data. It contemplates flexible data rep-
resentations for the vascular tree, underlying structures such as branches, bifurcations,
centerlines and sections, as well as vessel features such as stenosis, aneurysms, etc. It
also contemplates operations and algorithms that operate efficiently on corresponding
data structures. Furthermore, the model is designed so it can be easily integrated with
pre-existing frameworks. We are already applying the VKR model in vessel-related
applications related to our current research areas [90, 116, 115, 114, 113, 112].
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Chapter 4

Basic Differential Feature
Detection

This chapter presents the concepts of edge and ridge detection, scale-space analysis,
and their relationship with curvilinear structure detection. The objective of the chapter
is to lay-off the basic concepts and tools that form the building elements of the blood
vessel detection algorithms in medical images.

The structure of the chapter is as follows: Section 4.1 gives an introduction to the
chapter. Section 4.2 discusses edges and ridges. Section 4.3 introduces the principles
of edge detection. Section 4.4 introduces scale space image analysis. Section 4.5 intro-
duces the principles of ridge detection. Section 4.6 introduces second order detectors
based on the Hessian matrix. Section 4.7 discusses other features.

4.1 Introduction

Curvilinear structures, also known as line or tubular structures are small width elon-
gated structures present in both 2D and 3D medical images1corresponding to either
anatomical structures, such as blood vessels, bronchi, nerves, biliary ducts, etc. or
artificial structures, such as catheters, electrodes, stents, etc..

The basic geometrical property describing a line structure is that its length exceeds
by far its diameter; thus it can be considered as a 1D manifold in the 2D/3D embedding
image space. At every point of the line structure (with the exception of the end and
bifurcation or branching points) we can associate a direction, corresponding to the
direction of the centerline (aka medial axis/line [19]) of the line structure, and a section
line (in 2D images) or plane (in 3D images), that is normal to the axis direction. The
geometry of the line structure’s section is almost circular for small vessels, tending to
differ from the ideal circle for larger vessels or when clinical or anatomical anomalies
are present, such as stenoses or aneurysms.

1. The term line structure or line filtering is more used in the literature in the context of detection and the
term tubular structure is more used in volumetric image analysis.

45
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The typical intensity profile of a tubular structure measured on its section shows a
central elevation. The 2D or 3D shape of this elevation may be modeled as a Gaussian,
bar-like (also known as rectangular or boxcar), parabolic or roof cross-section [83,
164]. On the other hand, the intensity profile variation along the line direction is small,
assuming that there is no blockage that prevents the diffusion of the contrast media.
These hyperintensity properties are exploited by most detection methods.

The main goal of the vessel detection process is to detect curvilinear structures of,
within some limits, arbitrary shape and size, regardless of the section intensity profiles
[81]. Vessel detection methods are generally based on a ‘vesselness’ measure, which
can be calculated either locally or globally, estimating for each voxel the likelihood that
it belongs to a blood vessel. If the vesselness measure is specially designed to detect
the vessel centerlines, we call it medialness measure, as it refers to the medial line or
medial axis of the curvilinear structure.

4.2 Edges, Ridges and Curvilinear Structures in Im-
ages

One approach to curvilinear structures detection is to consider their cross-sectional
profiles as double-sided edges building detectors based on the image local derivatives.

Consider an ideal step edge along the y direction. Its cross-sectional profile in the
x direction corresponds to an ideal unit step or Heaviside function2:

u(x) =

{
1 x > 0
0 x≤ 0

(4.1)

A double-sided edge can be represented ideally with a rectangular function (aka
normalized boxcar, bar or pulse function), which can be expressed in terms of the ideal
step edge or bar profile as follows:

fb(x) = u(x+
ω

2
)−u(x− ω

2
), (4.2)

where ω is the width of the pulse. If we make the pulse narrower, by decreasing the
value of ω we obtain an ideal line-like structure with a rectangular cross-sectional
profile. In the limit, when ω → 0, we would obtain an ideal delta or Dirac pulse.

In real images, edge profiles are not sharp. Sometimes they can be approximated
by Gaussian or other functions, with some kind of noise added. Let us consider the
convolution of the previous ideal step functions with a Gaussian kernel in the x direc-
tion (Eq. 4.3). The effect of Gaussian convolution is to smooth the profiles so as to
obtain an smooth transition as can be seen in Fig. 4.1. In the case of the ideal line
with rectangular profile, the line in the middle corresponding to the maxima in the x
direction is known as an intensity ridge.

An intensity ridge [43] corresponds to local maxima of N-dimensional functions in
N-1 principal directions [43]. If we think of a 2D image as a 3D surface map, where

2an alternative definition is u(x) =
´

∞

x δ (x)dx where δ (x) is the Dirac or delta function
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Figure 4.1: Different ideal edge images (top row) and profiles along x direction (bottom
row) after smoothing with Gaussian convolution. Columns correspond to ideal unit step
(left), rectangular function (center) and line-like profile (right)

the height correspond to intensity, ridges correspond to the surface crests. On the other
hand, valleys follow the dual definition considering local minima instead of maxima.
Intensity ridges are important both in edge and linear structure detection, since they
may be used for the detection and localization of the corresponding structures.

The concept of edges and ridges can easily be extended to 3D images. The case of
the step edge is trivial and less interesting for our analysis and is simply a transition in
one direction of a volume. For the case of the double-sided edge or ridge, a 3D ideal
line can be represented by an ideal cylinder with rectangular, Gaussian or other types
of cross-section.

Let us consider a ramp edge profile as depicted in Fig. 4.2 (a) and the corresponding
first and second order derivatives in Figs. 4.2 (b) and 4.2 (c), respectively. The first
derivative of this ramp is a pulse. Narrowing the ramp (Fig. 4.2, second row), we
approximately have a line structure for the first derivative. Performing a Gaussian
convolution on the ramp edge (Fig. 4.2 bottom row), we approximately obtain an
intensity ridge for the first derivative.

From the previous analysis we can conclude that the analysis of line structures is
equivalent the analysis of the first derivative of standard single-sided edges of various
profiles. Thus, from the review of the main edge detection techniques, we can draw
some conclusions important for the task of line detection.

As we have seen, there is a connection between the analysis of edges and the anal-
ysis of line structures and ridges, since the latter can be derived from special edge
definitions and from the first-derivatives of single-sided edges.
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Figure 4.2: Several models of an ideal ramp edge (left column) and corresponding first
(center column) and second (right column) derivatives. The first row corresponds to a
wide edge, the second row to a narrow edge and the third row correspond to the narrow
edge after Gaussian convolution (smoothing).
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4.3 Principles of Edge Detection

4.3.1 The Problem of Edge Detection
The goal of edge detection methods is to find a set of curves that define the signif-
icant image edges that represent the boundaries of the objects of interest and reduce
the amount of information to be processed [30]. Edge detection is affected by noise,
illumination conditions, image resolution, contrast, etc.

One of the most common approaches for edge detection is to use detectors based
on the local derivatives of the image, usually first- and second-order derivatives. In the
analysis of first and second-order derivatives of ramp profiles in [57] (pp. 572-576)
they conclude that:

• Edges can be detected by the magnitude of the first derivative.

• The second derivative gives two responses for a single peak, corresponding to the
positive and negative image curvatures at each side of the edge. This is initially
an undesirable property since we would like a single signed response.

• The second derivative gives two responses of different sign. Thus the edge can
be detected by considering the zero-crossing of the second derivative.

• Derivative-based calculation is very sensitive to noise, and this effect is more
evident in the second-derivative, since it is more sensitive to small variations in
the signal.

When trying to detect a given profile using derivatives, there is a limit or scale of noise,
from which the derivative values start degenerating considerably. The reason is that,
when calculating derivatives we are not comparing any more the source, signal with
noise, but local variations of the signal with noise. Depending on the scale at which
these differences are observed, they may be small and they may become close to the
magnitude of noise.

This led to think that some sort of scaling in the derivative calculations was nec-
essary, so differences are taken into account only at the appropriate scale or aperture
at which differences are meaningful. On the other hand, scale-selection implies re-
moval of structures at coarser scales without introducing new spurious details [79] so
scale-selection must performed via some sort of smoothing which also removes noise.
Conversely, by blurring images to remove noise what we do is to make measurements
at larger scales above the scale of noise, where image entities are more meaningful.

To sum up, in order to calculate derivatives robustly and coherently we must devise
a way to calculate smoothed and scaled image derivatives.

Gaussian filtering is widely used as a pre-processing step while calculating deriva-
tives and also for scale-space image analysis (see Section 4.4). In image processing, it
is achieved by convolving an input source image with discrete approximations of the
continuous, normalized (unit integral) Gaussian function:

g(x;σ) =
1√

2πσ
e−

x2

2σ2 (1D) (4.3)
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g(x,y;σ) =
1

2πσ2 e−
x2+y2

2σ2 (2D) (4.4)

g(x1,x2 . . .xN ;σ) =
1(√

2πσ
)N e−

∑
N
i=1 Xi
2σ2 (ND) (4.5)

The degree of smoothing is controlled by the aperture3 σ of the Gaussian (the
larger, the smoother). It has several important properties that makes it specially ade-
quate in many circumstances. We can mention here a few:

• The Fourier transform of a Gaussian function in spatial domain is a Gaussian
function in the frequency domain, usually centered at zero and with standard
deviation 1/σ , which corresponds to a low-pass filter . For a normalized 1D
Gaussian function, its Fourier transform is:

G(ϖ) = e−
ϖ2σ2

2 (4.6)

• The Gaussian is the function that optimizes the localization in both the spatial
and frequency domains. In Section 4.4.1 we will see that these both localization
requirements are desirable for smoothing filters but are conflicting: localization
in the spatial domain spreads the spectrum in the frequency domain and vicev-
ersa. This can easily be seen in formulas 4.3 and 4.6: if we decrease σ in the
spatial domain it increases in the frequency domain. The Gaussian function op-
timizes this trade-off with respect to another types of filters.

• Gaussian convolution is linearly separable: this means that, instead of using one
large 2D Gaussian kernel, one can use a 1D kernel and apply it successively in
x and y direction, which is computationally much more efficient (unless applied
for a single pixel). The same applies for a higher number of dimensions.

• Gaussian convolution has infinite support: theoretically one would need the
whole image to compute the smoothed value for every pixel. However, in prac-
tice, the contribution of pixels at a distance of more than 3σ is usually negligible
and kernels can be designed in order to obtain the desired accuracy within some
limits, for example in terms of the unit integral[109] .

• The convolution of two Gaussians with standard deviations σ1,σ2 is another

Gaussian with standard deviation
√

σ2
1 +σ2

2 . This can be easily proved in the
frequency domain:

G1(ϖ)G2(ϖ) = exp
(
−ϖ2σ2

1
2

)
exp
(
−ϖ2σ2

2
2

)
= exp

[
−

ϖ2
(
σ2

1 +σ2
2
)

2

]
(4.7)

The problem remains of finding the desired edges by building an edge detector that
uses these derivatives. An ideal edge detector should have the following properties
[30]:

3The use of the term aperture is common in the computer vision literature when referring to the standard
deviation of the Gaussian
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Figure 4.3: Ideal ramp edge (left column) and corresponding first (center column) and
second (right colum) derivatives with increasing values of noise (from top to bottom
SNR = 100, 65, 35).

• Good detection: the algorithm should find most edges of the image avoiding
false edge detection. This criterion corresponds to maximizing the signal-to-
noise ratio.

• Good localization: the algorithm should obtain edges close enough to the center
of the true edges.

• Single response: ideally we would like to obtain a single response per edge (im-
portant for ideal centerline detection).

Edge detection algorithms must find a compromise between the two first requirements.
If we are going to suppress noise by smoothing in order not to detect false edges, which
is equivalent to increasing the scale or aperture by increasing the support of the filter,
then we will blur the real edges obtaining a poorer localization. On the other hand, if we
deal with small scales preserving all the details, we will localize better the true edges
but will also detect noisy spurious details. In most cases, a single scale of analysis
is not sufficient to detect all edges of the image and one must devise a way to obtain
responses at different scales and integrate them into a single, multiscale representation.
The same applies for the detection of ridges and other features.

4.3.2 First-order Derivative Methods
Most of first-order derivative edge detection methods are search-based methods. The
idea is to compute a measure of edge strength, such as the gradient magnitude, and of
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edge direction, such as the normal to the gradient vector. Then, the edge location can
be found as the local maxima in the edge direction.

The components of the image gradient are the first order derivatives of the image f
in each direction. For a 3D image:

∇ f (x,y,z) =
∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂ z

k = fxi+ fy j+ fzk (4.8)

The gradient magnitude provides a measure of the edge strength:

|∇ f (x,y,z)|=
√

f 2
x + f 2

y + f 2
z (4.9)

and the unit vector in the direction of the gradient provides information about the edge
orientation:

u∇ f (x) =
∇ f (x)
|∇ f (x)|

(4.10)

where we have chosen the notation for the first derivatives fi =
∂ f
∂xi

. When using

higher order derivatives, we will use the notation fi j =
∂ f

∂xi∂x j
. Derivatives in other

directions can be calculated as the scalar product of gradient and the unit vector u in
the desired direction:

fu =
∂ f
∂u

= ∇ f ·u (4.11)

Since the gradient is a continuous function and we are dealing with digital images,
it is necessary to compute discrete approximations of the gradient. Discrete derivatives
in one dimension are computed using finite differences. In order to compute discrete
image gradients, we must devise convolution kernels that may calculate derivatives in
all possible image dimensions. The basic properties that these kernels must meet are:

• The coefficients must sum to zero, in order to obtain zero response in constant
regions (differently from smoothing kernels which must sum to one in order not
to change constant regions).

• Obtain high absolute values in places of high contrast.

• Avoid the introduction of sampling artifacts and spurious details.

Numerous convolution kernels for derivative calculation can be found in the literature,
such as the Prewitt, Sobel or Robert-Cross operators [57]. These kernels can be thought
of as a rough approximation to the first order derivative of a Gaussian function which
presents interesting properties for edge detection [30]. However, these kernels per-
form poorly when edges are blurred and noisy . Convolution and derivative operations
are commutative and associative. Take for example Gaussian filtering and derivative
calculation on an image (we could have taken averaging instead of Gaussian):
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∂

∂x
( f ∗g) = f ∗ ∂g

∂x
(4.12)

For our scaled derivative calculations used in tubular structure detection we have
developed discrete implementations of the Gaussian derivatives using 1D kernels in
different directions as explained in [109] where 1D kernels are calculated for desired
order of derivatives and apertures and then applied in the corresponding directions.

If we obtain the gradient magnitude of an image, most of the edges resemble a
line-like structure with some thickness. The corresponding profiles show in most cases
a raising gradient magnitude, a peak, corresponding to the ridge, and a falling gradient
magnitude. Thus, the problem of edge extraction with first-order derivative methods
corresponds to the problem of finding the intensity ridges of the gradient magnitude
images which leads to second-order derivative methods.

4.3.3 Second-order Derivative Methods
Second-order derivative methods try to find the maxima of the gradient magnitude
directly, since they correspond to local maxima in the direction of the edge’s normal,
looking for points where the second derivative of the image becomes zero. As we have
seen in 4.3.1, in the presence of an edge, the second derivative gives two responses of
different sign and the zero-crossing of the second derivative is located, approximately,
on the center of the edge. The problem of edge detection is stated as the problem of
finding the zero-crossings of the second derivative in the appropriate direction. The
advantages of finding zero-crossings is that they are easier to estimate than the maxima
of the gradient magnitude and they always form closed contours.

In 2D/3D images, edges are not necessarily oriented in the main axes directions,
and we need detectors that can cope with different edge orientations. One idea is to try
to estimate the edge direction locally (corresponds to the orientation of the zero cross-
ing) and then calculate the derivative of the gradient magnitude in that direction (di-
rectional second derivative). The orientation of the zero-crossing will have maximum
slope under the assumption of linear variation, that is, when the intensity variation near
and parallel to the line of zero-crossings is locally linear, which is approximately true
for smoothed images [118].

The disadvantage of this approach is that it would require either multiple convolu-
tions in different orientations, in order to search for the maximum response, or alterna-
tively, an optimal estimation of the direction.

Another approach is to use some sort of detector valid for different edge orienta-
tions. The only rotationally-invariant second-order operator is the Laplacian, which is
the scalar product of the gradient vector by itself:

4 f = ∇
2 f = ∇ ·∇ f =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 (4.13)

Two different convolution kernels may be used typically to calculate the Laplacian:
The Laplacian operator is usually used in conjunction with a Gaussian operator for

smoothing and scale selection because Laplacian zero-crossings are only effective in a
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Figure 4.4: Laplacian convolution kernels in 2D.

band-limited situation. Again, due to the associative and commutative properties of the
convolution, we can combine both operators

gσ (x,y) =
1

2πσ2 e−
x2+y2

2σ2 (4.14)

4 [gσ (x,y)∗ f (x,y)] =4 [gσ (x,y)]∗ f (x,y) = LoG∗ f (x,y) (4.15)

and obtain an expression for the new operator

LoG ,4 [gσ (x,y)] =
∂ 2g
∂x2 +

∂ 2g
∂y2 =

x2 + y2−2σ2

σ4 gσ (4.16)

The resulting LoG operator, that depends on theσ scale parameter, is known as the
Laplacian of Gaussian or Marr-Hildreth operator [118] and can be seen in Fig. 4.5,
where we can also see the corresponding second derivative components. The scale,
corresponding to the σ value of the Gaussian, should be chosen according to the size
of the edge features to be detected. Discrete approximations may be obtained for each
scale value by several methods, for example by approximating and truncating the Gaus-
sian function (sampled Gaussian kernel) or by discrete derivative approximations using
the discrete Gaussian kernel, which preserves scale-space properties [97].

Another second order approach is the Difference of Gaussians (DoG) operator
[107]. From the fact that scale-space representation of an image L(x,y; t) satisfies the
diffusion equation [79]

∂L(x,y; t)
∂ t

=4L(x,y; t) = L2
x(x,y; t)+L2

y(x,y; t) (4.17)

also called Laplace equation, it follows that the LoG operator can be found as the limit
of the difference between two Gaussian smoothed images:

4L(x,y; t) = lim
4t→0

2
4t

(L(x,y; t +4t)−L(x,y; t)) (4.18)

where L(x,y; t) = f (x,y)∗g(x,y; t) and t = σ2.

Hence, subtracting two Gaussian smoothed images with different apertures we ob-
tain an edge detector. The DoG operator is an approximation of the Laplacian of Gaus-
sians but does not require complex second order derivative calculations which made its
use quite popular.
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Once the zero-crossings have been calculated, a magnitude can be assigned to them
at each scale, as the slope of the second directional derivative taken perpendicular to
the zero-crossing segment [118]. Another possibility is to simply use the gradient
magnitude at the zero-crossing location.

The use of the LoG operator requires that the intensity variation along, but not nec-
essarily near, the line of zero-crossings is approximately linear. Then the Laplacian
zero-crossings will coincide with the local orientation line zero-crossings [118]. How-
ever, this operator exhibits severe localization errors in curved edges and other places
where the intensity varies in a non-linear way [118, 157]. Moreover, it detects false
edges corresponding to local minima of the gradient magnitude and it is difficult to
combine the information obtained from the zero-crossings at different scales so it is
not currently used in practice.

Extensive local second-order derivative information may be obtained by calculating
the Hessian matrix at an image point. Its components are the image second-order
spatial derivatives. A second-order Taylor expansion of a 2D image around a point x0
is:

f (x0 +4x,y0 +4y)w f (x0,y0)+
[
4x 4y

][ fx(x0,y0)
fy(x0,y0)

]
+

+
1
2
[
4x 4y

][ fxx(x0,y0) fxy(x0,y0)
fxy(x0,y0) fyy(x0,y0)

][
4x
4y

]
We obtain an expression which is valid for N-dimensional scalar images

f (x0 +hv) = f (x0)+h∇ f (x0,y0) · v+
1
2

hvT H (x0,y0)v+O(h3) (4.19)

where H is the symmetric Hessian matrix, h is the step size and v is a unit vector in
the direction of the step. The Hessian matrix H captures the second order local
structure of the image in the vicinity of x0, corresponding to the local image
curvatures as it is described in more detail in section 4.6.

Different features may be obtained from the Hessian matrix. The Laplacian in eq.
4.13 corresponds to the trace of the Hessian matrix:

4 f = ∇
2 f = tr(H (x)) (4.20)

A more in-depth analysis of the Hessian matrix properties is performed later in
section 4.6 in the context of line structure detection.

4.3.4 Advanced Edge Detection
Marr and Hildreth introduced important concepts such as some notion of scale, that was
later conceptualized in the framework of scale-space, first introduced by Witkin [188],
and Gaussian filtering as a means of scale selection [79]. However, early edge detectors
such as the Marr-Hildreth operator exhibited several problems which led researchers
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Figure 4.5: Surface plots of ∂ 2g/∂x2 (top) and ∂ 2g/∂y2 (middle) and Laplacian of
Gaussian (bottom). All surfaces are calculated for σ = 1.0.



4.3. PRINCIPLES OF EDGE DETECTION 57

to develop new strategies such as optimal edge detection, integration of information
at multiple scales and non-linear filters. It is not our intention to make an extensive
review on the subject of edge detection (see for example [134] or [15]) but rather focus
on some interesting concept useful for tubular structure detection.

4.3.4.1 Canny-like Edge Detectors

Canny [30] developed a computational theory of edge detection in order to find the
optimal edge detector which maximized the criteria of detection, localization and sin-
gle responseness (see Section 4.3.1). He showed that there is an uncertainty principle
regarding detection and localization of noisy edges and that one must find a trade-off
between these. He then derived an optimal detector which is the sum of four com-
plex exponentials, but which can be approximated in practice by the first derivative of
Gaussian functions, which is much more efficient to compute. Compared to the Marr-
Hildreth operator, its 2D performance is better in terms of detection and localization
due to its directional properties. Moreover, the amplitude of the response is a good
estimate of edge strength and compared with the zero-crossings of the Laplacian, it can
be thresholded adaptively to find local maxima.

Canny’s edge detector finds the zero-crossings of the second-order image derivative
in the edge direction n:

∂ 2

∂n2 g∗ f (4.21)

which correspond to the maxima of the derivative in the edge direction. First, an
estimate of the local edge direction is computed using the gradient:

n =
∇(g∗ f )
|∇(g∗ f )|

In practice, the direction can be rounded to one of four edge directions at angles of
0º,45º,90 and 135º.

Often the Canny algorithm computes the first directional derivative of Gaussian
filtered image

∂

∂n
g∗ f (4.22)

performing later the non-maximum suppression in the gradient direction in order to
compute single edge responses. Due to the separability of the Gaussian functions, the
above scheme can be implemented efficiently by first convolving the image with a 1D
Gaussian in each dimension and then computing the derivative in the edge direction
only.

Compared to the Laplacian, the latter can be decomposed into second derivative
components in two arbitrary orthogonal directions. If we choose as directions the gra-
dient direction and its normal, then we will have a contribution in the gradient direction
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which is essentially the same as the operator described by Canny, and another contri-
bution which does not contribute to detection and localization but to noise only.

The last stage of the Canny algorithm is to threshold the edges in order to remove
the response for false edges by using hysteresis thresholding, which is a sort of adaptive
thresholding. The algorithm is sensitive to weak edges but the problem is that this also
makes it sensitive to spurious or unstable edges [15].

Canny also devised a way to combine the output from multiple scales in what is
known as feature synthesis. In a similar approach Schunk [153] also performed scale
integration by combining ridge information obtained from detected edges across scales.

One recurrent problem in multi-scale approximation is that sometimes there are no
indications on how to choose the number and range of scales. Jeong and Kim [71] tried
to find the optimal scale for every pixel by minimizing the following energy function
on the filter width domain σ :

E(σ) =

ˆ ˆ [
(I ∗g)2 +λ

∣∣∇σ
−1∣∣2] (4.23)

designed for large apertures in flat areas and small apertures in places of high intensity
variation and smoothness in the resulting scale map. It is slow, but its performance
could be greatly improved with a preselection of candidate points. A similar adaptive
idea by Deng and Cahill [39] uses the following formula for scale selection:

σ
2(x) =

kσ2
n

σ2
f (x)+σ2

n
(4.24)

where σ f is the local variance and σn is the standard deviation of the image noise,
assumed Gaussian.

Lindeberg [101] proposed, within the scale-space framework (see Section 4.4)
a method for edge detection based on the maximization of two γ-normalized edge
strength measures:

Gγ−normL = σ
γ
(
L2

x +L2
y
)

(4.25)

Tγ−normL = σ
3γ
(
L3

xLxxx +L3
yLyyy +3L2

xLyLxxy +3LxL2
yLxyy

)
(4.26)

where L is the scale-space representation of the image and γ is a parameter that makes
the scale selection dependent on the edge diffuseness. Equation 4.25 corresponds to
the gradient magnitude equation 4.26 takes into account that the edge is located at a
maximum of gradient magnitude, that is, with zero second derivative and negative
third derivative.

The problem with this approach is that the user has to provide a set of desired scales in
a range and the use of high order derivatives may be problematic and not justified by
the results, which are similar to other existing methods [15]. However, the automatic
scale selection and multiple scale integration used by Lindeberg are interesting
concepts that can be applied directly to most line structure detectors that are based on
derivative calculations.
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4.3.4.2 Steerable Filters

Canny-like filters use optimal 1D edge detection operators in the gradient direction and
smoothing in the orthogonal direction(s). Freeman and Adelson [52] proposed an al-
ternative approach that uses a set of directional filter banks for predefined orientations,
what is known as steerable filters. In this approach, detectors for arbitrary orientation
can be generated by linear combination using these oriented filters as basis functions.
They demonstrated that all functions that can be expressed as a Fourier series in an-
gle or as a polynomial multiplying a radially symmetric window function are steerable
in orientation. Hence, derivatives of Gaussian of all orders are steerable since they
consist of polynomials (here the Hermite polynomials) multiplying a Gaussian which
is rotationally symmetric (see section 4.4.2). In order to synthesize filters with arbi-
trary phase response, they use filters in quadrature (same frequency response but with
a phase difference of 90º) which can be found using a Hilbert transform [23], that may
be approximated via polynomial fit. Thus, a set of steerable filters is combined with
another set whose originating functions (the non-rotated versions) are in quadrature.

One example of such combination of filters is to combine the second derivative of
Gaussian f (x,y) = G0º

2 =
(
4x2−2

)
exp(x2 +y2)4, with rotated versions for 0º, 60º and

120º:

Gθ
2 = k1(θ)G0º

2 + k2(θ)G60º
2 + k3(θ)G120º

2 (4.27)

where the ki can be found solving a set of equations for the steering conditions
yielding

ki(θ) =
1
3
[1+2cos(2(θ −θ j))] (4.28)

Then, the Hilbert transform of G2 can be approximated by a third order polynomial,
namely H2 with four rotated versions that are used as basis functions. Thus the seven
basis functions of G2 and H2 are sufficient to shift G2 to the desired phase and
orientation. Similar approximations can be found for other orders of derivatives.

Steerable filters can be used, among other things, to estimate local feature orienta-
tion and strength. The squared magnitude of the quadrature pair filter can be used to
estimate the orientation θd with largest strength:

E2(θd) =
[
Gθd

2

]2
+
[
Hθd

2

]2
(4.29)

Using an scheme similar to Canny’s but replacing the feature detector with this
energy, one obtains single responses to different features, as compared with Canny’s
method that gives spurious responses to non-edge features, such as double responses
for lines. One major drawback is that the process of obtaining the Hilbert transform
in order to design quadrature filter pairs is very difficult and tedious. Weiping and

4We follow here the notation from Freeman and Adelson with the subscript for the derivative order and
the superscript for the angle
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Huazhong propose an alternative to the Hilbert transform that uses dyadic B-spline
wavelets [179].

Jacob and Unser [69] developed a set of truly 2D feature detectors following Canny-
like optimization criteria but obtaining explicit expressions. Moreover, they used the
ideas of Freeman and Adelson in order to design optimal 2D detectors which were
steerable. The use of this framework is demonstrated by developing specific detec-
tors for edge, ridge and wedge features that outperform Canny’s detector without any
relevant additional computational cost.

4.4 Image Analysis in Scale-space

4.4.1 Concept of Scale-space
When faced with the problem of image analysis, one important consideration is that an
image is a physical observable that represents the reality as measured by some appa-
ratus that is able to register some physical measure (typically illumination, but may be
any other physical observable phenomenon such as X-ray attenuation, magnetic res-
onance, etc.) in a regular discrete finite grid and with a certain dynamic range. This
implies that there exist a finite scale range at which observations are made [46]. The
lower bound of this scale range, often referred to as the inner scale, is determined by
the sampling characteristics of the device and it refers to the size of the finest possible
feature that can be detected. The upper scale bound is limited by the scope of the field
of view and refers to the coarsest features that can be observed on the image. More-
over, objects, illumination changes, details and other features represented in digital
images have different sizes and some of them are only meaningful at a certain range
of scale(s). This finite scale range and multi-scale image nature must be taken into
account when performing any image analysis task in order to fix the proper scale(s) at
which calculations are meaningful.

