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Chapter 1

Introduction

1.1 Thesis Context

1.2 Thesis Framework

Fig.1.1 shows the process schema of this thesis. It proposes an ideal way for
image segmentation. Given an input image, at the end of the process we'll have
an output image; the segmented image. For this goal, we are going two follow
two diferent strategies; �rst one by using specular free images and second one
a robustness strategy by using Illumination source Chromaticity (ISC) estima-
tion. The specular free strategy is an ultra-fast method for image segmentation
applayed in real time. The ISC is applied also in real time (20 f.p.s) and is
robust against illumination changes. Both strategies have a step of preprocess-
ing before the segmentation. Fig.1.1 shows the diagram �ow between process,
where each process is iden�ed by a number too.

1.3 Thesis Outline

This thesis is otlined following the diagram �ux drown on Fig.1.1.
Background chapter provides the basic physical and mathematical back-

ground. This chapter discuss about illumination, surface re�ectance, color, color
spaces (focusing on the RGB color space), re�ection models (focusing on the
dichromatic re�ecction model (DRM), besides we'll see a spheric interpretation
both of RGB and DRM corresponding to the process 1 .

Following chapters are performed by contributions which refer to process of
the diagram �ux.

Illumination Correction charpter is compound by four contributions. First
one is a ISC estimation which correspond to the process 2 and 3. After that this
charper has three works more. An evolutionary method for specular component
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CHAPTER 1. INTRODUCTION 6

reduction and two methods for di�use and specular components separation.
First one, is grounded in a Bayesian approcah and second one is a geometrical
approach which take pro�t of the pixels distribution within RGB under the
DRM point of view. Last two contributions correspond with the fourth process
on the �owchart.

Specular Free Images chapter deals of this kind of images. How applications
can take pro�t of these images for image segmentation. In this chapter we are
going to propose two new class of specular free images with its application in
robotic context. Both contributions correspond with the process 8 and 9 of the
�owchart.

Gradients chapter correspond with the process 5 of the �owchart. This
chapter present an RGB color gradient following color constancy preservation.

Segmentation chapter correspond with the process 6 and 7 of the �owchart.
This chapter has the main aplication of this thesis the segmentation and it
has two contributions. On the one hand A Hybrid Color Distance for Image
Segmentation. On the other hand a robust color Watershed transformation and
image segmentation de�ned on RGB spherical coordinates.

1.4 Publications Along this Thesis

1. Z. Echegoyen, I. Villaverde, R. Moreno, M. Graña, and A. d'Anjou. Linked
multi-component mobile robots: Modeling, simulation and control. Robotics
and Autonomous Systems, 58(12):12921305, December 2010.

2. M. Grana, R. Moreno, and F. X. Albizuri. Convex coordinates based on
lattice independent sets as pattern features. In Proc. IEEE Int Fuzzy
Systems Conf, pages 225230, 2006.

3. Manuel Grana, Miguel A Veganzones, and Ramon Moreno. A remote
mycological assistant. 4th IEEEWorkshop on Intelligent Data Acquisition
and Advanced Computing Systems Technology and Applications IDAACS,
pages 408412, 2007.

4. Ramón Moreno Ivan Villaverde, Zelmar Echegoyen. Control visual para
multi-robots, implementación de un aprueba de concepto de un srmc en-
lazado. In Actas de las III jornadas de Inteligencia Computacional. Ser-
vicio editorial UPV/EHU, 2009. ISBN: 978-84-9860-320-0.

5. Vassilis G. Kaburlasos and Gerhard X. Ritter, editors. Computational In-
telligence Based on Lattice Theory, volume 67. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

6. R. Moreno. Reectance analysis i. In A. Savio R. Moreno, editor, Actas
de las II jornadas de Inteligencia Computacional, pages 258269. Servicio
editorial UPV/EHU, 2008. ISBN 978-84-296-2316-1.
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7. R. Moreno. Estimación de la cromacidad de la luz. In R. Moreno, editor,
Actas de las III Jornadas de Inteligencia Computacional, pages 159170.
Servicio editorial UPV/EHU, 2009. ISBN: 978-84-9860-320-0.

8. R. Moreno, M. Grañ anda, and A. d'Anjou. An image color gradient
preserving color constancy. In Fuzzy Systems (FUZZ), 2010 IEEE Interna-
tional Conference on, pages 1 5, july 2010.

9. R. Moreno, M. Graña, and E. Zulueta. Rgb colour gradient following
colour constancy preservation. Electronics Letters, 46(13):908910, 2010.

10. Ramón Moreno. Inteligencia ambiental, sistemas ubícuos y visión por
computador en telefonía móvil. estado del arte. In M.A. Veganzones R.
Moreno, editor, Actas de las I jornadas de Inteligencia Computacional,
pages 417 431. Servicio editorial UPV/EHU, 2007. ISBN 978-84-9860-
019-3.

