

Available online at www.sciencedirect.com

Pattern Recognition 40 (2007) 648-658

www.elsevier.com/locate/patcog

Grey-level hit-or-miss transforms—part II: Application to angiographic image processing

Benoît Naegela, Nicolas Passatb, c,*, Christian Ronseb

^aEIG-HES (École d'Ingénieurs de Genève), 4 rue de la Prairie, CH-1202 Genève, Switzerland ^bLSIIT, UMR 7005 CNRS-ULP (Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection), Bd S. Brant, BP 10413, F-67412 Illkirch Cedex, France

^cInstitut Gaspard Monge, Laboratoire A2SI (Algorithmique et Architecture des Systèmes Informatiques), Groupe ESIEE, Cité Descartes, BP 99, F-93162 Noisy-le-Grand Cedex, France

Overview

- The hit-or-miss transform (HMT) is a fundamental operation on binary images
- Its extension to grey-level images is not straightforward
- Approaches to the grey-level HMT
 - Supremal
 - Integral

- Unified theory of the grey-level HMT, which is decomposed into two steps:
 - Fitting: associates to each point the set of grey-levels for which the SEs can be fitted to the image; can be constrained.
 - Next, a valuation associates a final grey-level value to each point
 - supremal (as in Ronse),
 - integral (as in Soille) and
 - binary

Different HMT-based segmentation methods are then described and analysed, leading to concrete analysis techniques for brain and liver vessels.

1. Introduction

The hit-or-miss transform (in brief, HMT) uses a pair (A, B) of SEs, and looks for all positions where A can be fitted within a figure X, and B within the background X^c , in other words it is defined by

$$X \circledast (A, B) = \{ p \in E \mid A_p \subseteq X \text{ and } B_p \subseteq X^c \}$$

= $(X \ominus A) \cap (X^c \ominus B)$. (1)

One assumes that $A \cap B = \emptyset$, otherwise we have always $X \circledast (A, B) = \emptyset$. One calls A and B, respectively, the *fore-ground* and *background* SE. In practice, one often uses bounded SEs A and B.

2. Use of grey-level HMT for vessel segmentation

☐ Its definition in terms of **foreground and background structuring elements** (SEs) is appropriate to the invariant vessel properties in terms of shape and intensity with respect to the remaining tissues.

Then we define $\eta_{[A,B]}$, the interval operator by [A,B], by setting for every $X \in \mathcal{P}(E)$:

$$\eta_{[A,B]}(X) = \{ p \in E \mid X_{-p} \in [A, B] \}$$

$$= \{ p \in E \mid A_p \subseteq X \subseteq B_p \}. \tag{2}$$

2. Use of grey-level HMT for vessel segmentation

Fig. 2. Here $E = \mathbb{Z}$ and $T = \overline{\mathbb{Z}}$. On top we show the two structuring elements A and B (the origin being the left pixel of A), with the associated levels a = 0 and b = -1 (thus $V = C_{A,0}$ and $W = C_{B,-1}^*$). Below we show a function F, and in grey we have $\eta_{[V,W]}^S(F)$, forming three peaks. The left peak would disappear for $b \leq -2$, and the right one for $b \leq -3$.

- ☐ The three vessel segmentation methods are devoted to such hepatic and cerebral applications.
 - Two versions of the first method are designed to automatically recognize the entrance of the portal vein (EPV) of the liver.
 - The second method proposes a segmentation of this whole hepatic venous tree
 - The third one enables to segment both venous and arterial structures from MRA of the brain.

- 3. A few grey-level HMT-based methods
- 3.1. Choice of structuring functions
 - ☐ The first issue, the choice of the "shape" of these functions, which means the support supp (V) of the foreground function V and the dual support Supp* (W) of the background function W.
 - 2 strategies:
 - 1. Determining a fixed shape for the structuring functions.
 - The erosion of both structuring function
 - Using the HMT with rank-order operators
 - The subsampling or decimation of the structuring function
 - 2. Considering a large set of elements, each one differing in terms of size and orientation.

3.1. Choice of structuring functions

- 1. Determining a fixed shape for the structuring functions.
 - The erosion of both structuring function
 - Using the HMT with rank-order operators
 - The subsampling or decimation of the structuring function

Fig. 3. Shape of the structuring functions used in Ref. [11]. Left: fore-ground element (supp(V)), right: background element ($supp^*(W)$).

Fig. 4. Shape of the structuring functions used in Ref. [12]. First row: structuring functions used for detecting the SMV. Left: foreground element $(\sup V)$, right: background element $(\sup V)$. The central point represents the origin and does not belong to $\sup V$. Second row: structuring functions used for detecting the EPV. From left to right: foreground element $(\sup V)$, background elements $(\sup V)$. The central point represents the origin and does not belong to $\sup V$.