Sometimes, calculations performed at a single scale may miss some information.
No single filter can be optimal simultaneously at all scales and a multi-scale approach is
necessary, which deals with every relevant scale separately. This happens for example
when trying to detect some objects or entities whose coarse and fine details span a
variable range of scales and all the information is relevant. This is the case for example
of images of the human vasculature. A complex vascular network is comprised of
multiple vessels of varying length and diameter and multi-scale approaches are required
in most cases for the detection and extraction of the whole vascular tree.

When faced with the problem of multi-scale analysis of digital images, it is neces-
sary to find a way to convert the images into a multi-scale representation and deal with
each scale separately. This leads to the basic idea of taking local averages at various
resolutions, in a sort of smoothing filter, and detecting changes of intensity that occur
at each one. To achieve this, it is necessary to:

• Find the optimal smoothing filter in order to obtain image representations at
different scales, which is known as a scale-space image representation.

• Detect the intensity changes at each scale.



4.4. IMAGE ANALYSIS IN SCALE-SPACE 61

• Integrate the information obtained at different scales.

When designing the optimal smoothing filter two important considerations must be
taken into account [118]:

• Filtering should reduce the range of scales over which intensity changes take
place. This implies that the frequency spectrum of the filter must be smooth and
roughly band-limited with a small variance ∆ϖ .

• Features at each scale should be spatially localized. This implies that the contri-
butions to each point in the filtered image should be obtained from a smoothed
average of nearby points, so the filter must be smooth and localized in the spatial
domain with a small variance ∆x.

The problem is that these two localization requirements, one in the spatial and the other
in the frequency domain, are conflicting and related by the uncertainty principle that
states that ∆ϖ∆x≥ π/4 [23]. This means that it is impossible to concentrate a function
both in the spatial and frequency domain. The more concentrated it is in the spatial
domain, the more spread it is in the frequency domain. The best trade-off is achieved
with the use of Gaussian functions.

The structure of images, the properties that a scale-space representation of an im-
age should have and the way to accommodate such a scale-space representation in a
mathematical theory was studied in depth by several authors [188, 79, 198, 99, 46].
Their basic idea for a scale-space representation of an image is that it should consist
of a one-parameter family of derived signals from fine to coarse scales as the scale pa-
rameter t increases, where the fine details are suppressed successively at coarser scales.
The original signal will be the one with the finest details, that is, the one at the low-
est scale. Mathematically, for an N-dimensional signal f : RN → R, its scale-space
representation L : RN×R+→ R is defined as the convolution:

L(x; t) = (Tt f )(x)
ˆ
~ξ∈RN

f (x−ξ )g(ξ ; t)dξ = g(x; t)∗ I(x) (4.30)

where g : RN×R+→ R is a family of functions in the scale parameter t. These
functions act as operators that interact with the data in order to extract relevant
information and generate the corresponding representations. The scale parameter t is
equivalent to the aperture of the physical observation device. Sometimes g is called
the aperture function.

A key requirement for obtaining this scale-space representation is that structures
obtained at coarser scales, should be a simplification of the structures at lower scales,
and that no new structures should be generated when going from a fine to coarse scale.
Instead, the fine details should be “flattened” when moving to coarser scales. This idea
was formalized by several authors in order to arrive at similar conclusions, by taking
also in consideration some scale-space axioms [79]. These axioms take into account
some desired properties of the scale-space representation as well as some practical
issues and reduce the number of possible scale-space representations to a smaller class.
We summarize here some of the most important:
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• linearity

Tt(a f (x)+bh(x)) = aTt f (x)+bTth(x) (4.31)

• spatial shift invariance, implies the convolution in 4.30, that is, we scan the
aperture over any possible location of the signal (image).

• non-creation of local extrema (zero-crossings) in one dimension, meaning that
no new information or spurious details should be generated when going from
fine to coarse scales.

• non-enhancement of local extrema (zero-crossings) with increasing scale in mul-
tiple dimensions, meaning that fine details should not be enhanced at larger
scales. For spatial maxima and minima respectively:

∂tL(x; t)≤ 0 (4.32)

∂tL(x; t)≥ 0 (4.33)

• rotational symmetry / isotropy, meaning that there is no preferred orientation.

• scale invariance, meaning that there is no preferred scale

• semi-group structure, meaning that the action of two operators is equivalent to
the same action done by a single operator of the same type. That is a concatena-
tion of two rescalings, should be a third rescaling in the form

g(x; t1)∗g(x; t2) = g(x; t1 + t2) (4.34)

• cascade smoothing property, related to the previous

L(x; t2) = g(x; t2− t1)∗L(x; t1) (4.35)

It can be demonstrated [12, 79, 188, 198] that the Gaussian kernel5

g(x; t) =
1

(2πt2)N/2 e−∑
N x2

i /(2t) (4.36)

is the only family of functions that meet all these requirements. From these, the
“non-creation / non-enhancement of local extrema” are the crucial axioms which
relate scale-space to smoothing, hence the selection of the Gaussian.

Thus, one can obtain a multi-scale representation L(x; t) of the image f (x) by con-
volving the original image with a Gaussian kernel g(x; t) for different values of the
scale parameter t.

Equivalently, this family of functions can be obtained as the solution of the diffu-
sion equation

∂tL =
1
2

∇
2L =

1
2

N

∑
i

∂iiL (4.37)

5Note the change of variable t = σ2 with respect to the standard representation of the Gaussian function.
This notation using the scale parameter t is typically used in the scale-space framework.
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with initial condition L(x;0) = f (x) ∀x ∈ RN [97].

4.4.2 Scale-space and Derivatives
The scale-space representation provides a consistent way of calculating scaled, smoothed
image derivatives. Spatial derivatives of the smoothed intensity function L can be cal-
culated at each level of scale, the so called Gaussian derivatives. For example, for 2D
images, these partial derivatives would be

Lxiy j(x,y; t) =
(
∂xiy j L

)
(x,y; t) =

∂ i+ jL
∂xi∂y j (4.38)

We have already seen how some methods, such as the Marr-Hildreth operator, in-
corporated implicitly this concept of Gaussian derivatives as a method for scale selec-
tion. As Florack states [46] disregarding the intrinsic size of the entities depicted on an
image or, in other words, the scaling degree of freedom, is the cause of the failure of
naively applying differential methods in image analysis. Hence, equation 4.38 provides
a way of appropriately computing scaled, smoothed derivatives that take into account
the scale of the different features and that deals at the same time with noise.

Since the derivative operator commutes with the Gaussian operator we have that

Lxiy j(x,y; t) = ∂xiy j (g∗ I) = g∗∂xiy j I = ∂xiy j g∗ I (4.39)

This means that we can smooth the whole image and then compute its derivatives,
or compute derivatives and then smooth the image or even generate a derivative of
Gaussian kernel which is convolved with the image [109]. Depending on the situation
this may lead to a reduced number of operations. If several derivatives must be com-
puted, it is sometimes easy to convolve the image with a Gaussian kernel first, and then
compute the desired derivatives. However, if a single derivative must be calculated,
or derivatives are calculated in a few points only, it may be better to use Gaussian
derivative kernels.

When computing scaled derivatives, we must take into account that the whole im-
age should be scaled for consistency using the Gaussian kernel, even if in some direc-
tions the derivative order is zero. Take for example the case of computing the second
derivative in the x direction of a 2D image. We would precompute a 1D kernel for the
second derivative of Gaussian at the desired scale t and then apply it in the x direction.
However, this would be inconsistent with filtering the image with a Gaussian and cal-
culating the second derivative in the x direction, since the y direction remains unscaled,
and is not affected by the smoothing. Unless we explicitly want an anisotropic behav-
ior, we should also convolve the image in the y direction with a (zero-order) Gaussian
kernel with the same aperture.

Another related property is that the derivative of a Gaussian is another Gaussian
multiplied by a polynomial of the same order as the derivative. Calculating the deriva-
tives analytically we obtain:

gx =
∂g
δx

=− x
σ2 g, (4.40)
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gxx =
∂ 2g
∂x2 =

x2−σ2

σ4 g, (4.41)

gxxx =
∂ 3g
∂x3 =

−x3 +3σ2x
σ6 g, (4.42)

g4x =
∂ 4g
∂x4 =

x4−6σ2x2 +3σ4

σ8 g, (4.43)

g5x =
∂ 5g
∂x5 =

−x5 +10σ2x3−15σ4x
σ10 g. (4.44)

Thus, the derivatives take the form:

gnx =
(−1)n

σ2n Hn(x;σ)g (4.45)

where Hn(x) are the Hermite polynomials6 modified by the introduction of the
sigma parameter (they are derived from the derivatives of e−x/2σ2

instead of e−x/22
)

but the properties are the same. These polynomials form an orthogonal polynomial
sequence which means that the Hermite polynomials are orthogonal in the interval
[−∞,∞] with respect to the weight function W (x) = e−x2/2. Mathematically:

∀{m,n ∈ N |m 6= n}⇒
ˆ

∞

−∞

Hm(x)Hn(x)e−x2/2dx = 0 (4.46)

Hermite polynomials of any order can be obtained using recursive and explicit for-
mulas. We can easily find a recursive formula for these modified polynomials.

∂ ng
∂xn =

∂

∂x

(
∂ n−1g

∂x

)
=

∂

∂x

(
(−1)n−1

σ2(n−1) Hn−1(x,σ)g(x)
)

=
(−1)n−1

σ2(n−1)

(
∂

∂x
(Hn−1(x,σ))g(x)+Hn−1(x,σ)

∂g
∂x

)
It can be proved [8] that :

H
′
n(x) =

∂

∂x
(Hn(x,σ)) = nHn−1(x,σ)

and hence we obtain

∂ ng
∂xn =

(−1)n−1

σ2(n−1)

(
(n−1)Hn−2(x,σ)g(x)− x

σ2 Hn−1(x,σ)g(x)
)

gnx =
∂ ng
∂xn =

(−1)n−1

σ2n

(
(n−1)σ

2Hn−2(x,σ)− xHn−1(x,σ)
)

g(x) (4.47)

6We use the probabilistic definition of Hermite polynomials. The physics definition is slightly different
in the coefficients and derived recursion and explicit formulas.
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and thus, comparing with equation 4.45 we obtain the recursive relationship:

Hn(x,σ) = (n−1)σ
2Hn−2(x,σ)− xHn−1(x,σ) (4.48)

that allows to calculate polynomials up to any order easily. We used this property in
[109] to calculate Gaussian derivative kernels as an alternative to finite differences.

4.4.3 Scale-space and Discrete Signals
In order to implement the scale-space representation for discrete signals, one must
think of discretizing the Gaussian function and its derivatives. Derivatives are usu-
ally discretized using finite difference approximations. However, discretization of the
Gaussian function is more complicated since it has theoretically infinite support. A di-
rect way is to compute a sampled Gaussian kernel, by sampling the Gaussian function
at discrete intervals and truncating it at the ends to obtain a filter with finite impulse
response. Suppose we obtain a sampled Gaussian kernel with 2M+1 terms that is con-
volved with the input signal

L(x; t) =
M

∑
n=−M

g(n; t) f (x−n) (4.49)

For an normalized Gaussian we can find a reasonable value for M on the basis of
the unit integral, by adding the generated coefficients up to a desired error:

1−
M

∑
n=−M

g(n; t)< ε (4.50)

However, the sampled Gaussian kernels may lead to implementation problems, in
particular for small scales or when calculating higher order derivatives. Moreover, it
can be demonstrated that scale-space properties are not preserved [97].

Lindeberg [96] studied how the scale-space framework in the continuous domain
should be discretized so the scale-space properties hold also in the discrete domain,
developing a scale-space theory for discrete signals. This included the conception of
a discrete Gaussian kernel, and a way of calculating discrete Gaussian derivative ap-
proximations with scale-space properties. The discretization, however, allowed for a
continuous scale parameter t, so discrete kernels could be generated for virtually any
scale if needed.

Starting from a set of scale-space axioms, the scale-space representation of a dis-
crete image is obtained as a convolution with a family of kernels T on the continuous
scale parameter t. For a one-dimensional signal f :

L(x; t) =
∞

∑
n=−∞

T (n; t) f (x−n) (4.51)

Such kernels take the form

T (n; t) = e−αt In(αt)
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where In are the modified Bessel functions of integer order [2]

In(x) =
∞

∑
m=0

1
m!Γ(m+n+1)

( x
2

)2m+n
(4.52)

and the scaling parameter α is usually set to 1. The kernel T (n; t) is called the discrete
analogue of the Gaussian kernel or simply the discrete Gaussian kernel. We can see
that we can obtain a kernel for every desired value of the continuous scale parameter t.
In practice, the kernel may be truncated on the basis of the unit integral error as with
the sampled Gaussian kernel.

An implementation of such a kernel for N-dimensional images can be found in
[197] and extended for Gaussian derivatives in [109]. We used these implementations
for all scaled derivative calculations performed in the experiments of this thesis.

4.5 Ridge Detection
The study of ridges is closely related to line-like structures. Line structures may present
a visible ridge or, if not present, it may be obtained by some means of mathematical
operation, such as scaled Gaussian smoothing, or as a result of applying a medialness
function, that is, a function that obtains, for every point, the likelihood of being part of
the the centerline of medial axis.

4.5.1 Ridge Definition
Ridges are closely related to line structures. Most of the times, line-like structures in
medical images present intensity ridges with maxima in their medial axes or center-
lines. If the centerlines do not present an intensity maximum at the centerlines, such
as with MR Time-of-Flight (TOF) images [62], image processing methods, such as
Gaussian filtering, could be applied in order to create an intensity ridge so as to create
a maximum in the central part of the tubular section [11]. Specially interesting is the
case where a medialness filter [83] is applied to the vascular image for vessel detection
and/or enhancement. The response of such a filter is designed to be maximum in the
medial axis of the vascular structures or very close to it and thus, it creates an intensity
ridge in the line structure whose extraction will provide the approximate centerline.

From the analysis in Section 4.3 we can now state that finding the maximum of
gradient magnitude in the gradient direction, as in the method of Canny, is equivalent
to finding the ridges of gradient magnitude, since this corresponds to the definition of a
ridge. As Eberly states [43], the method of edge detection consists of following ridges
of edgeness. Hence, though not exclusively, both edge detection and line structure
detection can be both approached as a problem of ridge detection using differential
calculus, applied to the gradient magnitude in the first case and to the source intensity
image in the second case (probably with some pre-processing). Ridges are also related
to the notion of a medial axis of an object [151] and thus may provide local information
complementary to edge information.
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Ridges could be considered as a generalization of a function maximum. Intuitively
if a maximum is the highest value of a function in a local neighborhood in all N space
directions, assuming the function is locally smooth, a ridge is a maximum in N-1 prin-
cipal directions. Conversely, the notion of valley can be considered as a generalization
of the minimum of the function and we indistinctly will talk of ridges when referring
to both ridges and valleys7. Note that the ridge is defined in terms of the principal
directions or image (surface) curvatures, which corresponds to the eigenvectors of the
local Hessian matrix.

We will now provide a formal definition of height ridges from Eberly8 [43].

Definition 1. Let f : Rn → R be a C 2smooth function. Let λi 1 ≤ i ≤ n be the
eigenvalues of the Hessian matrix H of f with λ1 ≤ . . .≤ λn. Let vi 1≤ i≤ n be the
corresponding eigenvectors. Let V be a (n−d)× (n−d) matrix, whose columns are
the n−d first eigenvectors, corresponding to the negative eigenvalues. A point x0 is a
d-dimensional ridge point if

V T
∇ f (x0) = 0 (4.53)

and

λn−d(x0)< 0 (4.54)

The first condition is a set of n−d equations in the form vi ·∇ f (x0) = 0 which means
that the directional derivatives in the direction of those eigenvectors must be zero and,
hence, the point is a local extreme in that direction.

The second condition implies that there are n−d negative eigenvalues (since these
are ordered in the definition). These eigenvalues represent the curvature in the direction
of the corresponding eigenvectors. Negative eigenvalues imply that the local extrema
defined by the first condition are maxima, and not minima, of local curvature. This
second condition is obtained from a more general condition that V T H V must be neg-
ative definite and this corresponds to a diagonal matrix whose non-zero values are the
eigenvectors. For finding local minima and valleys we just have to change the sign of
the second condition.

When d = 0 we have a local maximum and H is a negative definite matrix. We are
mostly interested in one-dimensional ridges, corresponding to curves, so in our case
d = 1. This means that the function is a local maximum, except in one direction, of
the set of linearly independent directions defined by the eigenvectors. In other words,
a ridge point is a maximum in the subspace defined by the n− d eigenvectors corre-
sponding to negative eigenvalues.

If this concept is applied to the detection and extraction of vascular structures in
medical images, this intensity ridge will approximately correspond to the centerline or

7Sometimes these are collectively referred to as crease points.
8The height definition of ridges is more useful for image analysis but some other definitions exist.
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medial axis of the vessel9, assuming that the image of the vessel presents such a peak
along its path.

Jacob and Unser [69] developed a set of specific ridge detectors in the form of
steerable filters following Canny-like optimization criteria that have better orientation
selectivity without no extra computational cost as compared with the eigenanalysis of
the Hessian matrix.

4.6 Second-order Local Structure and the Hessian Ma-
trix

4.6.1 Hessian Matrix for Local Structure Estimation
The Hessian matrix is an important tool for line structure detection based on differential
operators. For a three dimensional image I : R3 → R the scale-space Hessian matrix
H (x;σ) is defined as the matrix of scaled second order derivatives of the image

H (x;σ) =

 Lxx Lxy Lxz
Lxy Lyy Lyz
Lxz Lyz Lzz

 (4.55)

which describes the second order local image structure, that is, local image curvatures.
The parameter σ is the scaling parameter and corresponds to the Gaussian smoothing,
assuming that the derivatives are calculated in scale-space (see section 4.4.2).

The three ordered eigenvalues λi , λ3 ≤ λ2 ≤ λ1 of this Hessian matrix describe the
principal image curvatures which best describe the local image second-order variations.
The corresponding eigenvectors vi describe the directions in which the principal cur-
vatures occur. Note that, since, they are calculated from a scale-space Hessian matrix,
these eigenvalues and vectors are defined also in scale-space.

The local structure of images can be intuitively described as the apparent shape
taken by their local intensity distribution. The Hessian Matrix, was introduced previ-
ously (see 4.3.3) as a tool that could be used to obtain different second-order differential
features of images, such as ridges (section 4.5).

The eigenvalues and eigenvectors of the Hessian matrix at an image point can be
used as local shape descriptors describing the local structure of images. The eigenval-
ues correspond to the principal image curvatures and the eigenvectors correspond to
the direction of those curvatures. These principal curvatures correspond to the second-
order derivatives of the image in the directions of the reference system described by the
eigenvectors, which are called the principal directions. Thus the eigenvalue analysis of
the Hessian matrix provides two types of information at every point of the image:

• It describes the local distribution of intensities in the image in terms of three
curvatures (for 3D images) corresponding to three main orthogonal directions.
These are the eigenvalues.

9We say approximately because the medial axis is defined in terms of the real object boundaries, which
are usually unknown, and not in terms of the intensity peaks in the sections. However, in practice, in most
vascular images, the loci of medial axis and the ridges are close to each other.
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2D 3D local shape
λ1 λ2 λ1 λ2 λ3
N N N N N noisy (blob-like)

L L H- plate-like (bright)
L L H+ plate-like (dark)

L H- L H- H- tubular (bright)
L H+ L H+ H+ tubular (dark)
H- H- H- H- H- blob-like (bright)
H+ H+ H+ H+ H+ blob-like (dark)

Table 4.1: Basic local structure shapes in terms of eigenvalues of the Hessian matrix
according to [50]. H=high, L=low, N=noisy, usually small, +/- indicate sign.

• It describes the reference system that best fits the local structure of the image,
in which the principal curvatures are measured. In other words, it describes
the orientation of the local shape. This local reference system, defined by the
eigenvectors, constitute the principal directions of curvature. Somehow, obtain-
ing the eigenvectors, we find the orthogonal directions that are more suitable for
describing the local shape.

As stated previously (see Section 4.4.1), discrete derivative calculations always im-
ply obtaining scaled calculations and therefore the corresponding Hessian matrix and
eigenvalue analysis must be performed at each point at the appropriate scale, which
depends on the size of the structures of interest to be analyzed in the image.

Frangi et al. [50] classified the local structure of a 3D image in several basic shapes,
according to the values of the eigenvalues (in magnitude and sign) of the local Hessian
matrix, ordered by magnitude (|λ1|< |λ2|< |λ3|) as follows:

• Line structures: also called tubular structures, they present low curvature in one
of the principal directions and high curvature in the other two directions. The low
curvature corresponds to the axial direction of the local tube-like shape, since the
intensity hardly varies in this directions. In the other directions, the curvature
is high, since they correspond to the radial directions of the tube, where the
intensity varies rapidly from the center to the external part of a tube-like shape.
In medical images, they may corresponds to local shapes of vessels or other line-
like structures.

• Plate structures: also called sheet structures or flat structures, their intensity
varies wildly in a single direction and hardly varies in the other two directions.
Here, the structure is locally flat, as if forming a plane. This is typical of some
organs appearing in medical images, that are not vessels or tubes.

• Blob structures: they represent symmetrical spherical-like structures, with no
preferred direction, where the intensity varies wildly from its center. Noisy struc-
tures are also typically blob-like, since they eigenvalues are usually of similar
magnitude.
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The classification criterion into the different shape types according to the relative value
of eigenvalues is shown in Table 4.1. They also provided a geometric interpretation of
the eigenvalues in terms of an ellipsoid whose axes represent the principal image cur-
vatures corresponding to the eigenvalues. Danielsson et al. [36] extended this analysis
to other types of shapes.

As we can see, by measuring the eigenvalues at points of interest of the images, we
can obtain a local shape description at those points and distinguish between tubular,
plate and blob structures at a local level. This is the basis of some of eigenvalue filters
commonly used in vessel detection, such as those from Sato et al. [148] or Frangi et al.
[50]. These methods try to discriminate points that are locally line-like from the rest of
points in the images by building a vesselness function, based on these eigenvalues, that
is maximum for line structures and yields low values for other types of structures.

4.7 Other Image Features
Other interesting image features may be of interest depending on the application, such
as blobs, corners or junctions, for which specific detectors exist in the literature. As we
have seen in Section 4.6, for the purpose of 3D vascular structure detection, it is impor-
tant to distinguish line structures from other types of structures such as plate or blob
structures. These structures may represent adjacent organs to vessels. Sometimes, the
local shape of a vessel may differ from that of a line structure. For example bifurcation
points in vessel branches resemble more a blob-like structure than a line-like structure
and an aneurysm can be considered in most cases a blob structure. In this case, it is
necessary to develop specific operators or strategies for these structures. In Chapter we
have developed such an strategy for the segmentation of the thrombus in AAA after
EVAR. Other examples of interesting vascular features which cannot be treated as line
structures can be found at [93, 13].



Chapter 5

Vascular Detection

In this chapter, we introduce the problem of vascular detection and provide a review
of some of the most popular vesselness functions for vascular detection, with emphasis
on the medialness methods looking for the vessel centerlines. Then, we proceed to
identify and study the scaling parameters of these methods, testing their individual
influence and their relationship against synthetic datasets with different noise levels, in
order to establish some scale selection criteria for muti-scale analysis of angiographic
imaging modalities.

The structure of the chapter is as follow: Section 5.1 gives an introduction. Section
5.2 introduces the differential vesselness features. Section 5.3 introduces the integral
vesselness features. Section 5.4 discusses some scale considerations.

5.1 Introduction

Curvilinear structures, also called line or tubular structures1, are of particular interest
for medical image analysis where they appear in different forms, both in anatomical
structures, such as blood vessels, bronchi, nerves, biliary ducts, etc. as well as in
artificial structures, such as catheters, electrodes, stents, etc. that may be of clinical
interest.

The detection of vascular structures in medical imaging is particularly challenging.
Some of the difficulties that the detection methods must cope with include:

• Complexity: vascular structures may be highly ramified structures creating com-
plex networks of connected branches. In general, these branches are curved and
sometimes very tortuous.

• Multi-scale structures: a high variation in diameters may be observed from the
root to the visible endpoints of a vascular network which makes necessary to

1We will use indistinctly both terms for referring to elongated structures of small width represented in
medical images both in 2D and 3D. The term line structure or line filtering is more used in the literature in
the context of detection and the term tubular structure is more used in volumetric image analysis.

71
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define detectors operating at multiple scales in order to detect vessels of all ex-
pected sizes. Moreover, different sizes may require different approaches due to
considerations such as accuracy or computation time. Some methods are best
suited for the smallest scales, even close to the inner scale of the data. Others are
specific for the largest of vessels such as the aorta.

• Presence of bifurcations or other anomalies such as stenoses and aneurysms:
even if the main local shape of vessels resemble a linear structures, along the
paths of a vessel network some structures may be found whose local shape may
differ to some extent from that of a linear structure.

• Volume of information: the volumetric nature of 3D angiographic images, which
may consist of hundreds of slices in the case of CTA, implies a very large search
space in which vascular structures have to be detected, even if the structures
themselves do not occupy a high percentage of this volume.

• Non-uniformity of image contrast: many angiographic modalities make use of a
contrast agent injected in the blood stream in order to enhance the visualization
of vascular structures. Failure to adequately inject the contrast agent at the time
of the scan may result in non-uniform contrast agent distribution and, hence, of
the image intensities along the vessel paths. Even if the contrast was correctly
injected, distances are sometimes too large for the contrast bolus to reach all the
vascular structures of interest.

A line or tubular structure has the basic geometrical property that its length exceeds by
far its diameter [105] and thus, it can be considered as a 1D manifold in the embed-
ding space, which is typically 2D or 3D. At every point of the line structure (with the
exception of the end and bifurcation or branching points) we can associate a direction,
corresponding to direction of the centerline or central axis of the tubular structure, and
a section line (2D) or plane (3D), that is normal to the axis direction.

The typical intensity profile of a line structure shows an elevation across the longi-
tudinal direction. The shape of this elevation may vary but typically can be modeled as
a Gaussian, boxcar (also known as rectangular or bar-like) or roof cross-section, both
in their 2D and 3D modalities. On the other hand, the intensity profile along the tube
direction varies slowly, if we assume that there is no blockage preventing the diffusion
of the contrast media. These hyperintensity properties are exploited by many detection
methods.

The main goal of the process is to detect curvilinear structures in medical images
of, within some limits, arbitrary shape, size (in diameter and length) and section profile
(bar, roof, Gaussian-like...). Furthermore, if possible, we would like to obtain during
the detection process2at least three types of information:

• Geometric Information: such as an estimation of the diameters, lengths or cur-
vatures.

2We refer here only to basic low-level information, and not higher level information that may be inferred
from this, such as the presence of an aneurysm or stenoses.
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• Topological Information: such as the number of total branches and the number
of bifurcations at a branch point.

• Luminance Information: it may be used for posterior image analysis processes
or as low-level information for the detection of blockages, time and extension of
contrast arrival etc.

The same requirements of detection and localization expressed in the previous chapter
are also applicable here: we would like to detect if possible all vessels, discard noisy
branches or other spurious structures and locate the vessel position with the maximum
precision. As we have seen, these requirements are conflicting.

The accuracy of the analysis of vascular structures is determined greatly by the
accuracy of the vessel detection or enhancement technique used. If the method is not
accurate enough or presents limitations, for example at branching points or in the pres-
ence of some features such as stenoses and aneurysms, it may result in incorrect vessel
extraction results . If the algorithm fails it may require user interaction but depend-
ing on the application this process can be very cumbersome and, if the target vascular
network is very dense and its vessels small or tortuous practically impossible. In this
sense, manual vascular extraction is general, a more cumbersome process than manual
segmentation of organs, unless we just need to mark a few points on the centerline of a
vessel of medium or large size.

Many vessel or tube detection methods are generally based on the calculation, ei-
ther locally or globally, of a vascular measure or feature which is usually known as
‘vesselness’. By vesselness measure, we refer to a function that assigns to each voxel a
value, usually a floating point scalar, that is proportional to the likelihood that the voxel
belongs to a blood vessel in the original image . If the vesselness measure is specially
designed to detect the vessel centerlines, we call it medialness measure as it refers to
the medial line or medial axis of the curvilinear structure .

5.2 Differential Vesselness Features

5.2.1 Basic Differential Approaches
A line structure can be considered a generalized double-sided edge. Building optimal
detection operators following Canny-like criteria, usually requires assumption on the
line intensity profiles. As an alternative, the image second Gaussian derivative is a
good approximation for the optimal filter for different types of profiles, such as bar or
roof-like [105]. This derivative is depicted in Figure 5.1. When convolved with a line
profile, it acts as a probe filter measuring the contrast between the regions inside and
outside the range [−σ ,σ ] [51] and therefore, gives a high response at the center of the
profile. Hence, the value of this convolution, when measured in the direction normal to
the line, can be considered as a medialness measure obtaining the likelihood of a point
to be part of the center of the profile.

In practice, applying this concept to 2D and 3D profiles requires estimating the
direction of the line. Moreover, it is necessary first to determine whether the current
point is part of a line structure or not. This can be done by using directional filter banks
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Figure 5.1: Second-order Gaussian derivative for σ = 1.0

measuring the response in several directions . Applying non-linear combinations of
finite difference operators in a set of orientations is computationally very expensive,
specially when we are dealing with 3D detection of line-like (tube-like) structures.