11. Ramón Moreno, Manuel Graña, and Alicia d'Anjou. Evolutive parametric
approach for specular correction in the dichromatic reection model. In
Hybrid Articial Intelligence Systems, volume 5271 of Lecture Notes in
Computer Science, pages 665672. Springer Berlin / Heidelberg, 2008.

12. Ramón Moreno, Manuel Graña, and Alicia d'Anjou. A color transforma-
tion for robust detection of color landmarks in robotic contexts. In Trends
in Practical Applications of Agents and Multiagent Systems, volume 71 of
Advances in Soft Computing, pages 665672. Springer Berlin / Heidelberg,
2010.

13. RamónMoreno, Manuel Graña, and Alicia d'Anjou. A geometrical method
of diuse and specular image components separation. In Joan Cabestany,
Ignacio Rojas, and Gonzalo Joya, editors, Advances in Computational In-
telligence, volume 6692 of Lecture Notes in Computer Science, pages 8389.
Springer Berlin / Heidelberg, 2011.

14. Ramón Moreno, Manuel Graña, and Alicia d'Anjou. A hybrid color dis-
tance for image segmentation. In Emilio Corchado, Marek Kurzynski, and
MichalWozniak, editors, Hybrid Articial Intelligent Systems, volume 6679
of Lecture Notes in Computer Science, pages 447454. Springer Berlin /
Heidelberg, 2011.

15. Ramón Moreno, Manuel Graña, and Alicia d'Anjou. Illumination source
chromaticity estimation based on spherical coordinates in rgb. Electronics
Letters, 47(1):2830, 2011.

16. Ramón Moreno, José López-Guede, and Alicia d'Anjou. Hybrid color
space transformation to visualize color constancy. In Hybrid Articial In-
telligence Systems, volume 6077 of Lecture Notes in Computer Science,
pages 241 247. Springer Berlin / Heidelberg, 2010.
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17. Dominik M. Ramík Kurosh Madani Ramón Moreno, Manuel Graña. Im-
age segmentation by spherical coordinates. In Proceedings of the 11th In-
ternational Conference on Pattern Recognition and Information Process-
ing, pages 112115. Belarusian State University of Informatics and Radio-
electrics, MAY 2011.

18. Manuel Graña Ramón Moreno, Alicia d'Anjou, and Carmen Hernandez.
Bayesian reectance component separation. In Knowledge-Based and Intel-
ligent Information and Engineering Systems, volume 5712 of Lecture Notes
in Computer Science, pages 846852. Springer Berlin / Heidelberg, 2009.

19. R.Moreno. Visión por computador y clasicación aplicadas a la micología.
In M. A. Veganzones R. Moreno, editor, Actas de las I jornadas de In-
teligencia Computacional, pages 208224. Servicio editorial UPV/EHU,
2007. ISBN 978-84-9860-019-3.
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Experiments on robotic multi-agent system for hose deployment and trans-
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Springer Berlin / Heidelberg, 2010.

21. Ramon Moreno Lucile Rossi Kurosh Madani Manuel Graña. Véronique
Amarger, Dominik M. Ramík. Wildland res' outlines extraction a spheri-
cal coordinates framed rgb color space dichromatic reection model based
image segmentation approach. In Proceedings of the 11th International
Conference on Pattern Recognition and Information Processing, pages
451454. Belarusian State University of Informatics and Radioelectrics,
May 2011.

1.5 Symbols

Symbol Description
θ Zenith angle
φ Azimuth angle
Ψ Chromaticity

ΠΨ Chromatic plane, Maxwell plane
Λ Di�use chromaticity

Λsf Di�use specular free chromaticity
Γ Specular chromaticity
Isf Specular free image
Iest Illumination source chromaticity stimation
Inorm Normalized image respect to the illumination
Ld Di�use line
Ls Specular line
Lw Achromatic line
Πdc Dichromatic plane
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Figure 1.1: Main schema of the thesis



Chapter 2

Background

This chapter provides the basic mathematical and physical background concern-
ing to this thesis. Sec.2.1 refers to illumination, the main factor on computer
vision. On it depends the surface re�ectance explained on Sec.2.2. After that
we explain in Sec.2.3 what are color and color spaces, explaining in detail the
RGB color space. Sub-sec.2.3.3 explains the �chromaticity� a key concept in
this thesis. In Sec.2.4 we introduce a spheric interpretation of the RGB color
space, where we provide a new equivalent de�nition of �chromaticity�. After
that in Sec. 2.5 we explain the sense of �color constancy� both for human vision
and computer vision. Sec.2.6 discusses about models of re�ectance, focusing on
the re�ection model where is grounded this thesis; the Dichromatic Re�ection
Model (DRM) in Sub-sec.2.6.1. Finally Sec.2.8 summarizes this chapter with
the main ideas.