3.1. Choice of structuring functions

2. Considering a large set of elements, each one differing in terms of size and orientation.

The use of the discrete version of an **isotropic** shape is justified by the presence of **tortuous arterial vessels** which could hardly be detected by elongated structures such as ellipsoids.

The use of a subset of a discrete circle instead of a whole one enables to obtain more robust results at positions such as bifurcations

Fig. 5. Shape of the structuring functions used in Refs. [13,14]. Left: theoretical continuous shapes, right: real discrete ones. The foreground elements $(\sup(V))$ are represented in dark grey, while the background ones $(\sup(W))$ are represented in white.

3.1. Choice of structuring functions

Fig. 6. Subset of the possible structuring function supports used in Refs. [13,14]. The foreground elements (supp(V)) are represented in dark grey, while the background ones $(\text{supp}^*(W))$ are represented in white. They present specific properties in terms of size $(\text{supp}(V), \text{supp}^*(W))$ and of orientation $(\text{supp}^*(W))$.

- 3. A few grey-level HMT-based methods
- 3.1. Choice of structuring functions
 - ☐ The last parameter which has to be determined is the intensity of the structuring functions
 - \Box The cylinder of base B and level t is the function $C_{B,t}$
 - □ V and W are assumed to present each a constant value on supp(V) and $supp^*(W)$. These two values are chosen in such a way that the smallest positive difference between image values on supp(V) and on supp*(W) leads to a positive response.

- 3. A few grey-level HMT-based methods
- 3.2. A few remarks about the flat/non-flat structuring functions

- The vessel segmentation methods described in this paper only use structuring functions with **constant grey-levels**, flat or not (those structuring functions being cylinders $C_{A,t}$).
- □ Non-flat SEs with **non-constant grey-levels** enable to segment precise structures not only according to their shape but also to precise **local intensity** properties.

- 3. A few grey-level HMT-based methods
- 3.2. A few remarks about the flat/non-flat structuring functions
 - \square The vessel segmentation methods described in this paper only use structuring functions with **constant grey-levels**, flat or not (those structuring functions being cylinders $C_{A,t}$).
 - ☐ Non-flat SEs with **non-constant grey-levels** enable to segment precise structures not only according to their shape but also to precise **local intensity** properties.
 - Partial volume effect
 - Phase Contrast MRA
 - ☐ In practical cases (where the purpose is generally to characterise structures from their shape by imposing a constraint on the difference of contrast between the object and a particular neighbourhood), flat SEs are generally sufficient.

3.3. Algorithmic process

The grey-level HMT can essentially be used in two main ways:

- in a classical filtering process,
- or as part of heuristic criteria for guidance of iterative segmentation processes.

1. Filtering

The final segmentation can then be defined by

$$\bigcup_{p \in E} \{ \sup_{p \in E} \{ (V, W) \in \mathcal{A}(p), V_{(p,t)} \leq F \leq W_{(p,t)} \}.$$
(2)

3.3. Algorithmic process

- Heuristic criteria for guidance of iterative segmentation processes.
 - The use of HMT as a heuristic criterion is quite different, as it consists in applying it only on candidate points.

The region-growing segmentation of an image F can then be formalised as the construction of a sequence $\{S_k\}_{k\in\mathbb{N}}$:

$$S_0 = S$$
,

$$\forall k \geqslant 0, S_{k+1} = \begin{cases} S_k \cup \{p\} & \text{if } \exists p \in N(S_k), \\ C(E, S_k, p, \ldots) = true, \\ S_k & \text{otherwise,} \end{cases}$$

where $N(S_k)$ represents the set of neighbour pixels of S_k according to a chosen connexity. The obtained segmentation is then given by

$$S = \bigcup_{k=0}^{\infty} S_k = \lim_{k} S_k.$$

3.3. Algorithmic process

- Heuristic criteria for guidance of iterative segmentation processes.
 - Criterion

$$C(F, p) = \begin{cases} true & \text{if } \max_{i=1}^{3} [SK_{O, R_i}(F)](p) > 0, \\ false & \text{otherwise,} \end{cases}$$

or

$$C(F, p) = \bigvee_{i=1}^{3} ([SK_{O,R_i}(F)](p) > 0),$$

where $O = i_{0,0}$ ($i_{p,t}$ being the impulse function) is the SE only composed of the origin and R_i (i = 1, 2, 3) are SEs used to constrain the point p to belong to a tubular structure.

4. Results

The segmentation methods devoted to the EPV, have been applied on a 16 case dataset. The detection of the EPV was successful for all images, leading to a detection rate of 100%.

4. Results

Fig. 11. 3D surface rendering visualisation of the portal network structures segmented from CT-data of the liver.

Fig. 12. 3D surface rendering visualisation of cerebral vascular structures segmented from a phase-contrast MRA of the brain.

4. Conclusion

☐ The **underuse** of grey-level HMT is probably **unjustified** in the field of medical image analysis, and more globally in the field of image processing.