5.2.1.1 The Hessian Matrix for Vessel Detection

As an alternative to directional filter banks, the eigenvalue analysis of the Hessian ma-
trix was first introduced in [81] by extension of their non-linear line structure detector
to 2D and 3D. They used the Hessian matrix to directly find the optimal orientation
in which to apply their non-linear filtering scheme, based on a modification of the
second-order Gaussian derivative kernel.

When the point x is close to the centerline or medial axis of a vessel and an appro-
priate scaling parameter is chosen, the local structure of the image is that of a bright (or
dark) tubular structure, and the eigenvalues exhibit the following properties [51, 149]:

λ2 ≈ λ3 (5.1)

λ2, λ3� 0 (5.2)

λ1 ≈ 0 (5.3)

This assumes that the local curvature of the vessel is not too high and that the
section shows radial symmetry. If these conditions are not met, the eigenvalues differ
from this ideal situation.
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Figure 5.2: Ideal 3D line structure and corresponding eigenvectors defining the section
plane.

When the above conditions are met, the eigenvectors will align with the line (tube)
direction. The eigenvector v1 corresponds to the direction of the local vessel/tube axis
where the curvature barely varies, hence λ1 is almost zero. The other two principal
curvatures, λ2 and λ3 occur in directions that go from the center of the tube to the ex-
ternal part of the vessel, where the curvature varies highly. Hence these eigenvalues are
negative and of high absolute value (positive for a dark vessel in a bright background).
The associated eigenvectors v2,v3 are estimators of the local vessel section plane, since
they are aligned with the directions of maximum curvature. Thus, they constitute what
we define as a section estimator, which computes an estimate of the normal plane to
the line structure (see Figure 5.2).

The Hessian matrix can be thought of as an extension to N-dimensions of the sec-
ond derivative and the main curvature, corresponding to the most negative eigenvalue,
will represent the maximum image curvature in the estimated vessel cross-section. For
3D images, the ratio of the two most negative eigenvalues represent the anisotropy of
the profile. For ideal circular vessel cross-sections the ratio λ2/λ3 of these eigenvalues
should be exactly one.

To sum up, the eigenvalue analysis of the scale-space Hessian matrix, allows us, in
the context of line detection, to:

• Estimate whether a point has locally the structure of a line at the chosen scale.

• Obtain a measure of vesselness through the eigenvalues.

• Estimate the plane of the vessel cross-section and its symmetry.

5.2.1.2 Ridge Detection

An alternative to this approach is to consider the centerlines of the vessel structures as
intensity ridges at the appropiate scale. Aylward et al. [11] obtain the centerlines of
vessels by traversal of intensity ridges. For a point to be part of a ridge at a given scale
they test the following conditions :
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• N-1 eigenvalues must be negative. For 3D images

λ3 ≤ λ2 < 0 (5.4)

• The point must be on a (N-1) dimensional extreme, and thus, the projection of
the gradient onto to the N-1 directions must be zero. For 3D images:

v2 ·∇L(x; t)' 0
v3 ·∇L(x; t)' 0 (5.5)

• In order to ensure that the tubular structure has nearly cross-section the ratio of
the two most negative eigenvalues must be one within some tolerance:

λ2/λ3 ≥ 1− ∈ (5.6)

where the eigenvalues of the Hessian matrix are ordered according to3 λ3 ≤ λ2 ≤ λ1
and vi are the corresponding eigenvectors.

5.2.2 Features based on Hessian Matrix Eigenvalues
5.2.2.1 Definitions

Several detectors or filters may be designed using these second-order local structure
properties. One approach is to take non-linear combination of the eigenvalues, trying to
distinguish tube-like local structures from other shapes, such as plate-like or blob-like
structures, which exhibit different relationships between the eigenvalues. For example,
for plate-like structures two eigenvalues are similar to zero, and blob-like structures
show three eigenvalues of the same relatively large value .The filters are designed to
enhance even the smallest vessels and remove the effects of non-linear structures and
noise.

Sato et al. [148] propose a filter based on a non-linear combination of eigenvalues,
ordered as λ3 ≤ λ2 ≤ λ1 , which consists of two terms:

λ23 =

{
|λ3|

(
λ2
λ3

)γ23
λ2 < 0 and λ3 < 0

0 otherwise
(5.7)

λ12 =


(

1+ λ1
|λ2|

)γ12
λ1 ≤ 0(

1−α
λ1
|λ2|

)
|λ2|
α

> λ1 > 0

0 otherwise

(5.8)

The term λ23 corresponds to the conditions 5.1and 5.2 enhancing structures with
two large negative eigenvalues of similar magnitude. This distinguishes line-like from
sheet-like structures, since for the later λ3� 0 but λ2 ≈ 0. The parameter γ23 controls

3Note that, in some of the methods exposed in this chapter the eigenvalues are ordered by their value and
in others by their absolute and sometimes i in the literature the roles of λ1 and λ3 are inverted. We always
refer to λ3 as the most negative eigenvalue and to λ1 to the eigenvalue in the direction of the line structure.
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the cross-section anisotropy. Note that due to the ordering of eigenvalues λ2/λ3 < 0. If
strong sheet-like structures are expected γ23 = 1 is a good choice. More assymetrical
values are more tolerated when γ23 is closer to zero, for example γ23=0.5 allows some
degree of anisotropy. γ23 = 0 is a limit case where sheet-like structures would also be
enhanced.

The term λ12 is introduced in order to accomplish the condition 5.3 and the con-
dition λ2 � 0 in 5.2. This distinguishes line-like from blob-like structures with the
parameter γ12.

Combining both conditions, the following single-scale filter response is obtained:

λ123 =


|λ3|

(
λ2
λ3

)γ23
(

1+ λ1
|λ2|

)γ12
λ1 ≤ 0, λ2 < 0, λ3 < 0

|λ3|
(

λ2
λ3

)γ23
(

1−α
λ1
|λ2|

)γ12 |λ2|
α

> λ1 > 0, λ2 < 0, λ3 < 0, 0≤ α ≤ 1

0 otherwise
(5.9)

Experiments performed on ideal curved tubes show that this filter gives high re-
sponse at lower slopes of the profiles in the opposite side of the center of curvature
with the curvature κ increasing. The introduction of the α provides an asymmetrical
response depending on the sign of λ1 which helps to mitigate this effect. However,
selecting α = 0 results in some lines broken, so α = 0.25 is shown to be a good com-
promise. On the other hand, in experiments with branch models, the authors show that,
at bifurcation or branch points, there is a trade-off between obtaining spurious branches
in the response (reduce γ12 and increase α) and fragmentation of the line, due to a dif-
ferent eigenvalue becoming dominant at the edge of the line. Moreover, spurious holes
may appear on the branch point.

Finally, single-scale filter responses are combined in order to obtain a multi-scale
filter response. This is described in .

Almost simultaneously, Frangi et al. [50] proposed a similar filter based on a non-
linear combination of eigenvalues. They ordered the eigenvalues according to their
magnitude |λ3| ≤ |λ2| ≤ |λ1|and interpreted geometrically as describing a second order
ellipsoid. They proposed the following single-scale vesselness measure:

V0(s) =

{
0 if λ2 > 0 or λ3 > 0(

1− exp
(
− R2

A
2α2

))
exp
(
− R2

B
2β 2

)(
1− exp

(
− S2

2c2

))
otherwise

(5.10)
with

RA = |λ2|
|λ3|

RB = |λ1|√
|λ2λ3|

S = ‖H‖F =
√

∑ j≤D λ 2
j (5.11)

Here RA is interpreted as the largest cross-section area of the ellipsoid (normal to
v1) and similarly to λ23in the approach of Sato el al. distinguishes between tube-like
and sheet-like structures. On the other hand RB represents the volume divided by the
largest cross-section area of the ellipsoid and accounts for the deviation from a blob-
like structure as in λ12 in the approach of Sato et al. Moreover, the Frobenius norm



78 CHAPTER 5. VASCULAR DETECTION

S of the Hessian matrix is incorporated, in order to distinguish real tubular structures
from background noise. The parametersα,β ,c control the sensitivity of each term.
The authors use α = β = 0.5 in their experiments, whereas c is used as a threshold that
depends on the gray-scale range of the image. A multi-scale line measure is obtained
by computing the maximum value over a range of discrete user-selected scales.

Another similar vesselness feature is the one proposed by Erdt et al. [44]. They
devised a filter based on a linear combination of the Hessian matrix components in the
form:

V (x) =
3

∑
i=1

i

∑
j=1

αi jhi j (5.12)

By optimization via Lagrange multipliers of the convolution of a filter in this form,
with an ideal model with Gaussian cross-section they obtain that the best response is
obtained for a filter with the form:

V (x) = c
(

2
3

hxx−hyy−hzz

)
(5.13)

where

c =

√
3σ0

5π3/2 (5.14)

and σ0is the standard deviation of the Gaussian section of the tube. Generalizing to
an arbitrary vascular direction by using the Hessian eigenvalues they obtain:

V (x) = cκ

(
2
3

λ1−λ2−λ3

)
(5.15)

with λ1 ≥ λ2 ≥ λ3. The factor κ is incorporated in order to distinguish tube-
like from sheet-like structures by penalizing anisotropy in the smallest (most negative)
eigenvalues:

κ = 1− ||λ2|− |λ3||
|λ2|+ |λ3|

∈ [0,1] (5.16)

This factor takes a maximum value of 1 when λ2 = λ3. However, note that this
factor also would give a value of 1 for λ2 =−λ3 assuming that λ1 > λ2 and hence we
propose the modified factor:

κmod = 1− |λ2−λ3|
|λ2|+ |λ3|

∈ [0,1] (5.17)

Note that this method is parameter-less, as compared with the previous one that had
three parameters each in order to control each aspect of the vessel enhancement.
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5.2.2.2 Scale Considerations

The scale selection mechanism for the methods described above consists of choos-
ing the maxima over scales of a combination of the discrete, second-order, Gaussian
derivatives used in the Hessian matrix [102], where the scale is changed by varying the
aperture of the Gaussian in the derivative calculations.

One idea would be to test the methods separately against ideal tubes in order to
see how they perform with different tube sizes and detection scales, but this is a very
cumbersome analysis. However, scale selection criteria may be established on the ba-
sis of the interpretation of the eigenvalues of the Hessian matrix for the detection of
tubular structures corresponding to conditions 5.1 to 5.3. These eigenvalues represent
the principal curvatures which are second derivatives oriented in the local spatial ori-
entation that best describes the shape. If we restrict our analysis to ideal circular tubes
with radial symmetry, these curvatures will be oriented with the tube axis and the con-
ditions described will hold almost exactly. Since in this case λ1 ' 0 and λ2 ' λ3� 0
it is sufficient to analyze the behavior of λ3 to obtain criteria for scale selection. More-
over, if the ideal tube images are aligned with the z-axis, this eigenvalue will coincide
with the second derivatives on the x or y-axis, which does not even require the calcu-
lation of the Hessian matrix for this analysis. However, in the following experiments
we will calculate the eigenvalues in order to test the described ideal conditions for the
eigenvalues.

Following this idea, we performed experiments on radially symmetric ideal cylin-
ders of different sizes whose axis is aligned with the image z-axis . We created two
sets of cylinders (see Appendix A for corresponding shape models and cross-section
profiles), one set with Gaussian cross-sections and another set with flat sections con-
volved with a Gaussian with a small value of aperture (we used σ = 1.0). The radii
were chosen as:

Ri = si R0 i = 1 . . .NR (5.18)

where R0is the initial radius and s the scale factor and Nr is the number of cylinders.
We chose R0 = 0.75 , s = 1.225 and NR = 10.

For each cylinder, we calculated the Hessian matrix and corresponding eigenvalues
in a discrete set of scales and observed the behaviour of the most negative eigenvalue
λ3. The set of discrete scales for the Gaussian derivatives where chosen as:

σh j = s j
hσh0 j = 1 . . .Nh (5.19)

where we used σh0 = 0.5, sh = 1.025, Nh = 110 for both types of cross-sections.

As expected, we observed a perfect match in the values of λ2 and λ3 whereas λ1
was zero or practically zero (in the order of between −1.0×10−12 and −1.0×10−16).
Figure 5.3 (left) shows the plots of the values obtained for λ3 for different scales for
both tube profiles. A visible minimum is found for all tube sizes, where the peak tends
to flatten for larger scales and is more prominent for small scales, specially for the
tubes with Gaussian section. In these, the minimum value is quite similar and tend to
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Figure 5.3: Values of the most negative eigenvalue λ3 obtained in the center of the tube
for different tube sizes for different Hessian scales σh and for tubes with Gaussian (top
row) and flat convolved (bottom row) section profile. Left column shows all values
obtained varying σh. Right column shows the relationship between the tube radius (x-
axis) and radius scale for the maximum values obtained for each radius. Here, the black
line shows the obtained linear trend line and the red line represents the line σh = R .

stabilize for larger scales, whereas in tubes with flat convolved section the minimum is
smaller (in absolute value) for small scales. Figure 5.3 (right) shows the relationship
between the maxima across scales for each tube size with respect to the tube size itself.
An almost linear relationship is found between the scale and the radius (R2 = 0.998
and R2 = 0.995 for Gaussian and flat convolved tubes respectively). For tubes with
Gaussian section this relationship is:

σrmax = 0.973R+0.117 (5.20)

And for tubes with flat convolved section:

σrmax = 0.662R+0.578 (5.21)

Compared to the ideal line σh = R we can observe that for Gaussian tubes the best
scale is slightly over the radius value. For flat convolved tubes, however, the scale
should be smaller than the radius for small scales and larger for large scales. From the
formulas of the straight lines, the cross-point is found at σh = R = 1.71. For practical
applications and in the context of vascular analysis, this may help us to select a correct
range of scales knowing the possible range of vessel sizes present in our images.
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5.3 Integral Vesselness Features

5.3.1 Offset Medialness

5.3.1.1 Definition

The offset medialness measure is an integral measure defined in the section plane as:

M+
σ (x,r) =

1
2π

ˆ 2π

α=0
−∇Iσ (x+ rvαi) · vαidα (5.22)

where vα is a rotating vector, or phasor given by

vα = v1 cosα + v2 sinα (5.23)

Equation 5.22 is the integral of the projection of the negate of the gradient vector in
the radial direction of a circle of radius r around the considered point. This circle is
located in the estimated section plane formed by eigenvectors v1 and v2. In fact, any
other section estimator could be used. As we can see, by tuning r we have an estimate
of the local vessel radius.

The corresponding discrete implementation samples the circle points in which the
gradient is calculated and corresponds to:

M+
σ (x,r) =

1
N

N−1

∑
i=0
−∇Iσ (x+ rvαi) · vαi , α = 2πi/N (5.24)

Pock et al. use the gradient magnitude instead of the gradient projection. We
believe that is better to use the projection in the radial direction determined by vα

rather than the gradient magnitude, since spurious or adjacent structures may have a
greater undesired contribution in terms of gradient magnitude, which may lead to large
values of medialness where it should not. On the other hand, as an improvement, they
introduce the following symmetry coefficient:

ω(bi) = exp

[
− 1

2ξ 2

(
1− bi

R+
σ

)2
]
, ξ ∈ (0,1]⊂ R (5.25)

where

bi =−∇Iσ (x+ rvαi) · vαi (5.26)

is the contribution of each radial point, also called boundariness . Here, we have used
the boundariness measure of Krissian et al. but other boundariness measures could be
used. The resulting adaptive medialness function is:
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Mσ (x,r) =
1
N

N−1

∑
i=0

ω(bi)bi (5.27)

The symmetry coefficient ξ penalizes asymmetry in the radial distribution of gra-
dient values. When ξ = 1 no penalization is performed. The lower the value the more
the asymmetry is penalized. There is a trade-off between the asymmetry of the section
and the detection rate. If very asymmetrical sections are expected, the value should be
one or close to one. Otherwise, ξ = 0.5 gives good results in most situations. We also
divide the resulting medialness by one plus the gradient magnitude at the center point,
since it should be low in a centerline point. This last step was also used by Pock et al.
but they subtracted this value instead of dividing it.

The original implementation of Krissian et al. makes the radius r dependent on
the scale in the form r = τσ . In practice, it is not necessary to change r linearly
with the scale. Additionally, with large diameters, we would need large scales with
increased computational costs. A better approach is to choose a single or a few scales
valid enough for the range of diameters to be considered and then adjust r to obtain a
maximum response.

5.3.1.2 Scale Selection

The calculation of the Offset Medialness measure requires the definition of at least
three scales: the scale for the Hessian derivatives: the radius of the section circle and
the scale of the gradients calculated at the circle locations.

• The Hessian scale σh corresponds to the scale for the second order Gaussian
derivatives of the Hessian matrix. It is used to estimate the section normal as
the eigenvector corresponding to the lowest eigenvalue (close to zero) of the
Hessian which, for points on the centerline, coincides with the tube axis. In
Chapter we analyze this estimation in detail in the context of vascular extraction
using centerline tracking. The ideal scale for the Hessian should be proportional
to the radius tube and usually a bit larger.

• The radius scale σr is the most critical scale and should be approximately equal
to the tube radius. Failing to choose the appropriate radius scale will result in a
poor estimation or even missing the tube at all.

• The gradient scale σg should be chosen according to the expected tube boundary
width and thus should be smaller than σr. In general, for small and medium tube
sizes, a small scale should be chosen, close to the inner scale of the image (res-
olution). However, for larger scales, increasing the gradient scale could improve
the detection rate at the cost of a worse localization. This is specially important
in multi-scale approaches when a small set of scales is used for detection.

In order to establish some criteria for scale selection, we performed some experiments
on the same set of ideal cylinders described in 5.2.2.2. Testing the influence of the three
types of scales in all tube sizes involves a very large parameter space in which maxima
of medialness have to be found. However, as expected, we noticed that results were
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independent of the Hessian scale value and hence it will remain fixed in the following.
The reason is that this scale is only used for the estimation of the section in which
offset gradient values are calculated and, for ideal noiseless tubes, the result is always
the tube axis but for very small or very large scales.

The first set of experiments used a fixed Hessian and gradient scale values of σh =
2.25 and σg = 1.0 with σr varying according to

σr j = s j
rσr0 j = 1 . . .Nr (5.28)

where we used σr0 = 0.5, sr = 1.005, Nr = 550. The idea is to set a criteria for the
selection of the radius scale using fixed small gradient scale values.

Figure 5.4 (left) shows the medialness values obtained for this experiment for both
tubes with Gaussian and flat convolved section profile. In all cases, there is a visible
maximum for each tube size. This maximum is more prominent for small scales in the
case of Gaussian tubes, but the plots tend to flatten for higher scales. The absolute val-
ues also reach a maximum for medium scales and tend to decrease. For flat convolved
tubes, the prominence of the peak is similar in all scales and the maximum seems to in-
crease and stabilize for larger scales, obtaining in general a better localization. This is
expected, since, in the Gaussian tubes, the tube boundaries are more diffuse. Moreover,
an increase in the signal seems to reflect that there is less uncertainty in the radius lo-
cation when the scale increases, as long as the correct scales are chosen (a wrong scale
selection may imply a lower detection rate). With small scales, the small smoothing of
the boundary may be significant enough as compared to the tube radius to induce some
uncertainty. Moreover, the peak seems to flatten with respect to the Gaussian tubes.

Figure 5.4 (right) shows the values of the gradient scale that resulted in maxima of
medialness with respect to the tube size of that maxima. As we can see in the linear
trend lines depicted in black, there is is almost a perfect linear relationship (R2 = 0.993
and R2 = 0.988 for Gaussian and flat convolved tubes respectively) between the gradi-
ent scale and the tube radius. For Gaussian tubes the relationship is approximately:

σrmax = 0.926R+0.471 (5.29)

And for flat convolved tubes:

σrmax = 0.946R+0.506 (5.30)

We can see that the best values are obtained approximately for scales about 92-95%
the tube radius plus 0.5 mm, which is a bit more than the expected 100% of the tube
radius. From the plots we can also see that, even if the right scale is not chosen, there is
still some margin for radius scale selection that provides reasonable medialness values.
Tables 5.1 and 5.2 represent the range of radius scales between which the response
decays less than 10% and 25%, for Gaussian and flat convolved tubes respectively.

Table 5.3 shows corresponding averages and minimum values. We can see that
there is some margin for error in the scale selection that still gives reasonable responses.
The margin is narrower for flat convolved tubes but these may represent better real
vessels, specially for larger widths. Still, average errors of 37 and 45% are obtained.
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Figure 5.4: Offset medialness values obtained in the center of the tube for different tube
sizes with σh = 2.25 and σg = 1.0 and varying σr (x-axis), for tubes with Gaussian (top
row) and flat convolved (bottom row) section profile. Left column shows all values
obtained varying σr. Right column shows the relationship between the tube radius
(x-axis) and radius scale for the maximum values obtained for each radius.

Note that these results are approximate, for the discrete set of tube sizes and scales used
in our experiments. However, the radius scale discretization had enough resolution to
give significant results for the chosen tube sizes. Similar analysis can be performed to
set a criteria for discrete scale selection for a given application similar to that in [149].

Keeping the gradient scale fixed as in the previous experiment does not necessarily
yield the best results. In order to test the influence of both, the radius and gradient
scales, we computed the offset medialness value at the center of each cylinder i for a
set of discrete scales, chosen as:

σr j = s j
rσr0 j = 1 . . .Nr

σg j = si
gσg0 j = 1 . . .Ng

(5.31)

A first set of experiments combining these scales used σh = 2.25, σr0 = 0.8Ri,
sr = 1.5, Nr = 11, σg0 = 0.5, sg = 1.25, Ng = 30. Note that here, for every tube size,
the first radius scale σr0 depends on the tube size. For the gradients scale, the initial
scale is fixed.

Figure 5.5 shows the offset medialness values obtained in the center of the Gaussian
and flat convolved tubes depending on the gradient scale values σg. Since the Hessian
scale is not relevant, we fixed σh = 2.25. For each tube radius, we selected the radius
scale σr that gave the best medialness value. The plots obtained are asymmetrical with
respect to the peak values, meaning that is worse underestimating than overestimating
the scale. These peak values in the flat convolved tubes are stronger, since the tubes
are less smooth, and the best values for σg are smaller than for Gaussian tubes. The
selectivity of the response is also higher for the flat convolved tubes since the peaks
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Mmax 4M = 10% 4M = 25%

R σr σrmin σrmax ∆σrmin ∆σrmax σrmin σrmax ∆σrmin ∆σrmax

0.75 1.1791 0.9373 1.6063 20.50% 36.24% 0.7564 2.0105 35.85% 70.52%

0.919 1.2332 0.9610 1.8379 22.07% 49.03% 0.7794 2.2436 36.80% 81.94%

1.125 1.4684 1.0001 2.1667 31.89% 47.55% 0.8152 2.5038 44.49% 70.52%

1.379 1.9222 1.1500 2.3939 40.17% 24.54% 0.9007 2.7803 53.14% 44.64%

1.689 2.0716 1.4684 2.6451 29.12% 27.68% 1.0305 3.1653 50.25% 52.80%

2.069 2.2661 1.6801 3.1495 25.86% 38.98% 1.2149 3.6945 46.39% 63.03%

2.534 2.9518 1.9127 3.6945 35.20% 25.16% 1.4538 4.3555 50.75% 47.55%

3.105 3.2130 2.2889 4.3992 28.76% 36.92% 1.7311 5.1862 46.12% 61.41%

3.803 4.0015 2.7803 5.2907 30.52% 32.22% 2.0613 6.2063 48.49% 55.10%

4.659 4.8124 3.3272 6.3948 30.86% 32.88% 2.5038 7.5389 47.97% 56.66%

Table 5.1: Deviation in radius scale for offset medialness response decays of 10% and
25% for tubes with Gaussian cross-section. σrmax and σrmin represent respectively the
minimum and maximum radius scales for the corresponding decay percentage.

Mmax 4M = 10% 4M = 25%

R σr σrmin σrmax ∆σrmin ∆σrmax σrmin σrmax ∆σrmin ∆σrmax

0.75 1.3290 0.9804 2.0408 26.23% 53.56% 0.7991 2.3702 39.87% 78.35%

0.919 1.3900 0.9902 2.1028 28.76% 51.28% 0.8111 2.4300 41.65% 74.82%

1.125 1.5282 1.0203 2.1993 33.23% 43.92% 0.8357 2.5164 45.31% 64.67%

1.379 1.9708 1.2028 2.3584 38.97% 19.67% 0.9234 2.6984 53.14% 36.92%

1.689 2.0613 1.5435 2.5416 25.12% 23.30% 1.1106 2.9666 46.12% 43.92%

2.069 2.1993 1.7926 2.9080 18.49% 32.22% 1.4180 3.3272 35.53% 51.28%

2.534 2.9963 2.1345 3.4112 28.76% 13.85% 1.7660 3.7878 41.06% 26.42%

3.105 3.2941 2.8082 4.0015 14.75% 21.47% 2.4179 4.3773 26.60% 32.88%

3.803 4.0821 3.5856 4.6939 12.16% 14.99% 3.1339 5.1092 23.23% 25.16%

4.659 5.0585 4.4433 5.5613 12.16% 9.94% 3.9815 5.9635 21.29% 17.89%

Table 5.2: Deviation in radius scale for offset medialness response decays of 10% and
25% for tubes with flat convolved cross-section.

∆σrmin ∆σrmax

Avg. Min. Avg. Min.

4M = 10%

Gaussian 29.50±5.52% 20.50% 35.12±8.48% 24.54%

Flat-conv. 23.86±8.70% 12.16% 28.42±15.97% 9.94%

4M = 25%

Gaussian 46.03±5.70% 35.85% 60.42±11.50% 44.64%

Flat-conv. 37.38±10.57% 21.29% 45.23±21.38% 17.89%

Table 5.3: Averages obtained for values in tables.
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Figure 5.5: Offset medialness values obtained in the center of the tube for different tube
sizes and gradient scales σg, with σh = 2.25 and the best radius scale σr obtained for
each tube. Left: tubes with Gaussian section profile. Right: tubes with flat convolved
section profile.

are more prominent. With respect to the tube radius, responses are more selective for
smaller radii whereas, for large radii, peaks tend to flatten, specially in the Gaussian
tubes due to their smoothness.

In order to refine the results we performed a new set of experiments with a bet-
ter scale resolution centered around the best values obtained in the previous experi-
ment. For the Gaussian tubes we used σr0 = Ri/(s

Nr/4
r ), sr = 1.04, Nr = 40, σg0 =

0.56σr/(s
Ng/6
g ), sg = 1.04 and Ng = 40. For the flat convolved tubes we used σr0 =

Ri/(s
Nr/4
r ), sr = 1.04, Nr = 40, σg0 = 0.424σr/(s

Ng/4
g ), sg = 1.04 and Ng = 60. The

factors 0.56 and 0.454 were obtained as an approximate linear relationship between σr
and σg for the maximum values obtained for each tube radius in the previous experi-
ment.

Figure 5.6 shows the maximum values obtained for the offset medialness at the
tube centers depending on the radius scale. For each radius scale, the maximum was
chosen by varying the gradient scale. We can see that for Gaussian tubes the curves of
maxima are more abrupt for small tube sizes, being more selective, and then to flatten
for large tube sizes, increasing the detection rate but with less selectivity. For the flat
convolved tubes we obtain a more uniform response for all tube sizes. With respect
to the gradient scale corresponding to these maxima, they seem to be approximately
piece-wise constant, giving the same value for a range of radius scales, except for high
scales where some linearity is shown. The results for Gaussian tubes seem to be more
stable. This means that results are not so dependent on the gradient scale for some
reasonable values of the gradient scale.

Figure 5.7 represents the radius σrmax and gradient σgmax scales that yield the max-
imum value of medialness for each tube size. These corresponds to the maxima of each
series in Figure 5.6. Note that for both section types, the relationship is almost linear
as shown by the linear trend lines.

From these plots we can infer some criteria for scale selection as a result of our
analysis. For tubes with Gaussian section the linear relationship between the radius
and gradient scales for the maxima is approximately:
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Figure 5.6: Maximum values of offset medialness obtained for each tube size and radius
scale. Top row: medialness values obtained at the center of the tubes for each radius.
Bottom row: corresponding gradient scales that give this maximum values. Left: tubes
with Gaussian section. Right: tubes with flat convolved section.

σgmax = 0.540σrmax +0.150 (5.32)

For tubes with flat convolved section, the linear relationship is approximately:

σgmax = 0.411σrmax +0.316 (5.33)

Then, in order to select the right scales, we just need to search for the maxima of
medialness across radius scales and select the gradient scales according to the these
linear relationships depending on the expected tube profile.

5.3.2 M-Flux
Flux-based approaches are based on the computation of the flux of an image-derived
vector field, usually the gradient vector field, through the surface of the extrated object.
This gradient flux is maximized when the surface is aligned with the gradient vector
field. It has been demonstrated [176] to be well adapted for the extraction of thin,
low-contrasted vessels.

Lesage et al. [92] propose computing this flux in circular cross-sections considered
as surface patches. For vessels with slowly varying radius, the radial directions from
the cross-section centers are a good approximation to the vessel surface normal. By
local discretization of the circular cross-section into N points xri , for a center point x
the flux is measured as:

Φ(x,r) =
N

∑
i=1

∇I(xri) ·ui (5.34)
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Figure 5.7: Radius and gradient scales that yield the maximum of offset medialness for
each tube size with corresponding linear trend lines (in black). Top row: tubes with
Gaussian section. Bottom row: tubes with flat convolved section.

where

ui =
x− xri

|x− xri|

are the unit vectors in the radial directions from the center point.

Similarly to the offset medialness, this flux yields high values when x is part of the
centerline of the vessel and for an appropriate radius r this flux yields high values.

However, this flux may obtain high responses for step edges by asymmetric con-
tributions along the cross-section contour. Following the idea on [82] the authors in-
troduce a symmetry constraint. They pair opposite points (xri,xπ

ri) of the contour (as-
suming N is even) and take the minimum contribution per pair in order to obtain a new
measure called m-flux:

ΦM(x,r) =
2
N

N/2

∑
i=1

min(∇I(xri) ·ui,∇I(xπ
ri) ·uπ

i) (5.35)

5.3.3 Optimally Oriented Flux
5.3.3.1 Definition

A major criticism for features based on second derivatives, such as those described in
5.2.2, is that it computes the difference between the intensities outside and inside the
object. In a kernel-based implementation, this means the kernel support extends beyond
the limits of the structures. Furthermore, a criticism for standard flux-based features is
that they not take into account directionality. In order to overcome this problem, the
concept of Optimally Oriented Flux (OOF) is presented in [87].

The OOF first calculates the flux of projected gradient that enters or leaves a sphere
surface around the current point. The gradient is projected along a specific direction
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becoming and oriented flux. The OOF tries to find the optimal projection direction
that minimizes this oriented flux. If the current point is in the center of a vessel, this
direction will correspond to the vessel axis direction. The radius of the sphere acts
as an scale parameter, which allows adapting the detector to different vessel sizes in a
multi-scale fashion.

Given a sphere Sr with radius r and a projection direction v the oriented flux can be
calculated as the sum:

F (x;r,v) =
ˆ

∂Sr

(∇I(x+ rn) · v)v ·n dA (5.36)

where n is the normal to the surface on the infinitesimal surface area dA. The authors
show that this expression can be converted into a quadratic form as follows:

F (x;r,v) =
ˆ

∂Sr

{
3

∑
k=1

3

∑
l=1

(∇Ik(x+ rn) · vk · vl ·nl)

}
dA = vT Qr,xv (5.37)

where the component (i, j) of the matrix Qr,x is calculated as the integral

qi, j
r,x =

ˆ
∇Ii(x+ rn) ·n jdA (5.38)

which does not depend on the projection direction v but solely on the gradient image
values and the sphere geometry. We will call the matrix Qr,x the oriented flux matrix,
since it allows us to calculate the oriented flux along a given projection direction v.

Then, obtaining the direction v which minimizes eq. 5.36 can be considered as a
generalized eigenvalue problem on the matrix Q. The analysis obtains a set of ordered
eigenvalues λi(x;r), λ3 ≤ λ2 ≤ λ1

4 with corresponding eigenvectors vλ (i).
A parallelism is found with the Hessian matrix features in 5.2.2. For a point x in the

interior of a tubular structure brighter than the background the eigenvalues follow the
relations described in eqs. 5.1 to 5.3. The eigenvectors vλ2 ,vλ3 corresponding to the
most negative eigenvalues estimate the cross-section plane of the tube and the eigen-
vector vλ1 estimates the optimal orientation that minimizes flux, which corresponds to
the tube axis.

Once the eigenvalues and eigenvectors are estimated, several vesselness metrics
may be devised, following again a parallelism with the features based on the Hessian
matrix. The authors use the geometric mean of the two most negative eigenvalues:

M (x;r) =

{√
λ2 ·λ3 λ3 ≤ λ2 < 0

0 otherwise
(5.39)

However, any other features based on eigenvalues, described in 5.2.2, could be
used, with their calculation based on the oriented flux matrix instead of the Hessian

4Note that, to be consistent with previous analysis, we named the eigenvalues differently from [87]
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matrix. Moreover, the estimation of the section plane and normal of the tube, allows to
use any other feature that may be computed on the plane, such as the offset medialness
measure in 5.3.1. In this case, we are replacing the estimation of the section plane, by
another estimation based on oriented flux.

5.3.3.2 Scale Selection

The calculation of an OOF-based measure requires the definition of at least two scales:
the radius of the sphere in whose surface the flux is calculated, and the scale of the
projected gradients whose flux is computed. The authors mention

• The radius scale σr, as in the offset medialness case (see 5.3.1.2) is the most
critical scale and should be approximately equal to the tube radius. Failing to
choose the appropiate radius scale will result in a poor estimation or even miss-
ing the tube at all. The idea is that the sphere surface should touch the vessel
boundary in order to obtain enough signal for the flux-based calculations.

• The gradient scale σg, again as in 5.3.1.2, should be chosen according to the
expected tube boundary width and thus should be smaller than σr. The authors
in [87] propose using a fixed small scale factor (they use σg = 1.0) for all sphere
radii. However, in our experiments we have seen that this is not always the best
option since for large scales, such a small scale for the gradients may result in
a good localization but poor detection rate, with the risk of missing the vessel
boundaries when a small discrete set of scales is chosen.

Again, to establish some criteria for scale selection, we performed some experiments
on ideal cylinders of different sizes. The set of cylinders used is the same as in section
5.3.1.2. The first set of experiments used a fixed gradient scale σg = 1.0 and σr varying
according to

σr j = s j
rσr0 j = 1 . . .Nr (5.40)

where we used σr0 = 0.5, sr = 1.005, Nr = 600. The idea is to set a criteria for the
selection of the radius scale using fixed small gradient scale values as in [87].

Figure 5.8 (left) shows the medialness values obtained for both tubes with Gaussian
and flat convolved section profile. Results are similar with respect to the equivalent
experiment in section 5.3.1.2 with respect to the shape of the plots both types of tubes.
However, the peaks seems to be less prominent and tend to flatten. Some irregularities
may be observed for the smallest tube sizes, probably due to discretization effects,
since the apparent tube radius is at the scale of the image resolution (here, we used a
spacing of 1.0 in all tubes).

Figure 5.8 (right) shows the relationship obtained for the maximum radius scales
versus the corresponding tube radii. Here, still a good linear relationship may be ob-
served (R2 = 0.988 and R2 = 0.969 for Gaussian and flat convolved tubes respectively).
For Gaussian tubes the relationship is approximately:

σrmax = 1.094R+0.482 (5.41)
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Figure 5.8: OOF medialness values obtained in the center of the tube for different tube
sizes with σg = 1.0 and varying σr (x-axis), for tubes with Gaussian (top row) and flat
convolved (bottom row) section profile. Left column shows all values obtained varying
σr. Right column shows the relationship between the tube radius (x-axis) and radius
scale for the maximum values obtained for each radius.

And for flat convolved tubes:

σrmax = 0.947R+0.887 (5.42)

However, a better relationship may be obtained for the flat convolved tubes, since
the scale values for small radii are very close to σr = 2.0. Therefore, we provide an
estimation using a linear piece-wise function:

σrmax =

{
2.0 R≤ 1.4
1.079R+0.44 R > 1.4

(5.43)

As can be seen in 5.8 (right bottom) this gives a match of R2 = 0.990 for the second
linear stretch. Here, the best scales are obtained for values even larger than in the case
of the offset medialness, approximately 110% plus 0.5 mm.

Tables 5.1 and 5.2 represent the range of radius scales between which the response
decays less than 10% and 25%, for Gaussian and flat convolved tubes respectively.

Then, we tried to evaluate the joint influence of the radius and gradient scales. For
this, we computed the OOF medialness value corresponding to equation 5.39 value at
the center of each cylinder i for a set of discrete scales, chosen as:

σr j = s j
rσr0 j = 1 . . .Nr

σg j = si
gσg0 j = 1 . . .Ng

(5.44)
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Mmax 4M = 10% 4M = 25%

R σr σrmin σrmax ∆σrmin ∆σrmax σrmin σrmax ∆σrmin ∆σrmax

0.75 1.23935 1.0305 2.01049 16.85% 62.22% 0.831588 2.39394 32.90% 93.16%

0.919 1.4831 1.05652 2.26614 28.76% 52.80% 0.852587 2.65828 42.51% 79.24%

1.125 2.00048 1.17319 2.479 41.35% 23.92% 0.932669 2.87911 53.38% 43.92%

1.379 2.00048 1.44658 2.68493 27.69% 34.21% 1.04604 3.213 47.71% 60.61%

1.689 2.39394 1.68845 3.04148 29.47% 27.05% 1.18495 3.69454 50.50% 54.33%

2.069 2.479 1.89369 3.63967 23.61% 46.82% 1.41095 4.29084 43.08% 73.09%

2.534 3.22907 2.15589 4.2695 33.23% 32.22% 1.64687 5.05851 49.00% 56.66%

3.105 3.71302 2.65828 5.0083 28.41% 34.88% 1.96097 5.99334 47.19% 61.41%

3.803 4.69388 3.11828 6.1754 33.57% 31.56% 2.3118 7.24401 50.75% 54.33%

4.659 5.70175 3.73158 7.38998 34.55% 29.61% 2.83635 8.75567 50.25% 53.56%

Table 5.4: Deviation in radius scale for OOF medialness response decays of 10% and
25% for tubes with Gaussian cross-section.

Mmax 4M = 10% 4M = 25%

R σr σrmin σrmax ∆σrmin ∆σrmax σrmin σrmax ∆σrmin ∆σrmax

0.75 1.90316 1.12169 2.38203 41.06% 25.16% 0.896188 2.75273 52.91% 44.64%

0.919 1.99053 1.15576 2.41794 41.94% 21.47% 0.923412 2.79422 53.61% 40.38%

1.125 2.00048 1.22094 2.49139 38.97% 24.54% 0.965807 2.86478 51.72% 43.20%

1.379 2.00048 1.49052 2.64505 25.49% 32.22% 1.07245 3.10276 46.39% 55.10%

1.689 2.35839 1.73974 2.8935 26.23% 22.69% 1.25803 3.42823 46.66% 45.36%

2.069 2.479 1.99053 3.26144 19.70% 31.56% 1.59832 3.82581 35.53% 54.33%

2.534 3.16529 2.34665 3.94203 25.86% 24.54% 1.93185 4.37731 38.97% 38.29%

3.105 3.71302 3.213 4.3123 13.47% 16.14% 2.71185 4.93392 26.96% 32.88%

3.803 4.71735 3.84494 5.29075 18.49% 12.16% 3.3942 5.81664 28.05% 23.30%

4.659 5.42435 4.69388 6.29984 13.47% 16.14% 4.3123 6.75545 20.50% 24.54%

Table 5.5: Deviation in radius scale for OOF medialness response decays of 10% and
25% for tubes with flat convolved cross-section.

∆σrmin ∆σrmax

Avg. Min. Avg. Min.

4M = 10%

Gaussian 29.75±6.29% 16.85% 37.53±12.33% 23.92%

Flat-conv. 26.47±10.28% 13.47% 22.66±6.50% 12.16%

4M = 25%

Gaussian 40.13±11.96% 32.90% 40.20±10.88% 43.92%

Flat-conv. 37.38±10.57% 20.50% 45.23±21.38% 23.30%

Table 5.6: Averages obtained for values in tables.
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Our experiments used σr0 = 0.5, sr = 1.05, Nr = 60, σg0 = 0.7Ri, sg = 1.05, Ng =
30 for Gaussian tubes and σr0 = 0.5, sr = 1.05, Nr = 50, σg0 = 0.7Ri, sg = 1.05,
Ng = 30 for flat convolved tubes.

Figure 5.9 shows the maximum values obtained for the OOF medialness at the
tube centers depending on the radius scale. For each radius scale, the maximum was
chosen by varying the gradient scale. We can see that for Gaussian tubes the curves
of maxima are more abrupt for small tube sizes, being more selective, and then to
flatten for large tube sizes, increasing the detection rate but with less selectivity. For
the flat convolved tubes, lower responses and less abrupt are observed for small tube
sizes. With respect to the gradient scale corresponding to these maxima, there is an
approximate piece-wise constant behavior for both tube types. For Gaussian tubes,
the gradient scale remains fixed with respect to the radius scale until the maximum
of medialness is reached for that tube size. Then, an approximate linear relationship
holds as the medialness value decreases. For flat convolved tubes, there is an additional
ascending ramp at the beginning of the plots at the lowest radius scales.

Figure 5.10 represents the radius σrmax and gradient σgmax scales that yield the max-
imum value of OOF medialness for each tube size. These corresponds to the maxima
of each series in Figure 5.9. Again, for both section types, the relationship is almost
linear as shown by the linear trend lines.

From these plots we can infer some criteria for scale selection as a result of our
analysis. For tubes with Gaussian section the linear relationship between the radius
and gradient scales for the maxima is approximately:

σgmax = 0.530σrmax +0.040 (5.45)

For tubes with flat convolved section, the linear relationship is approximately:

σgmax = 0.439σrmax +0.115 (5.46)

Then, in order to select the right scales, we just need to search for the maxima of
medialness across radius scales and select the gradient scales according to the these
linear relationships depending on the expected tube profile.

5.4 Scale Considerations

5.4.1 Scaling Parameters for Single-scale Responses
Most of the aforementioned vesselness functions operate at a single scale. The ge-
ometrical property of the vessel that this scale represents depends on the vesselness
function. Most of the times this corresponds to the vessel diameter but certain scaling
parameters should be chosen according to other magnitudes, for example the vessel
boundary width.

One problem we have found with some popular vesselness function is that some
of their parameters represent scales for different entities and sometimes are chosen
depending on a single geometrical property, usually the radius. For example, in the
original offset medialness function of Krissian et al. (see section 5.3.1), the scale
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Figure 5.9: Maximum values of OOF medialness obtained for each tube size and radius
scale. Top row: medialness values obtained at the center of the tubes for each radius.
Bottom row: corresponding gradient scales that give this maximum values. Left: tubes
with Gaussian section. Right: tubes with flat convolved section.

Figure 5.10: Radius and gradient scales that yield the maximum of OOF medialness
for each tube size with corresponding linear trend lines (in black). Top row: tubes with
Gaussian section. Bottom row: tubes with flat convolved section.
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for the Hessian, the radius r and the gradient calculations are dependent on a single
scale σ which is selected according to the vessel diameter. However, in our opinion,
the gradient should be chosen according to the expected vessel boundary, which is
smaller, since in this case it is the observable feature to be detected. In the case of
the vesselness measures derived from the optimally oriented flux (see section 5.3.3)
the authors mention this fact implicitly by selecting a fixed small scale for the sphere
boundary flux calculations.

5.4.2 Scale Integration of Filter Responses
Multi-scale analysis is essential in vascular image processing, since vascular trees con-
sist of branches of varying size. Even along the same branch, the vessel diameter may
vary. In order to obtain a multi-scale response from the vesselness functions it is nec-
essary to:

1. Select the range of scales for the application.

2. Normalize the single-scale responses for consistent integration.

3. Select a criterion for scale integration.

5.4.2.1 Selection of Range of Scales

Even if the scale parameter is continuous in nature, in practice it is impossible to obtain
a response for all possible scales and a discrete range of scales must be selected. Decis-
sions on the number, range and separation of scales must be made and a compromise
must be found here. On one hand, the larger the number of scales the more compu-
tational resources will be required. On the other hand, if scales are too separated, the
response obtained for vessels whose size lies in-between computed scales may be low,
negatively influencing the overall result. Sato et al. [149] implement some criteria for
their vesselness measure following this criteria.

5.4.2.2 Single-scale Response Normalization

Normalization of single-scale responses is necessary to integrate the information from
multiple scales in a consistent and meaningful way. If no vessel size is preferred, then
the maximum response of the vesselness filter accross scales obtained for different
vessel diameters should be the same.

5.4.2.3 Criterion for Scale Integration

The most common criterion for scale integration is to select the scale that gives maxi-
mum vesselness response at a given point [102]. If the single-scale response of a given
vesselness function is R(x;σi) then the multi-scale response computed for N discrete
scales is found as:

R(x) = max
σ

R(x;σi) i = 1 . . .N (5.47)
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(a) (b) (c) (d) (e)

Figure 5.11: Multi-scale offset medialness response obtained for a MRI image of a pre-
segmented liver parenchyma. (a)-(d) Single scale responses for σ =1,25, 1.75, 2.50,
4.0 (e) Multi-scale response with the maximum criterion.

Most of the approaches use this simple criterion for scale integration. Figures
5.11(a)-(d) show the single-scale responses. The corresponding multi-scale response
shown in Figure 5.11 (e) is obtained by computing the offset medialness for an MRI
image of a pre-segmented liver parenchyma at four discrete scales following this crite-
rion. Note how the larger vessel appear only at the larger scales, whereas the thinner
vessels are dimmed or not shown at these scales. The multi-scale response is able to
depict most vessels of different sizes.

Recently Dreschler et al. proposed an alternative to the maximum response crite-
rion called weighted additive response. Instead of selecting the maximum across dis-
crete scales, they propose sum the contribution of all discrete scales with a weighting
factor:

R(x) =
N

∑
i=1

ωσ R(x;σi) (5.48)

The authors choose ωσ = σ−λ (λ > 0)5 to give more preference to small scales. For
vesselness functions based on scale-space differential approaches, this weighting acts
inversely as the γ-normalization of derivatives [102]. In fact, if λ = γ no
normalization at all would be performed. They demonstrate that this has the effect of
enhancing small vessels and reducing the diffusion of nearby vessels that are often
identified as a single vessel of larger size. On the other hand, larger vessels appear
thinner in comparison with the maximum response approach but this is not a problem
if the objective is to obtain a maximum response in the centerline.

5This is the original notation used by the authors. It should not be confused with the eigenvalues of the
Hessian matrix.



Chapter 6

Vascular Extraction

The focus on this Chapter is on vascular tracking methods which are a subset of direct
centerline extraction methods [11]. These methods are more robust in many circum-
stances, specially for small vessels, and may be more appropriate for quantification
or navigation purposes, since a full segmentation of the vessels is not required. We
propose a canonical system framework for vascular tracking exploring the influence of
some system components. We give qualitative and quantitative results on centerline
tracking accuracy on synthetic and real datasets. The chapter proposes an evolution-
ary strategy method for vascular section estimation, where the fitness function is some
modified vascular detector. We validate this new approach on real datasets. For a fam-
ily of medialness functions the procedure can be performed at fixed small scales which
is computationally efficient for local kernel-based estimators. We also demonstrate
how this novel method is easily accommodated within the proposed framework.

Section 6.1 describes an architecture for modelling vascular tracking processes
called Generalized Vascular Tracking (GVT) Framework. Section 6.2 gives results of
experiments with synthetic and real datasets of increasing degree of complexity. Sec-
tion 6.3 proposes the evolutionary strategy optimization method for vascular section
estimation during tracking procedures.

6.1 Generalized Vascular Tracking (GVT) Framework

6.1.1 Motivation

The literature on vascular structure detection and extraction from medical images is
very extensive [94][143]. Focus of the works varies, including, among other contri-
butions, measures of vesselness for detection, innovative extraction approaches, and
different combinations of system components independently influencing the final ex-
traction result. There is an increasing need of taking into account the influence of
the individual components, clarifying their inter-dependencies, and designing inter-
changeable components for the different stages and abstraction levels of the extraction
[94].

97
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In other words, there is a need for tools to design software pipelines for vascular ex-
traction consisting of connected and interchangeable components, allowing to compare
existing methods, assess the effect of the different components and their relationship,
with the aim of performing systematic studies and rapid prototyping of complex ves-
sel extraction schemes. This is the motivation for the Generalized Vascular Tracking
(GVT) Framework which is described next.

6.1.2 Description
The GVT Framework provides a model of vascular tracking processes identifying dif-
ferent components and stages. The tracking procedure is an iterative process with dif-
ferent sequential stages. The different interchangeable models, metrics and algorithms
[94] invoked in these stages are called components.

6.1.2.1 Vascular Tracking Components

We define the following common components for vascular tracking:

• Section Estimator: locally obtains for every point an estimate of the section nor-
mal and possibly of the local radius based on image content, previous estimations
and section models. The Hessian Matrix and the Oriented Flux Matrix (OFM)
are examples of section estimators from the eigenvalue analysis of these matri-
ces.

• Vesselness Metric: is a measure of the likelihood of a point of being part of a
vessel. If the measure refers to the likelihood of being part of the centerline we
call it medialness. The metric may be used in several parts of the extraction
process, for example to estimate the correct scale maximizing this metric, or to
search for the centerline point.

• Centerline Model: defines which output extraction information is stored. It may
be a set of centerline points, including an underlying mathematical model, i.e.
an interpolating B-spline curve, and/or a section model for each centerline point,
such as an estimate of the section radius.

• End Condition: gives the stopping criterion for the algorithm. It may be as
simple as maximum number of iterations, or a threshold minimum vesselness
value. Adaptive methods with variable step size may incorporate the step size as
a stopping criterion.

• Scale Estimator (optional): used in multi-scale approaches. It estimates the op-
timal scale for performing calculations on the current point. In general, the scale
is proportional to the relative size of the vascular structures to detect but its inter-
pretation depends on the algorithm used. For example, in Hessian-based calcu-
lations, it determines the aperture of the Gaussian kernel used for scaled deriva-
tives; in oriented flux calculations, it determines the radius of the sphere used to
calculate the flux. The estimation of the scale is usually based on a (vesselness)
metric.
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• Bifurcation Detector (optional): used for detecting bifurcation points. It may
be based on the vesselness measures. The detector may additionally provide
estimates of the number and orientation of the bifurcations.

• Optimizer (optional): refers to an optimization of a cost function the most sim-
ple form of optimization is to take the maximum (minimum) value between a set
of sampled points in parameter space (exhaustive search), more complex opti-
mization procedures used, are gradient descent, simplex, Levenberg-Marquardt
or evolutionary algorithms.

Most of these components, are used in every iteration but some may only be used once
during the tracking procedure, for example at initialization. Some components are
regarded as optional, depending on whether the tracking perform some kind of action,
for example an optimization procedure.

6.1.2.2 Vascular Tracking Stages

A process diagram describing the GVT process is shown in Figure 6.1. Most of the
stages are performed at every iteration. Other, such as the Initialize and Post-process
stages are performed only once. We proceed to describe the different stages shown:

• Initialize: initializes the tracking procedure. The simplest initialization consists
of providing a seed point in the vessel centerline. More advanced initialization
involves finding the closest centerline point from the seed point, assuming this
point is not on the centerline.

• Turn: finds the correct orientation and section of the vessel when a new (center-
line) point is obtained, after advancing one step (Step stage) or after searching
for the correct centerline point (Search stage). The process involves using a Sec-
tion Estimator and possibly, in multi-scale approaches, a Scale Estimator and a
Vesselness Function.

• Search: This stage aims to correct the trajectory in the vicinity of the new vessel
candidate point. For example, it might be the maximum value of the vesselness
(medialness) in the previously estimated plane, or might be the closest ridge
point of a medialness function. A Turn stage estimates the orientation and section
of the new centerline point. This may be done once or in an iterative loop as
can be seen in Figure 6.1. Note that the Turn and Search stages only involve
calculations for the current point and do not involve estimating the new step
direction (Step stage).

• Measure: once a new vessel (centerline) point is found, local or cumulative quan-
titative measurements may be performed. This may involve for example a de-
tailed section shape or profiles, curvatures or cumulative lengths.

• Step: this stage estimates the new direction of advance and performs a step in
the current direction. The simplest direction estimation is the current section’s
normal direction, More advanced strategies include filtering (i.e. averaging) the
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Figure 6.1: Process diagram of the GVT showing the different stages.

trajectory, extrapolating, etc. The process also involves setting the size of the
current step. This may be fixed or adaptive, i.e. decreasing the step depending
on curvature.

• Check Branch (optional): this stage uses a Branch Detector in order to verify if
the current point is a branch point. If a bifurcation is found, the current branch
extraction is finished and new extraction processes are spawned for each branch.
The process can be seen on the diagram as an Initialization stage for each new
branch.

• Check End: this stage checks if we have reached the end of the vessel. This may
be as simple as checking a maximum number of iterations, or, more practically,
checking the value of a Vesselness Metric or the step size for some adaptive
approaches.

• Post-process: this stage performs any post-processing operation in the extracted
branch or tree, such as quantification processes, filtering of centerlines and sec-
tions, etc.
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6.2 A Systematic Approach to Vascular Tracking Using
GVT

We perform vessel extraction experiments in synthetic and real datasets of increas-
ing complexity to assess the effect of each GVT component. Experiments range from
single-scale to multi-scale approaches; from methods with no search stage to exhaus-
tive or optimized search based methods, etc.

As the number of combinations of components is enormous, we provide some rep-
resentative designs in increasing complexity. For each, we provide a list of components
used and the corresponding stage.

6.2.1 Fixed-scale Extraction
Fixed-scale extraction performs extraction using component operators at a single, user-
defined, scale. It is assumed that the size (diameter) of the target vessels is in the range
of sizes that can be detected at the selected scale. Moreover, for simplicity, we do not
provide initially any Search stage to correct the trajectory.

Experiments on ideal tubes test the accuracy of the section estimation and the influ-
ence of several parameters, such as the tube radius, detection scale, and noise level. We
used the eigenvectors of the Hessian matrix and Oriented Flux (OF) Matrix in order to
compare the accuracy and robustness of both Section Estimators.

Experimental data consists of a set of six ideal cylinders (see Appendix A) with
maximum intensity of 255 and radius values according to:

R = sR0 (6.1)

where R0 is the initial radius and s the scale factor. We chose R0 = 1.0 and s = 1.5.
Experimental data includes noisy versions with additive Gaussian noise of 10, 25, 50
and 75% with respect to the signal. We use two models of tubes: one with Gaussian
cross-section and another with flat section convolved with a Gaussian with a small
value of aperture (we used σ = 1.0) (see Appendix A for models of cross-section
profiles). The second model better represents real vessels and partial volume effects
[84], but the first model makes the tube boundary more diffuse.

Similarly, we selected a set of six discrete scales for calculations as in:

σ = sσ0 (6.2)

We chose σ0 = 0.7698 and s = 1.5. According to [84], for Gaussian tubes, the scale
that gives best response for their offset medialness function is σ =

√
3R. thus

σ2 = s2σ0 = 1.732 w
√

3. Often the best detection scale is a bit larger than the tube
radius.

The extraction algorithm starts from a seed point in the centerline of the tube, but
not in the extrema in order to avoid boundary effects. The algorithm uses a fixed step
size of 1.0 advancing in the estimated direction for a fixed number of 40 iterations.
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We analyze two different quantitative measures in these experiments, obtained for
different radius of the tubes and noise levels:

• Mean (in section) centerline error : corresponds to the mean of calculating the
distance to the true centerline for the 40 sections (one for every iteration). We
do not take into account here the error in the z direction, which accumulates
with the deviation in the angle estimation, because we are more interested in the
precision of the centerline estimation. Thus, for every section, to estimate the
error, we compute the distance to the centerline and project it into the section.

• Mean angle error : corresponds to the mean of the angle between the estimated
and ground truth section normals, taking the z-axis as ground truth, as:

θ = arccos(v ·uz) = arccos(v1uz1 + v2uz2 + v3uz3) = arccos(v3) (6.3)

where v is the estimated unit vector, uz is the z-axis unit vector, and
v ·uz is the cosine of the angle formed by both unit vectors, which
corresponds to the z component of the v vector. This also takes into
account the sign of the vector giving values from 0 to 180º (in the
opposite direction) which allows to check that the tracking does not turn
back pointing to the wrong direction.

However, these quantitative measures do not provide information about the quality of
the tracking, that is whether the tracking was succesful or not or whether difficulties
were found. We consider here five different situations:

• Accurate tracking: errors are minimal and the tracking proceeds without diffi-
culties (Figure 6.2(a) ).

• Oscillating tracking: centerline tracking is achieved, but tracking tends to oscil-
late around the true centerline position. It is typical of a situation where the scale
is overestimated (Figure 6.2(b) ).

• Difficult tracking: difficulties arise. Tracking is not totally lost but many center-
line and angle estimates are incorrect, resulting in a non-smooth centerline and
poor local section angle estimations (Figure 6.2(c) ).

• Lost tracking: tracking is correct at the beginning but centerline is lost at some
point. Some cases of lost tracking may end up in a partial recovery. When using
small scales with large tubes, this may happen when the tracking progresses close
to the external contour, as it partially finds some of the vessel boundary that gives
a good enough response on the estimator (Figure 6.2(d) ).

• No tracking: tracking is not achieved at all (Figure 6.2(e) ).

Tables 6.1 to 6.4 show the values of the mean centerline and angle error for differ-
ent tube radii, detector scales, and noise levels. Values are color coded according to
tracking quality . We do not distinguish between correct and oscillating tracking, since
sometimes this classification is not clear. Instead we classify the experiments as good
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(a) (b) (c)

(d) (e)

Figure 6.2: Different characteristic vessel tracking situations obtained in experiments
with synthetic ideal cylinders with additive Gaussian noise. Examples use Hessian
section estimator. (a) Accurate tracking (Gaussian section, R = 1.5, 10% noise σ =
1.73), (b) Oscillating tracking (Gaussian section, R = 1.0, 10% noise σ = 5.84), (c)
Difficult tracking (Gaussian section, R = 3.37, 10% noise σ = 0.76), (d) Lost tracking
with recovery (Flat-convolved section, R= 2.25, 25% noise, σ = 0.76), (e) No tracking
(Flat-convolved section, R = 7.59, 50% noise, σ = 1.73). Figures shows cylinders as
volume render with adjusted contrast levels for better visualization. Yellow line shows
estimated trajectory; green line shows ground truth centerline; blue circles represent
scale used and estimated orientation.
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Table 6.1: Mean values for in-section center point estimation error for different detector
scale values (x axis) along tubes of R = 1.0 and R = 1.5 as calculated for the Hessian
(H) section estimator for tubes with Gaussian (G) cross-section. Results are shown
for different levels of noise with respect to the signal (0, 10, 25, 50 and 75%). Color
codes provide qualitative information (bright green: best values, green: good or fair
estimates, yellow: evident difficulties in tracking, orange: centerline is lost during
tracking, red: unable to track the vessel)
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Table 6.2: Same as Table 6.1 for Gaussian tubes with Optimally Oriented Flux section
estimator.
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Table 6.3: Same as Table 6.1 for Flat Convolved tubes with Hessian section estimator.
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Table 6.4: Same as Table 6.1 for Flat Convolved tubes with Optimally Oriented Flux
section estimator.
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Type Centerline Error Angle Error
Min Max Min Max

Accurate 0.0 0.15-0.2 0.0 2.0-3.0
Not accurate/ Oscillating 0.15-0.2 0.4-0.5 2.0-3.0 5.0-7.5

Difficult 0.4-0.5 1.0 5.0-7.5 20.0-25.0
Lost / No tracking 1.0-2.0 ... 20.0-25.0 180.0

Table 6.5: Range of performance values obtained for each qualitative tracking type

when no difficulties are found and we also mark the best values with a different color
(see Table 6.1).

From the tables we can see that scale selection is important to achieve a good or
optimal tracking. The scales that yield best values are in most cases larger than the
radius. In Table 6.5 we provide approximate values obtained for the qualitative types
of tracking described above. A rough interpretation of this table attending the mean
centerline error is that values under 0.15− 0.2 correspond to an accurate tracking;
values between 0.15− 0.2 and 0.4− 0.5 to correct tracking with some local accuracy
loss, such as oscillating tracking; values between 0.4−0.5 and 1.0 represent tracking
with difficulties; finally values above 2.0 mean that there is no tracking at all.

Here we can make some disctintions according to the tube size:

• For small radii (R = 1.0 and R = 1.5) the best values are found for scales around√
3R in agreement with the theory of Gaussian tubes [84]. Good tracking is

achieved in most cases, except for the larger scale values due to poor localization.
There are sometimes problems with high levels of noise (50 and 75%) and the
lowest scales, specially for the Hessian estimator, since the smoothing of the
kernel is too small for the noise levels and scales are close to the inner scale of
the data (sampling). The OF estimator is more robust in these situations.

• For medium radii (R = 2.25 and R = 3.375) best values are mostly found for
scales around 1.2R. For small scales, the tracking start to fail since they are too
small with respect to the size of the tube and, for the case of the Gaussian, the
smoothing is not so strong, which is good against noise. Again the behavior of
the OF estimator is better for small scales.

• For larger radii (R = 5.0625 and R = 7.59385) best scales are likely beyond
the ones we used in our experiments and better results are obtained in general
for the Hessian estimator. This is due to the large amount of smoothing with
large Gaussian derivative kernels, which are very robust against noise and give
good responses for a number of scales. On the other hand, the OF estimator
has a very good localization, since it uses gradient values at small scales in the
sphere surface, but this makes the detection rate much worse at large scales. One
solution to this problem is increasing the scale for the gradient calculations in
the sphere, but keeping into account that it should not be according to the radius
but to the width of the boundary of the tube. Regarding computation times, the
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Hessian is much slower due to the large kernels involved whereas, in the case of
the OF estimator, computation times are the same1.

Figures 6.3 to 6.5 show the plots for the mean centerline error for different values
of tube radius and noise levels. For the datasets without noise, there is no error in
all situations except one of the worst (largest radius, smallest scale and highest noise
level). For the noisy datasets we can distinguish three situations:

• For small radius values (R = 1.0 and R = 1.5) the OF estimator shows more pre-
cision, with an excellent behavior for flat convolved (FC) tubes. This is normal
since the OF estimator adapts very well to this section profile in which there is a
narrow transition for the boundary. The behaviour of the OF estimator with the
Gaussian tubes is similar to the Hessian estimator but a bit better. Larger scales
give the worse results and also small scales with high levels of noise in the case
of the Hessian estimator.

• For medium radius values (R = 2.25 and R = 3.375) we can see a transition in
behaviour. At R = 2.25 results are still very good for the OF estimator, specially
with FC tubes. However the Hessian estimator starts to behave quite well except
for the smallest scales. Its behaviour is quite similar at R = 3.375 but here the
OF estimator starts to give poor results for the Gaussian where there is no sharp
edge involved. At this radius, results are good for the FC estimator except for
the smallest scales which are starting to be poor.

• For larger radius values (R = 5.0625 and R = 7.59385) we can confirm that the
Hessian estimator gives more precise and consistent responses for a larger range
of scales, and the error increases abruptly for some small scale values, which
leaves them out of the plots. The behaviour of the OF estimator is specially
poor for the FC tubes when the scale chosen is too small. In these cases, the
sphere used to calculate the flux lies completely inside the tube and since it is
flat in most of its section, no boundary is detected and the section estimation is
poor or completely fails. In the case of the Hessian estimator, the aperture of
the derivative kernels extends beyond the expected boundaries and thus results
are slightly better. Results are worse in this case for the FC tubes, since their
boundary is less diffuse. The increased smoothness due to large Gaussian kernels
also works against very noisy data. The OF estimator definitely behaves poorly
with Gaussian tubes. We can also see that the OF estimator only gives good
values for a few large scales, for the reasons mentioned above, and thus is more
selective but may miss the tube if the right scale is not chosen. In all cases, the
scale needed for optimal detection at R = 7.59385 seems to be larger than the
ones used.

Figures 6.6 and 6.7 contain the plots of the mean angle error along the 40 calculated
cross-sections obtained by the Hessian and OF section estimators for different scale
values and noise levels. Again we compare results for Gaussian versus flat convolved
(FC) tubes and distinguish three situations:

1Unless the sampling of the sphere where flux is calculated is increased with the radius.
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Figure 6.3: Mean values for in-section center point estimation error for different de-
tector scale values (x axis) along tubes of R = 1.0 and R = 1.5 as calculated for the
Hessian (H) and Oriented Flux (OF) section estimators and for tubes with Gaussian
(G) and Flat Convolved (FC) cross-section. Series show results for different levels of
noise with respect to the signal (0, 10, 25, 50 and 75%)
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Figure 6.4: Same as Fig. 6.3 for R = 2.25 and R = 3.375
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Figure 6.5: Same as Fig. 6.3 for R = 5.0625 and R = 7.5938
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• For small radius values (R= 1.0 and R= 1.5) we can see that the angle estimation
is poor for high levels of noise due to the small sizes of the tubes to be detected
with respect to the inner scale of the data (resolution). Best results are found
again for FC tubes with OF estimation. Here, the effect of noise in the angle
estimated by the Hessian is more evident than in the center position. For larger
scales, in the cases where the tube is still tracked successfully, the centerline
oscillates in a zig-zag pattern, since no correction of the trajectory is involved,
yielding higher angular errors.

• For medium radius values (R= 2.25 and R= 3.375) the behaviour is very similar
for both detectors, except for the OF estimator with FC tubes which shows very
accurate results at all scales and noise levels. In most cases, at small scales either
the tracking is lost or important difficulties are found, which some sections very
poorly estimated.

• For larger radius values (R = 5.0625 and R = 7.59385) the behaviour is also
similar to the mean centerline error. Many values out of the plots represent un-
successful tracking attempts. The OF estimator is lost in most circumstances
or shows lost of difficulties and for an appropriate behaviour of this estimator,
larger scales should be selected and probably in larger number due to the selec-
tivity of the estimator. The Hessian estimation is better at large scales yielding
acceptable angular errors.

As we have seen, the FC tube requires more precision in the scale selection, specially
for large scales. One advantage of the OF estimator with respect to the Hessian estima-
tor, is that it requires smaller apertures and thus, calculations are faster. This allows to
test a wider range of scales to mitigate the problem of missing the tube border due to
the selectivity of the filter. There is a compromise between detection and accuracy. The
Hessian estimator seems to be less sensitive to the scale selection but also is less selec-
tive. In order to improve the detection rate of the OF for large scales, one may choose
to increase the scale of the gradient calculations involved (which was fixed in our ex-
periments to σ = 1.0 as were used in [87]) but according to the expected transition
width of the tube boundary, and not according to the whole tube radius.

The OF estimator is more selective in the scale selection, but at the cost of failing to
detect the tube with a wrong scale choice. On the other hand, the Hessian shows itself
very robust against noise, specially with larger radius values and is able to detect the
tubes at a wider range of scales. This is due to the large support of the Gaussian ker-
nel at wide apertures, which increases the smoothing and the detection rate at the cost
of poorer localization and slower calculations. Moreover, the support of the Gaussian
derivative kernels at large scales tend to extend far beyond the tubes to be detected, re-
sulting in an influence by external spurious structures which may hamper the detection.
This was one of the main reasons for proposing the OF algorithm in .

Figure 6.9 shows the result of the fixed scale tracking on a volumetric toroid sector
(which by definition has constant curvature, see Appendix A) with Gaussian cross-
section using the Hessian matrix as section estimator. Starting from the real centerline
of the toroid, we can see that there is a constant drift in the centerline estimation. The
reason is that the centerline is apparently correctly estimated, but the step size makes
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Figure 6.6: Mean values for section angle estimation error (with respect to the z-axis)
for different detector scale values (x axis) along tubes of R = 1.0 and R = 1.5 as calcu-
lated for the Hessian (H) and Oriented Flux (OF) section estimators and for tubes with
Gaussian (G) and Flat Convolved (FC) cross-section. Series show results for different
levels of noise with respect to the signal (0, 10, 25, 50 and 75%)



6.2. A SYSTEMATIC APPROACH TO VASCULAR TRACKING USING GVT 115

Figure 6.7: Same as Fig. 6.6 for R = 2.25 and R = 3.375
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Figure 6.8: Same as Fig. 6.6 for R = 5.0625 and R = 7.5938
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Figure 6.9: Vascular tracking at fixed scale for synthetic volumetric toroids with Gaus-
sian cross-section. Figure show Maximum Intensity Projection (MIP) renderings of the
volumetric toroids. The extracted centerline is shown in green. The circles show the
estimated cross-sections with their radius obtained through the eigenvectors of the Hes-
sian matrix. Left: toroid with internal radius σ0 = 1.0 and radius of curvature R = 25;
Hessian scale σ = 3.0 Right: toroid with σ0 = 3.0, R = 50; Hessian scale σ = 3.0.
Here, the ground truth centerline may also be seen in red.

the location estimation of the centerline for the next step incorrect. Hence the errors
accumulate without any centerline correction after the Step stage . Hence, the need for
a Search stage in real situations becomes evident.

6.2.2 Multi-scale Extraction

Introducing multi-scale tracking, the component that must operate at multiple scales
is the section estimator. First, we need to select the set of discrete scales to be used.
Then, we need to devise a means of selecting, for every point of the image, the scale
or scales that will contribute to the multi-scale response. Finally we need to integrate
these scales into the single multi-scale response.

In order to determine, for every point, the best scale(s) for the section estimator we
need to obtain a function that depends on both, the current center of the section and
its orientation. For this we propose to use a vesselness function that depends on the
estimation of the cross-section.

In our experiments, we used as vesselness function for the section estimator, the
offset medialness from Krissian et al. [84], because this function explicitly computes
the vesselness in a cross-section plane. Moreover, this function may be used with
both section estimators used in our experiments: the Hessian section estimator and
the OOF estimator. The original implementation of Krissian et al. uses the Hessian
for estimation of the cross-section, but nothing prevents from using any other type
of estimator, such as the OOF and computing the offset medialness on the estimated
cross-section.

The GVF framework allows to replace component functions at each stage. Here we
used the offset medialness but GVF allows exchanging a function without replacing the
rest of components, as long as the function depends on a estimate of the section.
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Figure 6.10: Vascular tracking at multiple-scales in CTA datasets of the abdomen. Left:
result with Hessian estimator and offset medialness as strength measure. Right: result
with OOF estimator and offset medialness as strength measures.

Figure 6.10 shows the results of two qualitative experiments performed in the same
CTA dataset. A single branch is extracted with both, the Hessian estimator (left) and
the OOF estimator (right) at multiple scales using the offset medialness for scale se-
lection.. Results show accurate estimation for most of the vessel trajectory. Tracking
errors produced in the OOF estimation are due to the drift under curvature, which is
considered in the next section.

6.2.3 Multi-scale Extraction with Search Stage
In order to mitigate the drift effects happening due to tube curvature, it is necessary to
perform a Search stage after the section estimation, correcting the position of the center
point of the section or even re-estimating the section itself.

Let us initially assume that a section has been estimated at the correct scale. for
which a vesselness measure was obtained for the current center point of the section xC.
We propose to estimate a new section center x

′
C by searching for a medialness ridge

on the current section π . Since we are dealing with a single cross-section, this will
correspond to a local maximum of the medialness function used for scale selection.
After this new maximum is found, we re-estimate the section plane so as to obtain a
new section π ′ at x

′
C.

Any maximization algorithm may be used restricting the search to the current sec-
tion plane. In practice, we create a discrete uniform polar grid around the center
point, discretizing both in the angular and radial directions and establishing a maxi-
mum search radius. The vesselness is measured in all the grid points at the current
scale, checking first the values at radial locations closer to the center point. If no point
with larger value is found, then our center point is considered the maximum. Otherwise
we can proceed to the next radius and so on.

We followed this approach in the qualitative experiments shown in Figure 6.11
which show 3D MIP views of the extraction of the iliac arteries (Figures 6.11 (a)-(b))
and a major heart vessel in Figure 6.11 (d). Depicted centerlines shows continuous
correction of the centerline, that can be easily refined by online or posterior smoothing
as in [11]. The accuracy of the section and radius estimation is also demonstrated. Note
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(a) (b)

(c) (d)

Figure 6.11: Qualitative experiments on real CTA datasets. (a)(b)(c) Iliac arteries. (d)
Major heart vessel.

that the radius estimation is obtained directly from the scale of the vesselness operator
as computed on the centerline. Further refinements could be obtained by applying some
specialized boundary detector on the estimated centerline.

Figure 6.12 illustrate some problems that arise in multi-scale tracking. Figure 6.12
(a) shows an attempt of extraction of the aorta and its iliac arteries bifurcation in a
CTA dataset where two difficulties are shown. First, due to an excessive actual vessel
diameter with respect to the expected range of scales, the centerline of the aorta is
not correctly extracted. However, the vesselness detector gives an estimation inside
the vessel boundary (this could be avoided with some symmetry factor) and is able to
track the vessel across the bifurcation. Since no bifurcation detector is used, tracking
follows the closest iliac artery. Here an aneurysm, which resembles a blob structure,
prevents the vesselness function from obtaining good values and the tracking fails. This
problem with very large vessels, such as the aorta, and aneurysms is treated specifically
in Chapter 7 for the segmentation of the aorta and abdominal aortic aneurysms.

Figure 6.12 (b) shows a vessel image instance with bifurcations. In this case the
vessel was traversed in the opposite direction. If the direction is not filtered tracking
may follow the wrong bifurcation. Figure 6.12 (c) illustrates the Search stage failing on
a bifurcation in a MRA dataset due to a too large search radius or too large scale range.
Both bifurcated vessels are detected as a single one at a larger scale and the tracking
gets lost. The effect of limiting the search radius is shown in Figure 6.12 (d) where
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(a) (b)

(c) (d)

Figure 6.12: Common problem found during multi-scale extraction. (a) Wrong-scale
selection / blob-like structure on aorta and iliac aneurysms on a CTA dataset. (b) Non
-filtering of trajectory. (c) Excessive search radius on a MRA dataset. (d) Search radius
limited in the same dataset.

tracking successfully follows one of the branches. In order to follow both branches,
a bifurcation detector must be used, so when the bifurcation is found, two tracking
procedures are started, one for each branch.

6.3 Optimal Vessel Section Estimation

6.3.1 Introduction

In order to improve the accuracy and robustness of the section normal and radius es-
timation, we propose to combine the direct solution from the Section Estimator with
an evolutionary optimization procedure. The approach described in this chapter uses
a 1+1 evolutionary strategy (ES) algorithm [168] for optimization and a cost function
based on classical Section Estimator approaches such as the ones described before, in
order to detect the local optimal orientation and size (radius) of the vascular structure.
The optimization may also be useful to find the optimal parameters for the estimators.
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6.3.2 Evolutionary Optimization Scheme for Section Estimation
The evolutionary optimization vascular feature detection optimizes a vesselness mea-
sure assumed as the fitness function of the individuals. Individuals are instances of the
value assignments to a set of parameters. Currently, we use the optimization in order
to obtain an optimal section estimator. For this purpose, the vesselness measure needs
to be a medialness measure, with the largest values on the vessel axis. In our exper-
iments, we have used the offset medialness measure of Krissian et al. [84] described
in Chapter . The optimization procedure tries to find the optimal unit section normal n
and radius r of the medialness at each section center point xc (assuming that is the real
vessel section center). The problem can be expressed mathematically as:

argmax
u∈Ω

Rσ (xc,u), Ω =
{

u = (n,r) ∈ R4
}

s.t. ‖n‖= 1 (6.4)

We could incorporate the unit normal constraint into the optimization by using
Lagrange multipliers:

arg max
u∈Ω,λ∈R

Λ(xcu,λ ) = Rσ (xc,u)−λ

(
1−‖n‖2

)
(6.5)

This would involve a 4D parameter search space . We can reduce the dimensionality
of the parameter space and avoid the use of the Lagrange multipliers. For the first
purpose, we observe that the components of the unit section normal, which are the
director cosines, are related to each other by the expression:

‖n‖=
√

n2
x +n2

y +n2
z = 1 (6.6)

Then, the optimization procedure can be expressed as:

argmax
u∈Ω

Rσ (xc,u), Ω =
{

u = (nx,ny,r) ∈ R3
}

s.t.
{
|nx|< 1,

∣∣ny
∣∣< 1

}
(6.7)

This means that we have a 3D search space with two unit normal coordinates and the
radius of the detector since the last coordinate is functionally dependent on the other
according to the above formula.

On the other hand, the new constraints for the nx and ny coordinates can be imple-
mented very easily by returning a zero value for the cost function when the constraints
are not met. This is a fast and simple alternative to other more complex approaches
such as using Lagrange multipliers.

Note that here the section center is assumed to be previously calculated, but it
could be incorporated into the procedure. The scale σ of the derivative calculations
could also be included into the optimization parameter set. However, discrete Gaus-
sian scale-space derivatives [98] are calculated locally using an implementation with
discrete kernels [110] and this would require the calculation of a large kernel at each
optimization step for each value of the scale parameter.

The procedure for obtaining the section normal then becomes a two stage method
(see Figure 6.13), assuming that we are located on a vessel center point:
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Figure 6.13: Two-stage vessel estimation scheme used in our experiments.

1. Estimate the local section using a conventional estimator. This gives a single
solution for the section normal, given the scale, radius and center point. The
initial parameters are chosen from the neighbor point if previously calculated.
A multiscale approach tests a discrete range of scales and selects the scale that
yields the maximum medialness value.

2. Compute the best parameters for the optimization problem in eq. 6.7 using a
(1+1)-ES evolutionary optimizer. Take as starting point the parameters and value
of the section normal and radius calculated on the first stage.

6.3.3 Embedding into the GVT Framework
For the realization of the following experiments, we seamlessly incorporated the de-
scribed scheme into our realization of the GVT Framework as a specific realization of
the Search Stage (see 6.1.2.2) that uses an Optimizer component (see section 6.1.2.1).
In turn, the Optimizer uses a Vesselness Metric component adapted as a cost function.
For the following experiments, we used a single algorithm both for the Optimizer and
Vesselness Metric, but the software realization framework implemented in the IVAN
library allows changing these individual components in order to test their influence in-
dividually. This demonstrates the validity and versatility of the framework for different
experimental setups.

6.3.4 Experiments
We test our optimization methods with real 3D datasets, one Contrast-enhanced Mag-
netic Resonance Image (MRI) of the liver, one Magnetic Resonance Angiography
(MRA) of the abdomen and one Computerized Tomography Angiography (CTA) of
the abdomen. The resolution of the data is variable, with the liver MRI 1.56x1.56x3.0
mm. spatial resolution, the CTA with 0.72x0.72x1.5 mm. and the MRA 1x1x1.5 mm.

For each dataset, we manually delineate the approximate centerline of one or two
long vessels: one major liver vein in the MRI dataset, the aorta in the MRA dataset, and
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iliac arteries in the other two CTA datasets. The points were interpolated by a B-Spline
curve which is then sampled in order to increase the number of centerline points.

First, we estimated the sections by the direct method of calculating the eigenvectors
of the Hessian matrix. In order to select the scale, for each centerline point, we compute
the offset medialness in the estimated section plane and chose the parameters for the
best value (scale, section normal and radius). We used a discrete range of scales ranging
from 1.0 to 7.0 using a step size of 1.0. The radius used was the scale times a factor of√

3 which is a good radius estimate for Gaussian tubes [84]. For all our experiments
we used ξ = 0.5 for the medialness asymmetry parameter.

Second, we compute the sections with our optimization scheme. In order to keep
the two normal components in the range [−1,1], we simply return zero as the medi-
alness value outside this interval. The radius is also constrained in the range [0,Rmax]
where Rmax is chosen above the maximum expected radius value on the images. The
scale is fixed in all our experiments to σ = 1.0, since we find out that the detection was
more sensitive to the radius.

The optimization scheme uses a (1+1)-Evolution Strategy (ES) [168] as imple-
mented in [196], which belongs to the family of Evolutionary Algorithms [155]. As
initial parameters, we chose the normal and the radius from the first step. The medial-
ness was calculated each time on the estimated section. The stop condition was either
5000 iterations or a minimal search radius of 0.25 (Frobenius norm of the covariance
matrix). Most of the times the procedure was finished after about 2000 iterations. Note,
that our focus here was to test the validity of the approach and not the performance of
the optimizer. The latter has quite a lot of margin for improvements, for example, by
trying to reduce the search space or by tuning the parameters for optimal performance.

6.3.5 Results
Results of the described method for both stages are shown in Fig. 6.14. The 3D ren-
der shows the estimated sections and radius depicted as circles at each centerline point
(actually we did not draw all the centerline points but only a subset). Note that the
standard estimator works quite well at estimating the sections, since most of the ves-
sels were clearly visible. However, there was a high variation in the scale and radius
estimation along the vessels. The optimized procedure shows very precise results at
estimating the section and radius, except maybe at bifurcations, where the first stage
also fails. Note specially that the accuracy in the radius estimation is really high, which
would be difficult to estimate by manually setting the parameter on the first stage.

It is important to note that our method can be applied to virtually any vesselness
function. In this sense, the method can be thought of as both a shape and parameter
estimator, thus decreasing the number of parameters of the original estimator. In our
experiments, we have initialized the parameters for each section independently of the
results of the previous optimization. However, the optimizer can be initialized with
an initial position corresponding to the previously calculated point. In this way, the
optimization procedure would be less time consuming.

The optimization stage is slower than the previous step (in the order of minutes,
rather than in the order of seconds). In practice, it should only be used when we require
accurate values of radius and section normal or when the value of the direct section
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Figure 6.14: Volume rendering of real datasets with rendering of estimated vessel sec-
tions. Delineated centerlines are shown in green and estimated sections in blue. For
each row, from top to bottom, results for an aorta in a MRI, one major liver vessel in
the same MRI, and iliac arteries for a MRA (third row) and CTA (fourth row) study.
Left column depicts the results of the first, direction estimation stage. Right column
shows the results after the evolutionary optimization procedure.
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estimator is likely to be incorrect. During a tracking procedure, this can be detected as
an outlier, for example, when the normal exceeds an angle with respect the previous
normal along the vessel path (assuming that the step size is small enough). It may also
be used as a parameter estimator for the standard procedure obtaining parameter values
to be used in a given application.

On the other hand, the scale for the medialness was fixed to a small value in the
optimization stage. The reason is that the scale for this family of medialness function
should be chosen according to the size of the vessel boundaries (the boundary is rel-
atively thin) and not according to the diameter. Otherwise, precision would also be
penalized, since we would have a poorer localization with higher scales. This is an
important conclusion, since we see that, for these types of vesselness functions, we can
operate at lower scales and with less variability. The reason is that the scale of the di-
ameters may vary considerably but the scale of the vessel boundaries not so much. For
local calculations using discrete kernels, this supposes smaller kernels and less kernel
recalculations, which is computationally faster. The procedure also does not require
estimating the Hessian at each iteration, which makes it faster than expected.
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Chapter 7

Analysis of Abdominal Aortic
Aneurysms

Abdominal Aortic Aneurysms (AAAs) are one of the major complications in great
blood vessels. Endovascular aneurysm repair (EVAR) is the preferred technique for its
intervention and its success is measured on the basis of the bulge retraction in Com-
puted Tomography Angiography (CTA) volumes. Thus, CTA image segmentation for
AAA quantification is a relevant task for primary diagnosis and follow-up after inter-
vention and requires a specific approach due to the size of the aorta and shape of the
aneurysm. This chapter describes and evaluates a refined version of a fast and accurate
method for the segmentation of the thrombus of AAAs after EVAR based on a radial
model approach for the aneurysm and a prior aortic lumen segmentation. Thrombus
segmentation results are presented in real clinical CTA images used for EVAR follow-
up which demonstrate the high speed and accuracy of the method.

Another important contribution is the proposal of a method for the automatic de-
tection and quantification of endoleaks in AAA thrombus as depicted in CTA images.
To the best of our knowledge, there were no previous works in the literature dealing
with this specific task.

The structure of the chapter is organized as follows. Section 7.1 gives an introduc-
tion to the medical problem and development of the chapter. Section 7.2 provides the
state of the art in thrombus segmentation. Section 7.3 describes the initial approach to
aortic lumen and AAA thrombus segmentation, reporting some experimental results.
Section 7.4 discusses the issue of the iliac arteries. Section 7.5 presents the improved
thrombus segmentation process with some experimental results. Section 7.6 gives con-
clusions on the AAA thrombus processes. Section 7.7 presents the endoleak detection
process reporting experimental results. Finally, Section 7.8 gives our conclusions on
the endoleak detection process.
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7.1 Introduction

Abdominal Aortic Aneurysm (AAA) is a condition where the weakening of the aortic
wall leads to its widening and generation of a thrombus in the abdominal region of
the aorta. AAAs are one of the most recurrent conditions in cardiovascular surgery, if
untreated, AAA usually tends to wear and rupture with high risk of mortality [172].
To prevent a possible rupture of the aortic wall, AAA can be treated non-invasively by
means of the Endovascular Aneurysm Repair technique (EVAR), consisting of placing
a stent-graft inside the aorta by a catheter to exclude the aneurysm sac from the blood
circulation. A cloth graft with a stent exoskeleton is placed within the lumen of the
AAA, extending distally into the iliac arteries. This serves as a bypass and decreases
the pressure exerted on the aortic wall, leading to a reduction in AAA size over time
and a decrease the risk of aortic rupture. An Intraluminal Thrombus (ILT) is formed in
the majority of AAA. Correctly excluded aneurysms progressively shrink after EVAR
surgery.

The pre-operative planning and prognosis are done on the basis of CTA imaging
[14]. Close follow-up is required after EVAR the routine consists of performing CTA
examinations 1, 6 and 12 months after the intervention and annually thereafter. The
aneurysm volume change is to date the best indicator to determine whether the surgery
has been successful [180] , which requires a segmentation of the thrombus. In a suc-
cessful case it is expected to shrink completely until the aortic wall sticks to the stent
graft. However, in many cases, due to the lack of fast and robust methods, a complete
aneurysm segmentation is not available in order to obtain volumetric measurements,
and the largest aneurysm diameter is used, despite not being an accurate indicator of
evolution [1].

A major complication is the presence of liquid blood turbulences, known as en-
doleaks, in the thrombus formed in the space between the aortic wall and the stent-
graft, due to incorrect positioning, displacement or torsion of the graft. Although en-
doleaks are more likely to occur soon after the intervention, lifelong surveillance is
required [85]. Endoleaks can be classified in several types depending on the cause
[183, 184]. The most common ones are Type II endoleaks, which arise from persistent
retrograde flow in collateral vessel branches. They typically appear in the periphery
of the aneurysm sac without touching the stent [167]. Some of them thrombose spon-
taneously but others do not, causing an increase in aneurysm size and risk of rupture.
In these cases intervention is required, usually consisting in an embolization of collat-
eral branches. Endoleaks are shown in a CTA images as brighter material inside the
excluded aneurysm sac [167, 170](see Figure 7.1 right). The actual image intensity
value of the endoleak varies and depends on the size of the leak and the distribution
of contrast material at the moment the image was acquired. They can be confused
with calcifications which appear in the outer aortic wall and are brighter, whereas Type
II endoleaks appear typically close to the wall perfusing into the sac and showing an
amorphous shape (see Figure 7.1). We believe that an automatic detection and quan-
tification system for Type II endoleaks, is possible and would be very helpful, specially
in cases where endoleaks are not very clearly visible but may be made evident from the
analysis of subtle changes in the image content.
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7.1.1 Chapter Contributions
This chapter addresses two related image analysis problems.

• First: AAA thrombus segmentation. We propose a procedure working on a radial
representation of the thrombus contours, enhanced with a priori knowledge and
modeling of spatial coherence. As seen in the right hand of figure 7.1, thrombus
may be touching with other structures of similar intensity, so their boundaries
are quite difficult to find, even for a trained radiologist.

• Second: the semi-automatic detection of endoleaks in CTA images after throm-
bus volume segmentation.

– (a) Thrombus Connected Components (TCCs) obtained from segmentation
of the thrombus image area using a Morphological Grayscale Watershed
Transform [32]. Image content-based characteristics are obtained for each
TCC.

– (b) Multilayer Perceptron (MLP) [60] classifier is built for the automatic
detection of (Type II) endoleaks applied on the segmented lumen and throm-
bus of the AAA. Classification features are geometric and image content-
based characteristics of the TCCs. Ground truth for training the MLP are
provided by the human experts that classify a large sample of TCCs into
two classes “endoleak” and “no-endoleak”.

Experimental results over a collection of abdominal CTA images show good perfor-
mance of MLP since it is able to characterize and correctly classify image regions
inside the aneurysm corresponding to endoleaks after training over the provided la-
beled sample. Endoleaks are not frequent, therefore imaging data featuring them is
scarce. For this reason our system has to be validated at the level of 2D slices, however
a 3D extension is straightforward and will be performed when more data is available
for training and validation.

The improved thrombus segmentation method is very fast and needs little human
interaction for initialization or parameter tuning. Due to its nature, it can be easily
incorporated into a user interface in order to provide visual feedback and correction to
provide suitable results if, for any reason, the algorithm failed. It may also be adapted
for the segmentation of AAAs in non-enhanced CT images. Our approach also consid-
ers the presence of the ramification of the iliac arteries in the thrombus region.

7.2 State of the Art
The lumen of the aorta usually presents high contrast in CTA. However, aneurysm
thrombus segmentation is not a trivial task due to low-contrast in the ILT region com-
pared to adjacent structures (see Figure 7.1). Manual segmentation by trained radiol-
ogists is a time-consuming task and suffers from intra- and inter-observer variability.
With the advent of last generation CT scanners, the number of slices per examination
has increased and the manual delineation of tenths to hundreds of slices becomes im-
possible on a clinical routine . Hence, the development of automatic or semi-automatic
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Figure 7.1: Slice showing Abdominal Aortic Aneurysm with different parts (left). A
Type II endoleak appears as bright tissue in the thrombus area.

methods for AAAs segmentation is required. Furthermore, quantitative assessment of
evolution of aneurysms after EVAR is usually performed by taking the largest diameter
or cross-sectional area on a single slice, but volume measurement has been demon-
strated to show the smallest intra-observer variability [181]. Thus, a (semi)automatic
segmentation method would allow patient follow-up using volumetric measurements
of aneurysm size.

Automatic or semi-automatic aneurysm segmentation in CTA images is hindered
by noise and similarity of Hounsfield Unit (HU) values for neighboring (touching) tis-
sues. Thrombus segmentation strategies proposed in literature include active contours
[201, 37, 131]which are time consuming and difficult to control, with complex stop-
ping conditions. Bruijne et al. used Active Shape Models (ASM) [38] which required
a training set with prior segmentations. Dehmeshky et al. proposed a grayscale and
geometric appearance model [38]. Similarly, we use prior knowledge on the appear-
ance of the aneurysm, but their method requires masking of several adjacent structures.
Recently, 3D Active Object (3DAO) methods [159]have been proposed. Most of these
approaches are time consuming and require some degree of user interaction, sometimes
difficult to implement in an interface for clinical routine.

Previous work presented in [169]and [?]need initial manual delineations to initial-
ize their models; Bruijne et al. [?] method needs posterior user intervention in case of
thrombus boundary overflow. Olabarriaga et al. [131] employs a binary thresholding to
obtain the lumen which is used as an initialization for a deformable model to segment
the thrombus. Simple thresholding takes into account other tissues not connected to the
lumen, so further processing is usually needed to avoid those structures. Furthermore,
the use of deformable models needs fine parameter tuning to obtain acceptable results.
In this regard, Subasic et al.[169] uses a level set approach and Bruijne et al. [?] applies
an Active Shape Model (ASM). Zhuge et al. [201] also presents an algorithm based on
a level-set approach whose main advantage is the automatization and parameter insen-
sitivity. Nevertheless, the required computing time (in the order of several minutes) is
a main drawback. Borghi et al. [20] uses region growing segmentation techniques in
order to obtain the lumen boundary and then uses manual delineation of the aneurysm
wall to obtain a 3D model of Thoracic Aortic Aneurysm (TAA). A computational study
of the drag forces that can produce stent displacement is given in [54] for TAA. The
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work of Lee et al. [89] performs an initial estimation of the lumen based on region
growing after anisotropic smoothing. Then both the lumen and the thrombotic surfaces
are built up using a 3D graph search with cost functions specially designed for the
lumen and the thrombus surfaces. Parameter values are empirically set, and the algo-
rithm requires interactive guidance of the thrombus segmentation. Regarding endoleak
detection, we have not found any work in the literature that addresses the problem of
automatic detection and quantification of endoleaks in CTA images.

7.2.1 AAA Segmentation Process

We briefly present the complete AAA segmentation process consisting of five stages:

1. Lumen Segmentation: an initial lumen segmentation is obtained using a region
growing algorithm based on confidence measures from a pair or more seed points
as implemented in [196]. A robust segmentation of the lumen and thrombus of
the AAA is required as input for the automatic endoleak detection system in
order to isolate the lumen and thrombus area.

2. Lumen Centerline Extraction: performed on a slice by slice basis using 2D image
moments on the connected components (CCs). CCs not corresponding to the
lumen are discarded by calculating distances of centroids to adjacent slices.

3. Polar Reformatting: a slice-based polar reformatting is generated in order to
obtain a linear representation of the radial model which is faster to be processed.
For each slice, the reformatted is restricted to a certain distance, slightly larger
than the expected maximum thrombus diameter. Strictly, this does not constitute
a reformatting on cylindrical coordinates but rather, a generalized cylinder. This
allows to adapt the shape of the centerline, taking into account its curvature. The
presence of a dominant vertical direction makes the method still valid.

4. Initial Thrombus Segmentation: based on the analysis of connected components
(CCs) described both radially and at slice level. The result is a set of radial con-
tours describing the thrombus outer boundary starting from the inner boundary.
It requires a pre-processing step consisting on median filtering in order to remove
noise, and a raw thresholding which removes the hyperintense structures corre-
sponding to the stent and other spurious structures. Note that in contrast with
other methods, we do not remove any structure outside the thrombus region.
The results is a good approximation of the external thrombus contour, with the
exception of some areas where the thrombus region invades adjacent structures.

5. Thrombus Contour Correction: based on the analysis of discontinuities in the
initial contours and statistical information, outlier sectors in radial contours are
identified and replaced by interpolation between valid contour segments.

We first describe the initial approach developed in [111], which is the basis for an
improved correction algorithm developed later.
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7.3 Lumen and Thrombus Segmentation
In this section we fully describe the lumen segmentation, centerline extraction and
thrombus segmentation. Our thrombus segmentation approach is based on a radial
description of the thrombus contours.

7.3.1 Region Growing-based Lumen Segmentation
Segmentation of the lumen is based on a 3D region growing algorithm [67] computed
on the CTA volume. First, a Volume of Interest (VOI) is defined in order to reduce
the data volume and afterwards it is preprocessed to reduce noise. A manually given
seed point on the lumen is at least required for the region growing algorithm. The al-
gorithm includes voxels whose intensity values lie in a confidence interval defined in
the current segmented region over an iterative process. At each iteration, all neighbor-
hood voxels are visited and the confidence criterion is evaluated. Then, statistics are
recomputed and the next iteration begins. The resulting identified region is smoothed
by morphological closing so as to fill possible small holes.

7.3.2 Centerline Extraction
The centerline computed as the approximate centroid of the lumen region at each slice
is a good approximation of the morphological skeleton of the whole aorta. It serves
as the starting point for the thrombus segmentation. A single point on the centerline is
obtained for every slice using 2D image moments, since the aorta is almost normal to
axial slices. Image moments provide information on the spatial distribution of a given
image region corresponding to a structure. The moments of a 2D image are defined as

Mp,q =
Y−1

∑
y=0

X−1

∑
x=0

xpyqI(x,y), (7.1)

where I(x,y) is a discrete image. The centroid is defined as the pair
[

M10
M00

, M01
M00

]
.

At each slice, we compute the centroid of each connected component of the lumen
segmentation mask. The centroid which is the nearest to the centerline point detected
in the previous slice is kept as the next centerline point. The algorithm 7.1, yields a
series of points that conform the centerline of the segmented lumen.

7.3.3 Thrombus Segmentation
We model the internal and external radius of the thrombus of the aneurysm as radial
distance functions in cylindrical coordinates. We can express the volume of interest
around the lumen centerline as

Ψ = Ψ(r,θ ,z). (7.2)

At every z value, corresponding to a slice of the CTA volume, we choose the origin
of these functions to be the centerline point at the corresponding slice. The external
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Algorithm 7.1 Centerline extraction from 3D lumen region
1: Initialization of region: center line in first processed slice
2: for all slices in 3D image do
3: Identify lumen connected components from the 3D lumen region
4: for each lumen component in slice do
5: Compute centroid
6: Compute Euclidean distance to centerline point in previous slice
7: end for
8: Keep nearest centroid as the centerline point
9: end for

Figure 7.2: Radial model for the thrombus segmentation

and internal radii of the thrombus and the aneurysm can be defined as two contours
given by functions of the angle in polar coordinates:

Trint = Ψrint(θ ,z),
Trext = Ψrext(θ ,z).

(7.3)

This idea is depicted in Figure 7.2. The segmentation procedure consists of calcu-
lating the values of the internal and external radii Trint and Trext at every angle, which
define the closed boundaries enclosing the region corresponding to the thrombus.

Conversion from Cartesian to polar coordinates requires resampling the input VOI.
For every slice, a new image is obtained, where X coordinate represents the radius,
starting from the centerline point at the left, and Y coordinate represents the angle θ ,
covering 360 degrees with the origin at the top. This polar representation is visualized
in Figure 7.3(b). The original CTA slice is shown in 7.3(a).

Polar representation presents several advantages. Firstly, the VOI is converted to a
quasi cylindrical VOI (it is not exactly cylindrical because the centerline is not a vertical
line), instead of the typical rectangular prism, and it is treated as a standard volume
with a regular grid. Secondly, computation speed is increased, since resampling is only
performed once and the polar slices are processed as conventional 2D images.
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(a) (b) (c)

Figure 7.3: (a) AAA after EVAR viewed on axial slice, (b) polar representation, and
(c) median filtered version with lumen and stent thresholded and removed. The origin
for the polar coordinate representation of (b) is taken as the centerline in (a).

Following, polar slices are smoothed using a median filter to remove speckle and
additive noise coming both for the original and resampled image needed for the polar
transformation visualization. In order to remove the lumen and the stent from the
images without affecting the thrombus voxels, every slice is thresholded in such a way
that those image values higher than a threshold T hlmn are converted to a value Ibgr,
which approximates the background value of the tissue around the thrombus. In our
experiments we chose T hlmn=150 HU1 and Ibgr= -100 HU. The result of this operation
is shown in 7.3(c). After noise filtering and lumen/stent thresholding, the thrombus
appears as the brightest structure closest to the centerline and we can use this a priori
information for the segmentation.

The internal thrombus radius Trint , which corresponds to the lumen external contour
when no endoprosthesis is present, can be found moving away from the centerline
(which corresponds to moving along a row in the polar slice image) as a boundary
where values different from Ibgr appear . The median filter removes the small regions
with lower image values that may exist in between.

Localization of the external radius of the thrombus on each slice in polar coordi-
nates is achieved by a local analysis based on two concepts: radial connected compo-
nents (RCC) and slice connected components (SCC). We define an RCC as a connected
segment over a row of a polar slice and a SCC as a 2D connected component on a po-
lar slice. First, a row-by-row analysis is performed in all slices to create an image of
RCCs of each slice. An RCC is created for consecutive pixels of a row that follow
a given membership criterion . We use the absolute difference from the mean of the
currently detected RCC with a threshold value T hRCC (we use T hRCC = 20HU in our
experiments). Obtaining Trint and RCC at each row can be done simultaneously. The
algorithm 7.2 illustrates the process for creating the RCCs:

Following, we proceed to filter the RCCs. First, RCCs whose average values are
not in the intensity range of T htlow−T hthigh are removed. In our experiments we used
T htlow = 0 HU and T hthigh = 200 HU which are conservative values to characterize the
thrombus image intensity that apply to most AAA CTA datasets. Second, RCCs that
do not start from a distance dmax from the external lumen radius are removed . This

1HU = Hounsfield Units, a normalized CT image intensity value representing X-ray absorption.
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Algorithm 7.2 Creating the Radial Connected Components (RCC)
1: Move to the origin of the first polar slice (upper left corner)
2: for all polar slices do
3: for all rows in the current polar slice do
4: create a new RCC and insert first pixel on the current row
5: for all pixels in the current row do
6: if ( intensity(pixel) ∈ intensity confidence interval of the currentRCC)

then
7: insert pixel in the current RCC
8: else
9: calculate and store row internal thrombus radius

10: end for
11: end for
12: end for

(a) (b)

Figure 7.4: (a) RCCs computed from figure 7.3(c). Different RCCs found along each
row are represented in different color (from darker to brighter). (b) filtered RCCs

criterium is based on the fact that if a thrombus exists, this must be almost close to the
previously thresholded area of the lumen and endoprosthesis. In our experiments we
choose in a very conservative manner dmax = 5mm. Results of the RCC computation
procedure are shown in Figure 7.4. It can be seen that the thrombus has been almost
completely isolated, but some RCCs that are not part of the thrombus still remain (see
Figure 7.4(b)).

SCCs are computed using 2D connectivity and the same intensity criteria used for
RCCs. Each SCC keeps a list of RCCs which are included in it. SCCs are used to filter
RCCs by using spatial coherency information on each slice. First, SCCs (and its cor-
responding RCCs) that contain less than Nmin voxels (we use Nmin = 10) are discarded
since they are not significant at slice level. Next, SCCs are filtered by the position of
the centroid, having into account that most of the RCC candidates at this moment are
part of the thrombus. For each slice, the position of the centroid for all RCCs and the
corresponding centroids median values are calculated. Median value is a good indi-
cator for the real position of the thrombus. Then we compute the distance from the



136 CHAPTER 7. ANALYSIS OF ABDOMINAL AORTIC ANEURYSMS

(a) (b) (c)

Figure 7.5: Thrombus segmentation results. Correction (green line) of the initial ex-
ternal thrombus radius (blue line). Examples of appropriate correction (a) and (b) and
underestimation (c).

centroid of every SCC on that slice to the median centroid value and if the distance is
greater than a threshold like dcentroid = 20mm , the SCC is completely removed.

Initial values for the thrombus contours Trint and Trext are obtained by taking, for
every row on all slices, the first index of the first RCC and the last index of the last
RCC on that row (it is assumed that the RCCs remaining after filtering are part of the
thrombus). This results in a good approximation to the real external thrombus contour,
with the exception of some areas where the thrombus region invades adjacent structures
which represent a discontinuity in Trext (see figure 7.5 blue contours). In order to solve
this problem and regularize the contours, a continuity constraint is imposed over Trext
and the contour points whose radii are part of a discontinuity are interpolated. Discon-
tinuities are identified as significant radius changes from line to line in the polar image.
Then, the radii in these areas are linearly interpolated in order to obtain the final result
(green contours in figure 7.5).

7.3.4 Experimental Results for Thrombus Detection

Our radial-based thrombus segmentation method has been tested on real human CTA
datasets with endoleaks detected by radiologists. These images are obtained from a
LightSpeed16 CT scanner (GE Medical Systems, Fairfield, CT, USA) with 512x512x354
voxel resolution and 0.725x0.725x0.8 mm spatial resolution. Two points inside the
lumen, defining the limits of the thrombus region in axial direction, were manually se-
lected as seed points for the 3D region growing segmentation of the lumen. The lumen
centerline was then extracted to be used as the origin for the polar representation in an
area of radius 10 mm around the centerline at each slice. Finally, the described radial
function-based model was used to segment the thrombus. Some results of the throm-
bus segmentation method have been presented in Figure 7.5where the initial estimation
(blue) and the corrected external thrombus contours (green) are shown.
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7.4 Iliac Arteries Bifurcation
One major problem on AAA thrombus segmentation is the presence of double iliac
arteries in the thrombus region as shown in Figures 7.6(a) and 7.6(c). Most of the
methods assume that the thrombus is only present in the aortic area, where there is a
single branch where the lumen may be found. However, this is not always the case,
and the bulge may be present in the area where the iliac arteries start, even when the
aneurysm itself was not present in this area before the intervention. In this case, the
stent forces the two branches of the iliac arteries to be close to each other and we cannot
talk any more about a single centerline.

One solution to this problem consists of first segmenting the lumens of both iliac
arteries and then extending this segmentation in order to create a convex contour by
filling the concave areas between both branches at each slice, as shown on Figure 7.7.
This allows us to apply the rest of the segmentation algorithm for the thrombus without
further modification.

The convex contour can be obtained using open and close morphological opera-
tions. The radius for the kernel used in such operations can be set manually or can be
determined as the apparent radius obtained for each iliac artery, since this quantity is
enough for ensuring complete convexity. In practice, one has to consider the presence
of the stent, so the radius is usually a bit larger and complete convexity is not always
needed for the algorithm to work (see Figure 7.6(c) where the mask is overlaid).

7.5 Improved Thrombus Contour Correction
The external thrombus contour correction is based on a continuity constraint imposed
over the external contour Text .We assume that the thrombus is radially smooth, which
allows small discontinuities to be first identified as significant radial changes from point
to point by using a discontinuity parameter δ .

In order to remove bias in the radius function, we first recompute the centroid and
update the angles, which yields a new radial function T ′rext for the external contour
in which discontinuities are easier to identify. This can be seen in Figure 7.8where
the bias due to the offset of the centerline with respect to the thrombus contour was
considerably removed. Note that the real center is still unknown and the estimated
centroid position can be influenced by the incorrect radial estimates.

After the identification of discontinuities, the contour is divided in radial sectors
Si(θi,θi+1) defined as

Si(θi,θi+1) =
{

T ′rext(θ) : θ ∈ [θi,θi+1)
}

:
∣∣T ′rext(θi)−T ′rext(θi−1)

∣∣> δ ,
∣∣T ′rext(θi+1)−T ′rext(θi)

∣∣> δ (7.4)

Next we identify the spurious radial sectors. We calculate their average values
comparing them with the standard deviation from the median of all radial values. For
this purpose, we mark a sector Sias spurious if:

µ(Si)> κσmedian(T ′rext) (7.5)

where κ is a scaling factor and σmedian(T ′rext) is the standard deviation taking the
median of the radius values. The use of the median here, instead of the mean, avoids
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(a) (b)

(c) (d)

Figure 7.6: Segmented slices by our approach showing the initial (blue) and the cor-
rected (green) contours. Note the accuracy in difficult areas. Figure (d) shows some
problems found.
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Figure 7.7: Proposed scheme for the lumen segmentation in presence of the iliac arter-
ies in the thrombus region.

Figure 7.8: Partial removal of bias in radial function of external contour due to recen-
tering. The initial contour is shown in blue and the recentered contour in red. The
horizontal axis corresponds to the angle in degrees.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: Contour correction procedure. Each row corresponds to a different slice.
Left column shows the initial contour (blue) and the corrected contour (red) in a polar
plot. Right column shows derivative of initial contour and identified discontinuities.
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spurious values to influence the calculations by contributing with high radial values
to the mean. Confirmed contiguous radial sectors are joined to obtain new sectors.
Finally, discarded radial sector values are replaced by linear interpolation between
the boundary values of adjacent valid sectors. The procedure is depicted in Figure
7.9where several initial and corrected contours are depicted. Note how the correction
removes the spurious sectors and how some small discontinuities are preserved, that
appear naturally in the thrombus due to the presence of adjacent structures pushing it.
If necessary, this can be adjusted with the discontinuity parameter δ .

7.5.1 Experimental Results of Improved Thrombus Segmentation

Our method has been initially tested on 5 CTA datasets from real patients under follow-
up after EVAR, obtained from a LightSpeed16 CT scanner (GE Medical Systems, Fair-
field, CT, USA) with an average 0.725x0.725x0.8 mm. spatial resolution . These
datasets were manually segmented and delineated by experts for comparison. A vol-
ume of interest was defined to reduce memory requirements and two seed points inside
the lumen were selected for the segmentation of the lumen. Polar representation of
the lumen is obtained in an area of 10 mm around the centerline. The described ra-
dial approach is used to segment the thrombus contours and finally a mask is obtained
by rasterization of the contour on the image grid. In all our experiments, we used 40
angular and 250 radial samples respectively (0.4 mm. radial resolution) for the polar
reformatting. The parameters for the initial thrombus segmentation were not changed
in our experiments. For the correction step we used values of δ in the range 1.5-3.5.
The scaling factor κ was fixed to 1.5 except in one dataset which was 2.5. This allowed
us to verify that the parameter sensitivity is low, which is good for routine applications.
The results were accurate except in some slices with smooth spurious structures that
showed no visible boundaries with respect to the thrombus. Furthermore, the process-
ing time was extraordinarily fast, thrombus segmentation of a single dataset of about
20 slices took less than 1 s.in all cases.

In order to assess the accuracy of the thrombus segmentation we performed an
initial validation against manual segmentations carefully delineated by experimented
raters. For this segmentation, the average overlapping ratio of the automated A and
manual B segmentations was calculated as shown in Table 7.1. The first dataset is a
typical case of a thrombus segmentation that our method solves with high accuracy
(overlapping ratios of 93.52\% and 86.76\%). The four other datasets are from the
follow-up of a single patient and can be considered as a worst-case scenario. The
thrombus has a region with double lumen in the iliac arteries and the lumen is very
eccentric. Still, good values are obtained. We also present some filtered values where
we removed the slices were the contour was leaking in a few contour points in order
to test the accuracy in the remaining slices. Note that these could be easily corrected
changing the parameter values for those slices or by manual correction of the contour.
Finally, we present a 3D reconstruction of the contours, depicted in Figure 7.10.
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Dataset (a) (b) (c) (d)
1 93.52±2.51 86.76±5.17 - -
2 89.86±7.28 83.55±7.07 95.43±2.67 89.79±3.35
3 93.95±8.86 83.88±10.47 96.07±2.32 89.07±3.54
4 89.91±9.28 81.85±10.33 94.98±2.38 88.73±3.04
5 92.10±6.69 79.65±9.63 93.95±5.72 86.72±4.27

Table 7.1: Overlapping areas in % between proposed method segmentations and
ground-truth manual segmentations. (a) = B/A

⋃
B, (b) = A

⋂
B/A

⋃
B. (c)=(a) and

(d)=(b) both after removing incorrect contours. Table shows average values for all
slices in each datasets.

Figure 7.10: 3D polygonal reconstruction (left) and 3D contours (right) for dataset 1.
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7.6 Conclusions on AAA Thrombus Segmentation
The method developed for thrombus segmentation obtains good results in defining the
external contour as shown in Figure 7.5, , where thrombus density is very similar to
adjacent structures, and thus, very prone to segmentation error in areas close to them.
The obtained contour is very accurate due to the assumption of a radial model. The
method needs the settings of several thresholds to work. However, our experience is
that the sensibility of the method to these parameters is low as they were chosen very
conservatively. One of the main advantages of the method is its computational speed. It
took less than 20s to process 80 slices on a Pentium Core 2 Quad at 2.4 GHz. However,
the method requires further improvements since we have observed an underestimation
of the radius in some places which were identified as leaks (see Figure 7.5 (c)). Results
of this segmentation are comparable to the state of the art found in the literature [89]
with less human intervention. Our algorithm does not depend on any user-defined
contour or initial manual segmentation. User interaction is minimal: it only requires
two seed points contained in the lumen and the range of slices of interest. Accurate
segmentations are obtained in areas where it is difficult to distinguish the thrombus
from adjacent structures. In addition to this, the speed of the whole process makes it
suitable for routine clinical use.

One of the main advantages of the improved method is its efficiency, as it can
process a large number of slices in a few seconds with high accuracy (Figure 7.6). Pa-
rameter setting is minimal and most of our experiments have used the same set of pa-
rameters. δ value could be changed in order to allow some tolerance to discontinuities.
Increasing the value of κ allows more deviation from the median radius value when
the thrombus is very eccentric with respect to the centerline. This makes the method
suitable for clinical applications for follow-up after EVAR interventions, preoperative
planning or for non-contrasted CT.

We emphasize that the improved method is well suited for the segmentation of
AAAs by non image processing experts. The nature of the method, that makes use of
a radial approach, can be integrated in a friendly user interface for fast segmentation
of CTAs. The user simply would have to invalidate possible incorrect regions of the
contour and mark only a few radial points at each erroneous section, either manually
or by providing the radius value, without fine tuning of complex parameters or com-
plicated contour drawing. This has been a major consideration in the design of the
method, since we expect our algorithm to be part of a software for preoperative plan-
ning and follow-up of EVAR interventions. Most of the algorithms fail for one reason
or other and we believe that it is important to provide alternatives to fix these errors
easily, without fine tuning of complex parameters or complicated contour drawing.

The method provides really accurate results where other methods would fail due
to absence of visible thrombus boundaries (Figure 7.6). T It improves accuracy with
respect to some methods based on smooth curves or deformable models which involve
complex calculations. Besides, polar representation is also advantageous, since it polar
resampling is calculated only once, presents the data in the form of a generalized cylin-
der VOI around the centerline, which implicitly takes into account the radial symmetry,
and allows fast calculations based on CCs and run-length encoding.

The method works on a slice-by-slice basis in order to take into account the sym-
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Figure 7.11: Processes of the Automatic Endoleak Classification System

metry with respect to the centerline and to reduce the influence of possible large leaks
at volumetric level. As an improvement, some spatial coherence at volumetric level
could be introduced, especially between adjacent or nearby slices

7.7 Endoleak detection
An overview of the processes involved in the automatic endoleak classification system
can be seen in Figure 7.11. First the aneurysm lumen and thrombus are segmented us-
ing the proposed segmentation method described above. We start from a segmentation
of the lumen, based on a 3D region growing algorithm, followed by the calculation
of the aorta centerline. The thrombus contour is modeled as a function of the radial
distance to the computed centerline. The volume of interest is resampled into polar
coordinates centered in the aorta centerline.

The thrombus content is further segmented into Thrombus Connected Components
(TCC) (section 7.7.1). Using this polar coordinate reference system, the watershed
segmentation obtains the TCCs in the thrombus region at both radial and slice level
using heuristics based on a priori knowledge and spatial coherence. The radial dis-
tance functions that describe the thrombus contour are obtained from the resulting con-
nected components and define the target segmented region. The main advantages of
this method are its robustness and speed, compared with the state of the art approaches
described above. It does not employ sophisticated numerical methods neither needs
fine parameter tuning. The TCC features are extracted to be used for classification
(section 7.7.2). Once all the features for the TCCs are obtained, these are manually
labeled by the experts as endoleaks or not endoleaks. A feature selection is performed
(section 7.7.3) to remove redundant or confusing features. This data is used as input
for the training and validation of the MLP neural network classifier. Our approach to
endoleak detection is based on a priori knowledge of the possible location and appear-
ance of endoleaks in CTA images according to what it is described in medical articles,
the indications given by expert interventional radiologists, and their manual labeling of
relevant TCCs corresponding to endoleaks.
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(a) (b) (c)

Figure 7.12: Extraction of Thrombus CCs. (a) Source slice with visible endoleaks, (b)
result of Watersheds segmentation, and (c) blended result . Endoleaks are indicated by
arrows in (c). Each endoleak corresponds to more than one colored region (overseg-
mentation).

7.7.1 Thrombus Connected Component Extraction
After the initial thrombus and lumen segmentation, the thrombus is further segmented
in Thrombus Connected Components (TCCs) which will be later classified as being
endoleaks or not. This segmentation is based on a Topological Grayscale Watershed
Transform [32] applied on a slice by slice basis in the area of the segmented thrombus
on each slice (see Figure 7.12). First, the image is smoothed using an edge-preserving
smoothing filter based on a level-set modified curvature diffusion equation (MCDE)
[182]. Two parameters are required for the filter: the conductance parameter, which
controls the strength of the edges to preserve and the number of smoothing iterations,
which controls the degree of smoothing. After filtering, in order to define the water-
sheds basins, we then calculate the image gradient magnitude.

The Topological Grayscale Watershed Transform is an algorithm for calculating
the well-known Watershed Transform [16] in which the image is segmented based on
its topology. The gradient magnitude is interpreted as an elevation map and the image
relief is flooded dividing it into catchment basins. The pixels of each basin share a
local minima and the basin boundaries corresponds to the image edges. The Watershed
transform calculation is controlled by a single parameter, the Water Level, that controls
the height of the flooding, merging adjacent regions as the ’water’ ascends to reduce
the effect of oversegmentation.

The parameters for all filters involved in this segmentation are chosen in order to
distinguish the endoleaks from the background region corresponding to the thrombus,
or other adjacent structures. Endoleaks can correspond to a single or several TCCs
(oversegmentation) if the water level is low. If it is high, we would have TCC corre-
sponding to both endoleak and other tissues (undersegmentation). Classifying overseg-
mented endoleaks is not a problem, but solving the undersegmentation problem is not
easy. Therefore the Water Level parameter is set to avoid undersegmentation.

7.7.2 Feature Extraction from TCC
We calculated the following geometric features for each labeled TCC that will be used
by the MLP-based classification system to determine if the TCC is part of an endoleak
region:
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• Area: number of pixels of the TCC.

• Area-region Ratio: ratio of the TCC’s bounding box and the area.

• Binary Principal Moments: TCC’s principal moments of inertia (two features)

• Equivalent Radius: radius of a circle of the same area as the TCC and the follow-
ing image content-based statistical features computed from the image intensity
of the CTA image region corresponding to the TCC: Mean, Sigma, Median, Kur-
tosis, Skewness and Elongation (ratio of the largest to smallest principal image
moments).

Besides these features, we need to incorporate another feature that describes the relative
position of the TCC with respect to the lumen and thrombus boundaries. We can profit
from the observation that Type II endoleaks typically appear close to the thrombus
boundary and perfusing inwards. We need this feature to be normalized, since the
radius and shape of the thrombus and lumen, and the eccentricity of the lumen with
respect to the thrombus is not uniform. Moreover, the lumen can show two branches
when the aorta splits in two forming the iliac arteries (see Figure 7.12(a)), so we cannot
take the distance to the lumen centroid. Taking all this considerations into account, we
propose a feature called Normalized Thrombus Distance (NTD). Two distance maps
are first calculated from the thrombus boundary inwards (δlm) , and from the lumen
thrombus boundary outwards (δth), using Danielsson’s algorithm [35] (see distance
visualization in figure 7.13). In the rest of image regions the NTD value is zero. Then,
we calculate the NTD as:

NT D =

{
δlm
δth

if δlm ≤ δth
δth
δlm

if δth ≤ δlm
(7.6)

The NTD takes its maximum value of one at thrombus points that are equidistant to
the lumen and thrombus boundaries. NTD minimum value is zero and it is taken at the
thrombus boundary and outside the thrombus, and at the lumen boundary and inside
the lumen. NTD takes values in [0,1] inside the thrombus. For the thrombus and lumen
boundaries used as input for the NTD, we can use the segmentation described in 7.3or
a manual segmentation.

7.7.3 Reduced Feature Vector for MLP
Let us call the dependent indicative variable IsLeak. Its value is 0 for negative TCC and
1 for TCC inside endoleaks. In order to reduce the classifier system’s complexity and
increase the speed of the calculations, a subset of features is selected as input for the
network based on the absolute value of the Pearson correlation coefficients between
the dependent variable IsLeak and the rest of variables (features) defined as:

r =
σXY

σX σY
(7.7)

In Figure 7.14we can see the results of calculating the absolute value of the Pearson
Coefficients for the CCs of all the slices in the aneurysm region for a given dataset. As
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(a) (b)

Figure 7.13: Visualization of the distance maps used to calculate the NTD feature. (a)
distance to the lumen δlm and (b) distance to the thrombus δth.

Figure 7.14: Absolute value of Pearson’s Correlation Coefficients of each feature with
the indicative variable IsLeak

expected, we can see that the NTD feature is highly correlated with the dependent
variable, since the feature was designed to incorporate the a priori knowledge of the
spatial distribution of the endoleaks. As it can be seen, the standard deviation value
plays an important role in the characterization of endoleaks, as it was expected. The
experimental results show that the reduced feature vector obtain by this straightforward
approach give comparable classification results.

7.7.4 Endoleak Detection Experimental Results

The classification scheme was tested independently on each single CTA volume from
patients with Type II endoleak after EVAR treatment. The whole volumes consisted of
383 slices in a 512x512 matrix, with an in-plane spatial resolution of 0.703 mm. and a
slice thickness of 0.8 mm. Due to the scarce availability of volumes from patients af-
fected with endoleaks, we tested our approach independently on each volume, working
on a 2D slice-by-slice basis. In each case, we took as input for the MLP training the
results of a segmentation of the lumen and thrombus regions validated by expert radiol-
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DataSet Accuracy Sensitivity Specificity
1 92.39 93.43 91.36
2 93.68 93.66 93.69
3 93.09 93.66 92.52
4 93.21 94.13 92.29
5 92.16 93.43 90.89

Av. 92.90 93.66 92.15

Table 7.2: Classification results for the training/test data build from full feature vectors,
10-fold cross-validation. The table shows the total accuracy, sensitivity and specificity
for each dataset. Last row shows the average across datasets. All calculations were
performed with 3 hidden nodes, learning rate = 0.3 and training time = 550 epochs.

ogists. The Watershed-based segmentation was performed on the slices corresponding
to the aneurysm region in each dataset using the implementation provided by the In-
sight Toolkit [67] for the Topological Grayscale Watershed Transform. We used the
following parameters for the different filters involved in the watershed segmentation:
smoothing conductance = 50.0, smoothing number of iterations = 10, Watersheds water
level2 = 9.0. The NTD distance-map feature was calculated from the input thrombus
and lumen segmentations. The TCCs were manually labeled as being part of an en-
doleak. From the group of negative TCCs, we proceeded to select randomly an equal
number of samples in order to obtain a balanced training/testing set.

Classification experiments were performed using the MLP implementation pro-
vided in [190]. The MLP neural network consisted feature described in section 7.7.2,
a hidden layer with three neurons and two binary outputs, with sigmoid functions.
Network training and validation was performed using 10-fold cross-validation in all
computational experiments. Initially, we used the full training/test set consisting of the
full feature vectors described in section 7.7.2. The results are shown in table 7.2. Re-
sults are above 90% accuracy, with a high sensitivity which is very interesting because
the cost of false negatives is much higher than that of false positives.

Next, we test the improvement in the classification results by testing reduced sets of
features selected according to the correlation results found in section 7.7.3 (Figure7.14).
The best results were obtained by selecting the following features: Area, Mean, Sigma
and NTD, . We can see in Table 7.3 that the classification rate improves, reaching
93.65% accuracy with a sensitivity of 94.37% and a specificity of 92.94%. The best
results give a success rate of 94.73% with a sensitivity of 94.37% and a specificity of
95.09% for the second dataset.

Figure 7.15 shows the influence of several parameters of the MLP in the classifi-
cation performance measures. The best results are obtained when setting the training
time to 550 epochs, the learning rate to 0.3 and hiding 3 nodes. These sensitivity exper-

2as a percentage of current image dynamic intensity range



7.8. CONCLUSIONS ON ENDOLEAK DETECTION 149

DataSet Accuracy Sensitivity Specificity
1 93.79 94.84 92.76
2 94.73 94.37 95.09
3 93.68 94.60 92.76
4 93.33 94.13 92.52
5 92.74 93.90 91.59

Av. 93.65 94.37 92.94

Table 7.3: Classification results for the training/test data build from reduced feature
vector, 10-fold cross-validation. The table shows the total accuracy, sensitivity and
specificity for each dataset. Last row shows the average across datasets. All calcula-
tions were performed with 3 hidden nodes, learning rate = 0.3 and training time = 550
epochs.

(a) (b) (c)

Figure 7.15: Influence of Neural Network Parameters. Accuracy, sensitivity and speci-
ficity are calculated. Parameters tested are number of hidden nodes (a), learning rate
(b) and training time measured in number of epochs (c).

iments were performed on the training/test dataset that gave best results on the reduced
feature vector (dataset 2).

7.8 Conclusions on Endoleak Detection
We have demonstrated an automatic system for the detection of (Type II) endoleaks
in CTA images of Abdominal Aortic Aneurysms. The classification results show that
the system is able to detect endoleaks with high accuracy based on the analysis of ex-
tracted TCCs. The use of neural networks is specially adequate for this case, since we
do not need to explicitly incorporate the clinical a priori knowledge in terms of precise
parameters and thresholds for image intensities, distances, etc. This is a common char-
acteristic in many classification problems in medical imaging, in which the specialist
is able to discriminate at first sight the object of interest, but is not able to explicitly
indicate the rules that guide their mental discourse while diagnosing, which is usually
the product of accumulated experience and observations.

Classification results over several real datasets in Tables 7.2 and 7.3 show that the
system obtains accuracy results above 90% with high sensitivity, which is specially
important given the high cost of not recognizing endoleaks present in the image. We
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have also demonstrated that a careful selection of features decreases the complexity
of the problem and improves the results. There is no similar work in the literature,
therefore the results can be assumed as a initial reference for future works.

Regarding the parameters used for the MLP model, in the case of using five fea-
tures, the results are very similar when the number of hidden nodes are two or more.
Using five, six or more nodes does not improve the results and so the best balance is
found with three nodes. It can be seen that the influence of the learning rate is limited
when the number of epochs is high enough (around 500). With respect to the train-
ing time, best results are obtained with 550 epochs and global classification results do
not improve by increasing this number. However, the plots show that the sensitivity
decreases as the specificity increases, keeping a constant rate of total hits. This is un-
desirable since we want the sensitivity to be high, and thus the optimum is found at 550
epochs.

In the near future, we expect to extend the system to 3D analysis of TCCs and to the
detection of endoleaks obtained from several datasets. Since the diagnosis of endoleaks
is not totally certain, we also expect to incorporate a fuzzy or probabilistic description
in order to determine which TCCs are endoleaks. Another possible improvement to
the system is the classification of other types of endoleaks (I, III, IV and V) since cur-
rently the system was trained only to identify Type II endoleaks. This would probably
need the incorporation of other types of features for the analysis. Finally, the system
would need deeper clinical validation in order to integrate it in clinical environments
for diagnosis support of the evolution of AAAs treated with EVAR.



Appendix A

Ideal Shape Models for Vascular
Analysis

A.1 Basic Shape Models

A.1.1 Ideal Cylinder
Definition 2. The equation of a such a volumetric cylinder model, in cartesian coordi-
nates is:

Icyl(x,y,z) = K exp
(
−x2 + y2

2σ2
0

)
, (A.1)

where σ0 is the standard deviation of the Gaussian section which defines the apparent
radius of the cylinder, and constant K is the intensity at the center of the cylinder1.

If K = 1/2πσ2
0 we obtain the unit area integral for the 2D Gaussian section, but

in general we will assume K = 1in most of the following calculations unless told oth-
erwise. This will allow us to compare values for different choices of radius. The first
order derivatives are computed as follows:

∂ Icyl

∂x
=− x

σ2
0

Icyl (A.2)

∂ Icyl

∂y
=− y

σ2
0

Icyl (A.3)

∂ Icyl

∂ z
= 0 (A.4)

which are zero at the center of the tube. The second order derivatives are computed as
follows:

1Do not confuse this standard deviation with the scale corresponding to the standard deviation σ of the
Gaussians used for derivative calculations. Here, σ0is the real diameter of the tube, which is usually unknown
at the detection stage in real datasets.
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∂ 2Icyl

∂x2 =− 1
σ2

0
Icyl +

(
− x

σ2
0

)(
− x

σ2
0

)
Icyl =

x2−σ2
0

σ4
0

Icyl (A.5)

Lemma 3. The Hessian matrix of an ideal cylinder with Gaussian cross-section has
three different eigenvalues. The eigenvalue corresponding to the axial direction is iden-
tically zero for all values of the radius r =

√
x2 + y2. The remaining eigenvalues corre-

spond to derivatives of the Gaussian function of odd order with respect to r multiplied
by some constant.

Proof. The characteristic equation of H ′is:(
x2−σ

2
0 −λ

′)(y2−σ
2
0 −λ

′)(−λ
′)+ x2y2

λ
′ = 0. (A.6)

The first eigenvalue, corresponding to the z direction is:

λ3 = 0. (A.7)

The other two eigenvalues are the solution to the equation:(
x2−σ

2
0 −λ

′)(y2−σ
2
0 −λ

′)− x2y2 = 0.

By multiplying and reordering terms we obtain the second order equation:

λ
′2 +

(
−x2 +2σ

2
0 − y2)

λ
′+
[
σ

4
0 −
(
x2 + y2)

σ
2
0
]
= 0

The solution can be obtained analytically:

λ
′ =

1
2
(
x2−2σ

2
0 + y2)± 1

2

√(
−x2 +2σ2

0 − y2
)2−4

[
σ4

0 − (x2 + y2)σ2
0

]
= 0,

λ
′=

1
2
(
x2−2σ

2
0 + y2)± 1

2

√
x4 +4σ4

0 + y4−4(x2 + y2)σ2
0 +2x2y2 +4(x2 + y2)σ2

0 −4σ4
0 = 0,

λ
′ =

1
2
(
x2−2σ

2
0 + y2)± 1

2

√
x4 +2x2y2 + y4 = 0,

λ
′ =

1
2
(
x2−2σ

2
0 + y2)± 1

2
(
x2 + y2)= 0,

which results in the eigenvalues:

λ1 =
x2 + y2−σ2

0

σ4
0

Icyl . (A.8)

λ2 =
−1
σ2

0
Icyl . (A.9)

The third eigenvalue is zero for all values of r. The second eigenvalue is the inverted
cylinder function, which can be considered a zero order derivative. The third eigenvalue
correspond to the second derivative of the Gaussian function with respect to r.
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Lemma 4. The Hessian matrix of the ideal cylinder with Gaussian cross-section has
three different eigenvectors, one in the axial direction and the rest in radial directions
perpendicular to each other.

Proof. For the first eigenvector we have the set of equations:

−y2vx + xyvy = 0

xyvx− x2vy = 0(
−x2− y2 +σ

2
0
)

vz = 0

The first two equations yield the relationship:

vx =
x
y

vy

From the last equation we obtain:
vz = 0

Since any multiple of an eigenvector is also an eigenvector, we can arbitrarily choose
vy = y obtaining the eigenvector:

x1 = [x,y,0]T , (A.10)

which is in the radial direction. For the second eigenvector the set of equations is:

x2vx + xyvy = 0,

xyvx + y2vy = 0,

σ
2
0 vz = 0.

Then, the second eigenvector is:

x2 = [−y,x,0]T (A.11)

which is also in the radial direction. Finally, for the third eigenvector the set of equation
is: (

x2−σ
2
0
)

vx + xyvy = 0

xyvx +
(
y2−σ

2
0
)

vy = 0

0vz = 0

The first two equations give vx = 0 and vy = 0, whereas vz can take any value. We
arbitrarily choose vz = 1 obtaining:

x3 = [0,0,1]T (A.12)

which is in the axial direction.
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Proposition 5. The second eigenvalue of the Hessian matrix of the ideal cylinder with
Gaussian cross-section, has an inflection point exactly at the location of the radius,
that is for r = σ0

Proof. The condition for the inflection point is:

λ
′′
2 (r) =

∂ 2λ2

∂ r2 = 0 (A.13)

The second derivative is:

λ
′′
2 (r) =

σ2
0 − r2

σ4
0

exp
(
− r2

2σ2
0

)
=−λ1 (A.14)

resulting in:
r
(

λ
′′
2 = 0

)
= σ0

The value at this inflection point is:

λ2

(
r
(

λ
′′
2 = 0

))
. (A.15)

A.1.2 Cylindrical Coordinates for the Ideal Cylinder
The expressions for the ideal cylinder can be simplified by taking cylindrical coordi-
nates as a reference system which, due to its cylindrical symmetry are the most natural
way of describing the model. The change from cartesian (x,y,z) to cylindrical (r,θ ,z)
coordinates is:

r =
√

x2 + y2

θ = atan
( y

x

)
z = z

(A.16)

The inverse coordinate transformation is:

x = r cosθ

y = r sinθ

z = z
(A.17)

Proposition 6. The Hessian matrix of the ideal cylinder with Gaussian crosss-section
expressed in cylindrical coordinates has a single non-zero eigenvalue corresponding
to a function of the second-derivative of the Gaussian with respecto to r. This main
curvature occurs in the radial direction.

Proof. From the above matrix we have the characteristic equation:(
r2−σ

2
0 −λ

)
λ

2 = 0 (A.18)

The eigenvalues are:
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λ1 =
r2−σ2

0

σ4
0

Icyl (A.19)

λ2 = 0 (m = 2) (A.20)

The eigenvector corresponding to the eigenvalue in the radial direction is obtained
by the equations: (

r2−σ2
0 − r2 +σ2

0
)

r1 = 0(
σ2

0 − r2
)

θ1 = 0(
σ2

0 − r2
)

z1 = 0

From the last two expressions θ1 = z1 = 0 The first expression is true for any r1 and
we can take arbitrarily r1 = 1. In order to obtain a vector in cartesian coordinates we
can replace these values in equation A.17:

x1 =

 1
0
0

 (A.21)

which points in the direction of x. In fact, the condition that r = 1 means that
√

x2 + y2 =
1 so we could take any eigenvector that satisfies the conditions:√

x2 + y2 = 1
z = 0

(A.22)

which is any radial direction.

A.1.3 Ideal Flat Structure
Definition 7. The ideal flat structure represents a thin, planar structure of infinite ex-
tension. The intensity variation occurs only in a principal direction corresponding to
the normal to the surface. We can model the intensity profile accross the surface by a
Gaussian function. If we make this direction coincide with the z axis, the corresponding
equation is:

I f lat(x,y,z) = K exp
(
− z2

2σ2
0

)
(A.23)

A.1.4 Ideal Blob Structure
Definition 8. A blob structure is an structure with no preferred direction for the inten-
sity variation and can be modelled as a Gaussian sphere corresponding to the equation:

Iblob(x,y,z) = K exp
(
−x2 + y2 + z2

2σ2
0

)
(A.24)
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We can take into account the symmetry of the problem an analyze it in spherical coor-
dinates, using the following coordinate transformation:

r =
√

x2 + y2 + z2

θ = a tan
( y

x

)
0≤ θ < 2π

ϕ = acos
( z

r

)
0≤ ϕ < π

(A.25)

The inverse coordinate transformation is:

x = r cosθ sinϕ

y = r cosθ sinϕ

z = r cosϕ

(A.26)

The resulting equation in spherical coordinates is straightforward:

Iblob(r,θ ,ϕ) = K exp
(
− r2

2σ2
0

)
(A.27)

A.2 Toroid
Definition 9. A toroid is a volumetric solid generated by the revolution of a circle
around a coplanar axis. The resulting shape is that of a doughnut, assuming that the
circle do not intersects the axis. If we just take the external surface, the shape is called
torus. Assume that the circle revolves around the axis at a constant distance R which is
the radius of the toroid, and that the radius of the circle is constant during the revolution.
The centerline of such a toroid is a circle whose equation is given by:

xC(θ) = R cosθ

yC(θ) = 0
zC(θ) = R sinθ

(A.28)

where we assume that the centerline lies in the plane y = 0, or, in other words, that
the axis of revolution coincides with the y-axis. This orientation is more suitable for a
comparison with the ideal cylinder model.

Definition 10. The volumetric toroid may be described in terms of a set of curvilinear
coordinates taking into account the geometry of the solid. The position of a point P in
the volumetric toroid is given by the vectorial equation:

xP(x,y,z) = xC + r cosϕe1 + r sinϕe2 (A.29)

The position vector xC of the center of the cross-section in which P lies corresponds
to the centerline defined in equation 9. We need to find an expression for e1 and e2,
the basis vectors for the section that contains points P and C, in terms of the global
reference system. Since e1follows the direction of the segment OC we have that:

e1 = cosθ i+ sinθk (A.30)
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On the other hand, the section normal n is tangent to the centerline circumference
and thus:

n =−sinθ i + cosθk+ (A.31)

Finally, from the figure, it is easy to see that

e2 = j (A.32)

which can also be derived from the cross-product

e2 = n× e1 =

∣∣∣∣∣∣
i j k

−sinθ 0 cosθ

cosθ 0 sinθ

∣∣∣∣∣∣= (cos2
θ + sin2

θ
)

j = j

Replacing in equation 10 we obtain the inverse coordinate transformation from the
curvilinear coordinates (r,ϕ,θ) to the cartesian coordinates:

x(r,ϕ,θ) = Rcosθ + r cosϕ cosθ (1)
y(r,ϕ,θ) = r sinϕ (2)
z(r,ϕ,θ) = Rsinθ + r cosϕ sinθ (3)

(A.33)

We will proceed to find the direct coordinate transformation that takes the form:

r = r(x,y,z)
ϕ = ϕ(x,y,z)
θ = θ(x,y,z)

(A.34)

Combining equations A.2 (1) and (3):

r cosϕ =
x−Rcosθ

cosθ
=

z−Rsinθ

sinθ

From here we obtain2:

tanθ = z
x (1)

cosθ = x√
x2+z2

(2)

sinθ = z√
x2+z2

(3)
(A.35)

For the curvilinear coordinate r we know that

r2 = (x− xC)
2 +(y− yC)

2 +(z− zC)
2

r2 = (x−Rcosθ)2 + y2 +(z−Rsinθ)2

r2 = x2 + y2 + z2 +R2−2R(xcosθ + zsinθ)

2Note that P is not necessarily on the centerline so in general
√

x2 + z2 6= R
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r2 = x2 + y2 + z2 +R2−2R
√

x2 + z2

Finally we obtain:

r =

√
y2 +

(√
x2 + z2−R

)2
(A.36)

From equation A.2 (2):

sinϕ =
y
r
=

y√
y2 +

(√
x2 + z2−R

)2
(A.37)

On the other hand:

cosϕ =

√
1− sin2

ϕ =

√√√√1− y2

y2 +
(√

x2 + z2−R
)2

cosϕ =

√
x2 + z2−R√

y2 +
(√

x2 + z2−R
)2

=

√
x2 + z2−R

r
=

√
r2− y2

r
(A.38)

Finally:

tanϕ =
y√

r2− y2
=

y√
x2 + z2−R

(A.39)

A possible expression for the direct coordinate transformation is thus:

r =

√
y2 +

(√
x2 + z2−R

)2
(1)

θ = arctan
( z

x

)
(2)

ϕ = arctan
(

y√
x2+z2−R

)
(3)

(A.40)

Alternatively we can use any of the expressions derived above.

A.2.1 toroid derivatives
Now we will proceed to obtain some derivatives that we will use for our future analyses.
By differentiating both sides of equation A.2 (1):

dr =
1
2r

2
(√

x2 + z2−R
) 2x

2
√

x2 + z2
dx

Replacing from equation A.38 and A.2 (2):
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dr
dx

= cosϕ cosθ (A.41)

Similarly we obtain:

dr
dy

=
y
r
= sinϕ (A.42)

dr
dz

= cosϕ sinθ (A.43)

By taking derivatives on both sides of A.2 (1):

dθ

cos2 θ
=− z

x2 dx =− tanθ

x
dx

dθ

dx
=−

cos2 θ
sinθ

cosθ

cosθ (R+ r cosϕ)

dθ

dx
=− sinθ

R+ r cosϕ
(A.44)

Similarly:

dθ

cos2 θ
=

dz
x

dθ

dz
=

cos2 θ

x
=

cos2 θ

Rcosθ + r cosϕ cosθ

dθ

dz
=

cosθ

R+ r cosϕ
(A.45)

And since y does not depend on θ and they are both independent variables:

dθ

dy
= 0 (A.46)

To obtain similar relationships for the coordinate ϕ we can differentiate both sides
of equation A.39 and use the chain rule:

dϕ

cos2 ϕ
=

−y x√
x2+z2(√

x2 + z2−R
)2 dx

dϕ

dx
=− r sinϕ cosθ

r2 cos2 ϕ
cos2

ϕ
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dϕ

dx
=−1

r
sinϕ cosθ (A.47)

Similarly

dϕ

dy
=

1
r

cosϕ (A.48)

dϕ

dz
=−1

r
sinϕ sinθ (A.49)

Now we can proceed to study the derivatives of the toroid model.

A.2.2 Gaussian Toroid Derivatives
First, we need to calculate the first-order derivatives. We may use the chain rule for
obtaining the total (not partial) first-order derivative3 with respect to x:

dI
dx

=
∂ I
∂ r

∂ r
∂x

=− r
σ2

0
I cosϕ cosθ

dI
dx

=− r
σ2

0
cosϕ cosθ I (A.50)

where the value of ∂ r/∂x is taken from equation A.82. In a similar fashion we obtain:

dI
dy

=− r
σ2

0
sinϕI (A.51)

dI
dz

=− r
σ2

0
cosϕ sinθ I (A.52)

Now we can proceed to obtain the second-order partial derivatives. We start with
the second derivative with respect to x. By the chain rule4:

d2I
dx2 =

∂

∂ r

(
dI
dx

)
∂ r
∂x

+
∂

∂θ

(
dI
dx

)
∂θ

∂x
+

∂

∂ϕ

(
dI
dx

)
∂ϕ

∂x
(A.53)

d2I
dx2 =

I
σ2

0

[
r2−σ2

0

σ2
0

cos2
ϕ cos2

θ − sin2
θ

1+ R
r cosϕ

− sin2
ϕ cos2

θ

]
Similarly we obtain:

3When we use here the concept of total derivative of I with respect to x,y or z, we take into account all
the indirect dependencies with respect to the variable we are obtaining the derivative for. When we use the
partials derivatives, we do not take into account these dependencies. Note that in fact if I = I(x,y,z) and
if we didn’t not have these intermediate dependencies, we would be talking about partial derivatives only
since I depends on several variables, as we do in other parts of this thesis. Here we need a way to establish a
difference and so we use the notation for total derivatives.

4Note that we must also take into account that I = I(r)when calculating derivatives with respect to r.
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d2I
dy2 =

I
σ2

0

[
r2−σ2

0

σ2
0

sin2
ϕ− cos2

ϕ

]
(A.54)

d2I
dz2 =

I
σ2

0

[
r2−σ2

0

σ2
0

cos2
ϕ sin2

θ − cos2 θ

1+ R
r cosϕ

− sin2
ϕ sin2

θ

]
(A.55)

d2I
dxdy

=
I

σ2
0

[
r2

σ2
0

cosθ sinϕ cosϕ

]
(A.56)

d2I
dxdz

=
I

σ2
0

sinθ cosθ

[
r2−σ2

0

σ2
0

cos2
ϕ− 1

1+ R
r cosϕ

− sin2
ϕ

]
(A.57)

d2I
dydz

=
I

σ2
0

[
r2

σ2
0

sinθ sinϕ cosϕ

]
(A.58)

A.2.3 Hessian Eigenvalues and Eigenvectors
Lemma 11. The radius of curvature R of the ideal toroid model with Gaussian cross-
section has only influence in the principal curvature corresponding to a direction per-
pendicular to the local toroid section.

Proof. We can see that, for θ = 0 and ϕ = 0, the first and second principal curvatures λ1
and λ2 for θ = 0 and ϕ = 0 coincide with the first two principal curvatures of the ideal
cylinder in cartesian coordinates (see equations A.8 and A.9) and are not influenced
by the radius of curvature R of the toroid. However, we can see that, compared with
the cylinder model, the third eigenvalue, corresponding to the z direction at the origin
is not zero anymore and depends on the distance r to the centerline and the radius of
curvature R of the toroid. Due to the symmetry of the problem, the same holds for other
angles other than θ = 0 and ϕ = 0.

A.2.4 Effect of curvature
Lemma 12. Let OC be a line that connects the center of the toroid O with any point
C on the centerline of the toroid with d

(
OC
)
≡ R. Let P1and P2 be symmetrical points

on that line with respect to C at a distance r with P1 the closest to O. Then, |λ3(P1)| ≥
|λ3(P2)|∀r.

Proof. From the simplified expression of λ3

λ3 =−
1

σ2
0

1
1+ R

r

I

where r can take positive or negative values depending if we are in the external (ϕ = 0)
or internal (ϕ = 180) part of the cylinder we can see that, for the same absolute value
of r we obtain two points P1,P2 in the line with respective values
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λ
−
3 = λ3(P1) =−

1
σ2

0

1
1− R

|r|
I (A.59)

λ
+
3 = λ3(P2) =−

1
σ2

0

1
1+ R

|r|
I (A.60)

Comparing the quotient in the middle we can distinguish three cases for r. If R
|r| < 1

then the denominator in eq. A.59 is always positive and the total value negative. If
R
|r| < 1 the denominator in eq. A.59 is always negative and the total value positive. If
R
|r| < 1 then the denominator is zero in the same equation and the total value infinite.
In all three cases the denominator in eq. A.59 is smaller in absolute value than in A.60
and thus |λ3(P1)| ≥ |λ3(P2)|∀r.

A.3 Helix

The volumetric helix is a very interesting shape model, because it allows us to study
both the effect of curvature and torsion in the derivative-based detection of curvilinear
structures.

Definition 13. A helix is a smooth curve in three-dimensional space. Its main char-
acteristic is that the tangent line at any point makes a constant angle with the helix
axis. The helix revolves around the axis as it ascends (or descends). Helices can be
left-handed or right handed, depending on the direction of ascension. The ratio of as-
cension per angle unit is usually a constant H for regular helices. We will call this
constant here helix unit pitch. Usually the pitch is defined as 2πH, that is, the amount
the helix ascends (in the axial direction) in a complete 360º turn. The parametric equa-
tion of the centerline of an helix with constant radius and pitch is given by5:

x(θ) = R cosθ

y(θ) = R sinθ

z(θ) = H θ

(A.61)

where the parameter θ is the angle depicted in Figure . Note that this is not the unit arc
length parametrization. Such an helix with a constant radius R and constant unit pitch
H is called a circular helix [68].

Proposition 14. Let γ̃ : I −→ R3 be a circular helix. Then, the curvature and torsion
of the helix is constant.

5The standard notation for a parametric curve typically uses t for the curve parameter. However, we
will use here θas the name of the parameter, since we want to emphasize that the parameter is an angle.
Moreover, it can be confused with the t parameter in the scale-space representations.
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Proof. First, we will try to find the value of the normal vector and the curvature. The
value of these derivatives is independent of the chosen parametrization and thus, we
can calculate the derivatives with respect to the angle parameter θ . For the tangent
vector we have:

∂T
∂θ

=
R√

R2 +H2
(−cosθ i− sinθ j) (A.62)

N =
∂T
∂θ∣∣∣ ∂T
∂θ

∣∣∣ =−cosθ i− sinθ j (A.63)

and thus the curvature is

κ =

∣∣∣∣∂T
∂θ

∣∣∣∣= R√
R2 +H2

(A.64)

which is a constant when both R and H are constants. Now we can obtain the binormal
vector as:

B = T ×N =
1√

R2 +H2

∣∣∣∣∣∣
i j k

−Rsinθ Rcosθ H
−cosθ −sinθ 0

∣∣∣∣∣∣ (A.65)

B =
1√

R2 +H2
(H sinθ i−H cosθ j+Rk) (A.66)

and its derivative with respect to the arc-length:

∂B
∂θ

=
H√

R2 +H2
(cosθ i+ sinθ j) (A.67)

and thus the the torsion is

τ =

∣∣∣∣∂B
∂θ

∣∣∣∣= H√
R2 +H2

(A.68)

which is a constant when both R and H are constants.

A.3.1 Curvilinear Coordinates

The parametric equation described in equation A.61 represents a 1D helix whose points
are at a distance R from the helix axis. However, we are interested in a volumetric helix,
that is, an helix that has a section with a given intensity distribution an radius. As in
the previous models, we will use a 2D Gaussian function as the intensity distribution
for our volumetric helix section, which is more representative for small vessels.

In order to obtain the equation of the volumetric helix with Gaussian cross-section
we will use a curvilinear coordinate system with three coordinates (see Figure ):
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r = distance to the closest point on the helix centerline as defined by the
equation .

ϕ= angle formed by the line of shortest distance to the centerline with the
cross-section horizontal axis. This line is where r is measured.

θ= angle formed by the closest point of the centerline with the origin of
the centerline as measured in a plane normal to the axis.

Note that the helix cross-section does not contain the helix axis as it happened with the
torus model. In we can see that the cross-section is defined by the tangent plane to the
helix at every point, and the normal and binormal planes are the base vectors in this
section plane.

The position of a point−→x ∈R3 in a volumeteric helix can be defined in terms of the
center −→xC ∈ R3 of the section where the point is defined and the normal and binormal
vectors. The basis vectors of the section are:

e1 =−N
e2 = B

and thus we have the vectorial equation:

x = xC− r cosϕN + r sinϕB (A.69)

where r is the distance to the closest point on the helix centerline. Thus, by combining
eq. A.61and A.69and replacing the expressions of the normal and binormal vectors, we
obtain a relationship between the curvilinear coordinates we have chosen for the helix
and cartesian coordinates:

x(r,ϕ,θ) = Rcosθ + r cosϕ cosθ + τr sinϕ sinθ (1)
y(r,ϕ,θ) = Rsinθ + r cosϕ sinθ − τr sinϕ cosθ (2)
z(r,ϕ,θ) = Hθ +κr sinϕ (3)

(A.70)

The equation A.70 represents a direct transformation from curvilinear to cartesian
coordinates. Ideally, from these equations we could obtain an inverse transformation
in the form of equation A.34. However, obtaining such a transformation is not always
possible or practical.

In the case of the helix, instead of an explicit expression for the inverse transforma-
tion, we obtain a set of implicit equations that involve both, the curvilinear and cartesian
coordinates and that will be useful for our derivative calculations. By combining eq.
(1) and (2) from the vectorial eq. A.70 we have:

r cosϕ =
x−Rcosθ − rτ sinϕ sinθ

cosθ
=

x−Rsinθ − rτ sinϕ cosθ

sinθ

xsinθ − ycosθ = τr sinϕ

and replacing the value of r sinϕin eq. A.70 (3) we obtain the implicit relationship:

z−Hθ =
κ

τ
(xsinθ − ycosθ) (A.71)
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or equivalently

z−Hθ =
R
H

(xsinθ − ycosθ) (A.72)

which corresponds to an explicit expression of the type f (θ ,x,y,z) = 0 which is also
useful.

Combining equations A.70(1) and (3):

r cosϕ cosθ = x−Rcosθ − τ

κ
sinθ (z−Hθ)

r cosϕ =
1

cosθ
[x−Rcosθ − sinθ (xsinθ − ycosθ)] (A.73)

Similarly:

r cosϕ sinθ = y−Rsinθ +
τ

κ
cosθ (z−Hθ)

r cosϕ =
1

sinθ
[y−Rsinθ + cosθ (xsinθ − ycosθ)] (A.74)

Finally we obtain two expressions for ϕ:

tanϕ =
r sinϕ

r cosϕ
=

1
τ

cosθ (xsinθ − ycosθ)

x−Rcosθ − sinθ (xsinθ − ycosθ)
(A.75)

tanϕ =
r sinϕ

r cosϕ
=

1
τ

sinθ (xsinθ − ycosθ)

y−Rsinθ + cosθ (xsinθ − ycosθ)
(A.76)

which is an expression in the form ϕ = ϕ(θ) = ϕ [θ(x,y,z)]
An expression for r can be obtained if we take into account that r is the distance

from the current point to the closest centerline point, whose coordinates are given by
the helix centerline equation A.61. Thus, this distance is:

r2 = (x−Rcosθ)2 +(y−Rsinθ)2 +(z−Hθ)2 (A.77)

which is an expression in the form r = r(x,y,z,θ) = r [x,y,z,θ(x,y,z)]

A.3.2 Helix Derivatives
By differentiating the expressions above, we can obtain some derivatives of the curvi-
linear coordinates with respect to the cartesian coordinates that are useful for future
calculations. From the expression A.71 by differentiation with respect to θ and x we
obtain:

−Hdθ =
κ

τ
(sinθdx+ xcosθdθ + ysinθdθ)

dθ

dx
=

−sinθ

τ

κ
H + xcosθ + ysinθ

(A.78)
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Similarly we obtain:

dθ

dy
=

cosθ

τ

κ
H + xcosθ + ysinθ

(A.79)

dθ

dy
=

τ/κ

τ

κ
H + xcosθ + ysinθ

(A.80)

For the r curvilinear coordinate we can differentiate equation A.77 with respect to
r and x. However, in this expression, the curvilinear coordinate θalso appears. By the
chain rule we know that:

dr =
∂ r
∂x

dx+
∂ r
∂θ

∂θ

∂x
dx (A.81)

but ∂ r/∂θ = 0 since they are independent variables. This can be easily seen by differ-
entiating equation A.77 with respect to r and θ :

2rdr = 2(x−Rcosθ)Rsinθdθ −2(y−Rsinθ)Rcosθ −2H(z−Hθ)

Combining with equation A.72:

dr
dθ

= (x−Rcosθ)Rsinθ −2(y−Rsinθ)Rcosθ −2R(xsinθ − ycosθ) = 0

Then, from equation A.77 we have:

2rdr = 2(x−Rcosθ)dx

dr
dx

=
1
r
(x−Rcosθ) (A.82)

Similarly we obtain:

dr
dy

=
1
r
(y−Rsinθ) (A.83)

dr
dz

=
1
r
(z−Hθ) (A.84)

A.3.3 Gaussian Helix Derivatives

Definition 15. After obtaining this relationship between coordinate systems, we can
proceed to obtain the expression of the volumetric helix with Gaussian cross-section
and its derivatives. The expression of the volumetric is very if we express it in our
curvilinear coordinate system for the helix:
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Ihelix(r,ϕ,θ) = K exp
(
− r2

2σ2
0

)
(A.85)

Note that, again, this is exactly the expression we had for the cylinder in cylindrical
coordinates ??. The curvilinear coordinate system chosen here is also different and
does not correspond to the cylindrical coordinates. Our objective in this case is to
calculate how both, the curvature and torsion, affects the value of the second order
derivatives as compared with the ideal cylinder model.

We may use the chain rule for obtaining the total (not partial) first-order derivative
with respect to x:

dI
dx

=
∂ I
∂ r

∂ r
∂x

=− r
σ2

0
I

1
r
(x−Rcosθ)

dI
dx

=− I
σ2

0
(x−Rcosθ) (A.86)

where the value of ∂ r/∂x is taken from equation A.82. In a similar fashion we obtain:

dI
dy

=− I
σ2

0
(y−Rsinθ) (A.87)

dI
dz

=− I
σ2

0
(z−Hθ) =− I

σ2
0

κ

τ
(xsinθ − ycosθ) (A.88)

Obtaining the second-order partial derivatives is more complicated, since now we
have to take into account the derivative with respect to θ . We start with the second
derivative with respect to x. By the chain rule:

d2I
dx2 =

∂ 2I
∂x2 +

∂

∂ r

(
dI
dx

)
∂ r
∂x

+
∂

∂θ

(
dI
dx

)
∂θ

∂x
(A.89)

d2I
dx2 =− I

σ2
0
+

r
σ2

0

I
σ2

0
(x−Rcosθ)

∂ r
∂x

+

(
− I

σ2
0

)
Rsinθ

∂θ

∂x
(A.90)

By replacing the values of the derivatives calculated in section A.3.1 we obtain:

d2I
dx2 =

I
σ2

0

(
−1+

1
σ2

0
(x−Rcosθ)2 +

Rsin2
θ

τ

κ
H + xcosθ + ysinθ

)
(A.91)

We can obtain the values of the remaining derivatives in a similar way obtaining:

d2I
dy2 =

I
σ2

0

(
−1+

1
σ2

0
(y−Rsinθ)2 +

Rcos2 θ

τ

κ
H + xcosθ + ysinθ

)
(A.92)

d2I
dz2 =

I
σ2

0

(
−1+

1
σ2

0
(z−Hθ)2 +

τ

κ
H

τ

κ
H + xcosθ + ysinθ

)
(A.93)
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d2I
dxdy

=
I

σ2
0

(
1

σ2
0
(x−Rcosθ)(y−Rsinθ)− Rsinθ cosθ

τ

κ
H + xcosθ + ysinθ

)
(A.94)

d2I
dxdz

=
I

σ2
0

(
1

σ2
0
(x−Rcosθ)(z−Hθ)−

τ

κ
Rsinθ

τ

κ
H + xcosθ + ysinθ

)
(A.95)

d2I
dydz

=
I

σ2

(
1

σ2 (y−Rsinθ)(z−Hθ)+
τ

κ
Rcosθ

τ

κ
H + xcosθ + ysinθ

)
(A.96)

A.3.4 Effect of curvature and torsion
A.3.4.1 Theoretical Model

We can already draw some conclusions on the combined effect of curvature and tor-
sion as compared with a straight ideal cylinder from the simplified expressions of the
eigenvalue λ3:

Lemma 16. Let Ihelix be a circular Gaussian helix with internal radius σ0, external
radius R and unit pitch H. Let OC be a line that connects the center O of the helix with
any point C on the centerline of the helix with d

(
OC
)
≡
√

R2 +H2θ 2. Let P1and P2 be
symmetrical points on that line with respect to C at a distance r with P1 the closest to
O. Then, |λ3(P1)| ≥ |λ3(P2)|∀r.

Proof. From the simplified expression of λ3

λ3 =−
1

σ2
0

r
R

τ2

κ2 +
r
R +1

I

where r can take positive or negative values depending if we are in the external (ϕ = 0)
or internal (ϕ = 180) part of the cylinder we can see that, for the same absolute value
of r we obtain two points P1,P2 in the line with respective values

λ3(P1) =−
1

σ2
0

− |r|R
τ2

κ2 −
|r|
R +1

I (A.97)

λ3(P2) =−
1

σ2
0

|r|
R

τ2

κ2 +
|r|
R +1

I (A.98)

Comparing the quotient in the middle we can distinguish three cases for r. If
τ2

κ2 +1 > |r|
R then the denominator in eq. A.97 is always positive and so is the total

value. If τ2

κ2 +1 < |r|
R the denominator in eq. A.97 is always negative and so is the total

value. If τ2

κ2 +1 = |r|
R then the denominator is zero in the same equation and the total

value infinite. In all three cases the denominator in eq. A.97 is smaller in absolute
value than in eq. A.98 and thus |λ3(P1)| ≥ |λ3(P2)|∀r.



A.3. HELIX 169

Lemma 17. Let I1 be a circular Gaussian helix with internal radius σ01, unit pitch
H1and external radius R1 = ρH1. Let I2 be another circular Gaussian helix with same
internal radius σ01, same unit pitch H1 and different external radius R2 such that R2 =
1
ρ

H1. Then λ3(I1(x)) = λ3(I2(x))∀x ∈ R3 .

Proof. For the first helix

λ3 (I1) =−
1

σ2
0

r
ρH1

H2
1

ρ2H2
1
+ r

ρH1
+1

exp
(
− r2

2σ2
0

)
=− 1

σ2
0

rρ

H1 + rρ +ρ2H1
exp
(
− r2

2σ2
0

)

and for the second helix

λ3(I2) =−
1

σ2
0

ρr
H1

ρ2H2
1

H2
1

+ ρr
H1

+1
exp
(
− r2

2σ2
0

)
=− 1

σ2
0

rρ

ρ2H1 + rρ +H1
exp
(
− r2

2σ2
0

)

which are identical.

Corollary 18. If ρ = 1 then I1 = I2 and λ3 (I1) = λ3 (I2) is maximum ∀r.

Proof. The maximum for λ3 (I1) = λ3 (I2) can be found by setting

dλ3 (I1)

dρ
=

dλ3 (I2)

dρ
= 0

r
(
H1 + rρ +ρ2H1

)
− rρ (r+2ρH1)

(H1 + rρ +ρ2H1)
2 = 0 (A.99)

H1 + rρ +ρ
2H1−ρr−2ρ

2H1 = 0

ρ
2 = 1

ρ =±1 (A.100)

Where the negative solution is an helix going downward. By derivating again we
can check that this is indeed a maximum by calculating the second derivative.

d2λ3 (I1)

dρ2 =
d2λ3 (I2)

dρ2 =
−2rρH1

(
H2

1 + r2ρ2 +ρ4H2
1 +2rρH1 +2rρ3H1 +2ρ2H2

1
)

(H1 + rρ +ρ2H1)
4

−
(
rH1− rρ2H1

)
2
(
H1 + rρ +ρ2H1

)
(r+2ρH1)

(H1 + rρ +ρ2H1)
4
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The denominator is always positive. The second part of the numerator is zero for
ρ = 1 due to the first term. Replacing ρ = 1 in the numerator for the rest of terms,
multiplying and removing the common positive factors gives the following simplified
numerator

−8H2
1 −8r2H2

1 −2r2 < 0 ∀(r,H1)

which denotes a relative maximum.

A.4 Section Profiles

A.4.1 Gaussian Section Profiles
The Gaussian section profile corresponds to (in 1D):

gσ0(x;σ0) =
1√

2πσ0
e
− x2

2σ2
0 (A.101)

where the aperture σ0 can be regarded as the apparent radius of the profile.

The γ-normalized second-order Gaussian derivative is:

r
′′
g(x;σ0,σ)γ−norm =

σ2γ

√
2π

(
x2−σ2

1

σ5
1

)
e
− x2

2σ2
1 (A.102)

where we used the cascade smoothed property for calculating the convolution of a

Gaussian with another Gaussian, that yields a Gaussian of aperture σ1 =
√

σ2 +σ2
0 .

Lemma 19. Given a Gaussian profile gσ0(x;σ0), its second-order γ-normalized Gaus-
sian derivative r

′′
b(x;σ0,σ)γ−norm = σ2γ r

′′
b(x;σ0,σ) has a minimum in scale-space at

x = 0 for σ = σ0 when γ = 3/4.

Proof. The value of the derivative at x = 0 is

r
′′
g(x = 0;σ0,σ)γ−norm =− 1√

2π

σ2γ

σ3
1

(A.103)

A critical point with respect to the scale parameter is found by calculating and
equaling to zero the derivative:

∂ r
′′
g(x = 0;σ0,σ)γ−norm

∂σ
=− 1√

2π

(
2γσ2γ−1σ3

1 −3σ2γ+1σ1

σ6
1

)
= 0 (A.104)

The above is expression has a critical point for:

σ =

√
2γ

3−2γ
σ0 (A.105)
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which results in σ = σ0 when γ = 3/4, which can be demonstrated to be a minimum.

A.4.2 Bar Section Profiles
The bar cross-section profile is studied for the scale-space analysis of curvilinear struc-
tures in [165]. It can be modelled as a pulse with height h and width 2ω , which corre-
sponds to the equation:

fb(x;h,ω) =

{
h |x| ≤ ω

0 |x|> ω
(A.106)

It can also be expressed as the sum of two scaled and translated Heaviside functions:

fb(x;h,ω) = h [H(x+ω)−H(x−ω)] (A.107)

with H being the Heaviside or step function

H(x) =

{
1 x≥ 0
0 x < 0

(A.108)

Here we will reproduce some of the analysis in [165] in order to provide additional
proofs and concepts that may be useful for the convolved bar profile, which is used
extensively in our experiements in chapters .

We are mostly interested in the behaviour of the second Gaussian derivative in the
central point of the profile (x = 0). For the profile to be detected, the second derivative
should show a clear minimum at this location for a given scale σ . Due to the symmetry
of the problem, the analysis can be performed in 1D.

For the scale-space analysis, we need to convolve the bar profile fb with a Gaussian
function. This convolution can be calculated analytically as:

rb(x;h,ω,σ) = fb(x)?gσ (x) =
ˆ

∞

−∞

fb(x− τ)gσ (τ)dτ

which can be split as the sum of two integrals

rb(x;h,ω,σ) = h
ˆ

∞

−∞

H(x+ω−τ)gσ (τ)dτ +h
ˆ

∞

−∞

H(x−ω−τ)gσ (τ)dτ (A.109)

resulting in6

rb(x;h,ω,σ) =
h√

2πσ
(φσ (x+ω)−φσ (x−ω)) (A.110)

6Note that here we do not omit the normalization factor of the Gaussian as in [165].
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where φσ (x) is the Gaussian integral function

φσ (x) =
ˆ x

−∞

e−
x2

2σ2 dx (A.111)

Since the derivative of the Gaussian integral is simply the Gaussian function, it is
very easy to obtain the first and second order Gaussian derivatives of the bar profile
with respect to the spatial variable x which results in:

r
′
b(x;h,ω,σ) = h [gσ (x+ω)−gσ (x−ω)] (A.112)

r
′′
b(x;h,ω,σ) = h

[
g
′
σ (x+ω)−g

′
σ (x−ω)

]
(A.113)

where the first derivative of Gaussian is

g
′
σ (x) =−

x
σ2 gσ (x) (A.114)

Now, we can proceed to analyze the behaviour of this second order derivative.

Lemma 20. Given a bar profile fb(x;h,ω), its second-order Gaussian derivative r
′′
b(x;h,ω,σ)

has a critical point at x = 0 for all positive values of the parameters h,ω and scale σ .

Proof. The third derivative of the bar profile is:

r
′′′
b (x;h,ω,σ) = h

[
g
′′
σ (x+ω)−g

′′
σ (x−ω)

]
(A.115)

r
′′′
b (x;h,ω,σ) =

h√
2πσ5

{[
(x+ω)2−σ

2
]

e−
(x+ω)2

2σ2 +
[
σ

2− (x−ω)2
]

e−
(x−ω)2

2σ2

}
(A.116)

which is zero at x = 0 ∀(h,ω,σ) ∈ R : h > 0,ω > 0,σ > 0.

For a given bar profile with parameters (h,ω) the selection of the scale parameter
σ will determine if this point will be a maximum, a minimum or an inflection point
with respect to x. The following two lemmas are already formulated in [165].

Lemma 21. Given a bar profile fb(x;h,ω), its second-order Gaussian derivative r
′′
b(x;h,ω,σ)

has a minimum with respect to the spatial variable x at x = 0 if and only if σ ≥ ω/
√

3.
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Proof. The derivative of r
′′
b(x;h,ω,σ) is

r
′′
b(x;h,ω,σ) =

h√
2πσ

[
−x+ω

σ2 e−
(x+ω)2

2σ2 +
x−ω

σ2 e−
(x−ω)2

2σ2

]
(A.117)

The conditions for a minimum point at x = 0 with respect to the spatial variable x
are

r
′′′
b (x = 0;h,ω,σ) = 0 (A.118)

∂ 4rb

∂x4 (x = 0;h,ω,σ)> 0 (A.119)

The condition in A.118 is demonstrated in Lemma 20. The fourth order derivative
is:

∂ 4rb

∂x4 (x;h,ω,σ)=
h√

2πσ7

{[
3(x+ω)σ

2− (x+ω)3
]

e−
(x+ω)2

2σ2 −
[
3(x−ω)σ

2− (x−ω)3
]

e−
(x−ω)2

2σ2

}
(A.120)

The value at x = 0 is

∂ 4rb

∂x4 (x = 0;h,ω,σ) =
h√

2πσ7

(
6ωσ

2−2ω
3)e−

ω2

2σ2 (A.121)

which is positive for positive values of the parameters if and only if σ ≥ ω/
√

3.

Lemma 22. Given a bar profile fb(x;h,ω), its second-order Gaussian derivative r
′′
b(x;h,ω,σ)

has a minimum in scale-space at x = 0 for σ = ω/
√

3.

Proof. The derivative of r
′′
b(x;h,ω,σ) at x = 0 is

r
′′
b(x = 0;h,ω,σ) =− 2ωh√

2π

1
σ3 e−

ω2

2σ2 (A.122)

The derivative with respect to the scale parameter is

∂ r
′′
b(x = 0;h,ω,σ)

∂σ
=− 2ωh√

2π

(
ω2−3σ2

σ6

)
e−

ω2

2σ2 (A.123)

which has a critical point at σ = ω/
√

3. This will be a minimum if and only if

∂ 2r
′′′
b

∂σ2 (x = 0;hω,σ = ω/
√

3)> 0 (A.124)

Calculating the derivative
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∂ 2r
′′′
b

∂σ2 (x = 0;h,ω,σ) =− 2ωh√
2π

(
12σ4−9ω2σ2 +ω4

σ9

)
e−

ω2

2σ2 (A.125)

The expression in the parenthesis is negative for σ = ω/
√

3 which makes all the
expression positive ∀(σ > 0,ω > 0).

The above proofs provide a means of selecting the correct scale for detecting the
tube using the second derivative at the center location as a measure of strength. How-
ever, one problem found in [165] is that no normalization of derivatives is performed
as described in [100] which allows finding a maximum (minimum) across scales that
is best suited for the entity we want to detect.

Lemma 23. Given a bar profile fb(x;h,ω), its second-order γ-normalized Gaussian
derivative r

′′
b(x;h,ω,σ)γ−norm = σ2γ r

′′
b(x;h,ω,σ) has a minimum in scale-space at

x = 0 for σ = ω when γ = 1.

Proof. The γ-normalized strength measure at the center location would be:

r
′′
b(x = 0;h,ω,σ)γ−norm =− 2ωh√

2π
σ

2γ−3e−
ω2

2σ2 (A.126)

Calculating the derivative with respect to the scale:

∂ r
′′
b(x = 0;h,ω,σ)γ−norm

∂σ
=− 2ωh√

2π
σ

2γ−4 [(2γ−3)σ
2 +ω

2]e−
ω2

2σ2 (A.127)

which has a critical point for σ = ω when γ = 1 which, as in Lemma 22 corresponds
to a minimum.

By an appropiate selection of the normalization parameter γ we have obtained a
normalized measure of strength, such that, the scale selected estimates the section half-
width or radius.

A.4.3 Convolved-Bar Section Profiles
The convolved-bar section profile is obtained as a bar profile that is convolved with a
Gaussian function with small aperture. It is a more realistic profile than the Gaussian
for most vessel sizes [83]:

• For small vessels it resembles a Gaussian-like profile, since the aperture of the
Gaussian is in the scale of the vessel width. It simulates the partial volume effect
decreasing the intensity of the vessel.

• For medium and large vessels it shows a plateau in the area around the vessel
axis, which is typical for most images of contrasted vessels. The small Gaussian
represents the partial volume effect in the vessel boundaries.
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As we have seen in the previous section the convolved bar profile corresponds to equa-
tion:

fbc(x;h,ω,σ0) =
h√

2πσ0

(
φσ0(x+ω)−φσ0(x−ω)

)
(A.128)

The difference with eq. A.110 is that σ0 here refers to the aperture used to create
the original profile by convolving with an ideal bar profile, and not to the scale selection
used for derivative calculations.

Scale selection implies convolving this profile with another Gaussian, which, by
the Gaussian cascade property results in:

rbc(x;h,ω,σ0,σ) =
h√

2πσ1
(φσ1(x+ω)−φσ1(x−ω)) (A.129)

where σ1 =
√

σ2 +σ2
0

Calculating the Gaussian derivatives results in modified versions of eq. A.130 and
A.131:

r
′
bc(x;h,ω,σ0,σ) = h [gσ1(x+ω)−gσ1(x−ω)] (A.130)

r
′′
bc(x;h,ω,σ0,σ) = h

[
g
′
σ1
(x+ω)−g

′
σ1
(x−ω)

]
(A.131)

The γ-normalized second order Gaussian derivative is (by expanding eq. A.131 and
normalizing)7:

r
′′
bc(x;h,ω,σ0,σ)γ−norm =

hσ2γ

√
2πσ1

[
−x+ω

σ2
1

e
− (x+ω)2

2σ2
1 +

x−ω

σ2
1

e
− (x−ω)2

2σ2
1

]
(A.132)

Lemma 24. Given a convolved-bar profile fbc(x;h,ω,σ0), its second-order γ-normalized
Gaussian derivative r

′′
bc(x;h,ω,σ0,σ)γ−norm = σ2γ r

′′
b(x;h,ω,σ0,σ) has a minimum in

scale-space at x = 0 for σ = ω when γ = 1 and the value of this minimum does not
depend on ω when σ0� ω .

Proof. The value of this derivative at the center point is:

r
′′
bc(x = 0;h,ω,σ0,σ)γ−norm =− 2ωh√

2π

σ2γ

σ3
1

e
− ω2

2σ2
1 (A.133)

A critical point for this expression with respect to the scale is found by:

∂ r
′′
bc(x = 0;h,ω,σ0,σ)γ−norm

∂σ
= 0 (A.134)

7Note that the normalization is with respect to the scale parameter σ only
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∂ r
′′
bc(x = 0;h,ω,σ0,σ)γ−norm

∂σ
=−2ωhσ2γ−1

√
2πσ7

1

(
2γσ

4
1 −3σ

2
σ

2
1 +ω

2
σ

2)e
− ω2

2σ2
1 = 0

(A.135)
The resulting scales correspond to the solution of the equation:

(3−2γ)σ
4 +
[
(3−4γ)σ

2
0 −ω

2]
σ

2−2γσ
4
0 = 0 (A.136)

Taking γ = 1 the solution would be:

σ =

√
1
2
(
σ2

0 +ω2
)
±
√

9σ4
0 +2σ2

0 ω2 +ω4 (A.137)

which in this case depends on both, the width ω of the original bar and the aperture σ0
used for creating the convolved bar. For small values of σ0 this expression results in

σ ' ω . If the aperture σ0 is small with respect to ω then σ1 =
√

σ2 +σ2
0 ' ω and eq.

A.133 results in

r
′′
bc(x = 0;h,ω,σ0� ω,σ)γ−norm =−

√
2
π

he−1/2 (A.138)

which does not depend any more on the width of the bar ω . This can be easily
demonstrated to be a minimum as in Lemma 22.
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