2.1 Illumination

Illumination is the main topic in vision systems, of it depends the full vision
system. It is easy to understand which a scene without illumination turn useless
any vision system, both animal and arti�cial. If the illumination is into the
infrared spectrum, only few animals could see some things, and only arti�cial
systems with sensors designed for this light wavelength interval are able to
detect some things. In the same way with ultraviolet light, with red light or any
single color light. The reference for vision systems is the human vision system
(HVS), and the typical kind of illumination is the white illumination provided
by the Sun. But this illumination is not a constant, natural illumination is
di�erent morning and evening, summer and spring, sunny days or days with
clouds. Arti�cial illumination has strong changes in arti�cial environments;
shops, pubs, city ways, town streets, industrial environments and then.

Literature is plenty of works which estimate illumination properties when
this one belong to the visible spectrum. Hara [1] proposes a method for illumi-
nation source position and re�ectance estimation from a single view without the

10



CHAPTER 2. BACKGROUND 11

Figure 2.1: Surface re�ectance by BRDF

distant illumination assumption. Sato [2] introduces a method for recovering an
illumination distribution of a scene from image brightness inside shadows cast
by an object of known shape in the scene. Other works are focused only in the
estimation of the chromaticity of the illumination [3, 4, 5, 6].

2.2 Surface re�ectance

There are many concepts related with the �re�ectance�, and some times exist
ambiguity between them if it is studied from di�erent sciences. There are di�er-
ent sciences which study the re�ectance fenomenom; optics, physics, radiometry,
astronomy, and recently computer sciences for visualization. We are interested
from the point of view of computer vision.

When researching digital image processing, we can not ignore the physic ef-
fect of the re�ectance, because it has all �a priory knowledge�. Unfortunately the
re�ectance is di�erent depending of the illumination and of the surface proper-
ties, and therefore this �a priory knowledge� generally is unknown. In computer
vision, we refer to the re�ectance phenomenon as the �surface re�ectance�.

Strictly speaking, the measurement of light is a �eld in itself know as ra-
diometry. A brief and clear introduction to radiometry is exposed by Forsyth
and Ponce [7]. Fig. 2.11 shows the basic case of re�ectance where a beam of
light strikes a surface with an angle ω1 respect to the normal angle n , and the
outgoing beam leaves it with the same magnitude but at di�erent direction ω2.
Here, we can formulate some interesting questions; the outgoing beam has the
same energy and wavelength that the incoming beam? and the angle between
ω1 and n is the same that the angle between n and ω2? The answer for both
questions is no, it depends of the surface properties.

Generally some assumption have done respect to the surfaces for simpli-
�cation; radiance leaving a point (irradiance) is due to the radiance arriving
to this point, all light leaving at a wavelength is due to the incoming light to
this wavelength (surfaces only can absorb some light at some wavelength) , and
�uorescent surfaces are ignored.

1http://en.wikipedia.org/wiki/File:BRDF_Diagram.svg
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Surfaces are classi�ed in two main classes; specular surfaces and di�use or
lambertian surfaces. The �rst one, specular surfaces (after Latin word 'specu-
lum', a mirror) has a behavior like a mirror; all incoming radiance leaves the
surface without changes (ideally). The second one, di�use surfaces or lamber-
tian surfaces (after Lamber ) have the property to absorb some of the incoming
radiance, and the outgoing beam follows the Lambert cosine law [8]. In a di�use
surface we can detect the surface color and textures.

Fig.2.2 helps to understand these kind of refectances. Sketch 2.2(a)2 shows
a light beam arriving the surface and interacting within the matter. In this
way, some wavelengths of light beam are absorbed by the matter. After that
light beam leaves surface in a undermined direction. Sketch 2.2(b)3 shows the
behavior of a lot of light beams striking a surface, then the general re�ection
can be modeled by the Lambert cosin law. At last Sketch 2.2(c) 4 shows the
behavior of a specular surface. In this case, the incoming light beam leaves
the surface following the symmetrical geometry respect the normal angle of the
strike point.

(a) (b) (c)

Figure 2.2: Di�use and specular re�ections

In nature most of the surfaces have a mixture of both re�ectances due to the
diversity of the surface composition, e.g. human skin could be matte, however
grease and sweat can originate shines, and so on in the common surfaces. Usually
surfaces has not only a component, the opposite is too must abundant in the
nature. Vegetables has a wax layer and light can go trough them. Rocks and
stones have di�erent material composition with di�erent re�ectance properties.

Such an approximation of the surface re�ectance, for computer vision and
visualization are used re�ectance models which try to explain the light behavior
in di�erent surfaces.

2http://en.wikipedia.org/wiki/File:Di�use_re�ection.gif
3http://en.wikipedia.org/wiki/File:Re�ection_angles.svg
4http://en.wikipedia.org/wiki/File:Di�use_re�ection.PNG
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2.3 Color and Color Spaces

Color is an important descriptor for object recognition[9], however is not a very
accurate concept, because color is a human (and mamarian) ability and its know-
ingness is under current research [10]. Color is the visual perceptual property
corresponding in humans to the categories called red, green, blue and others.
Color derives from the spectrum of light interacting in the eye with the spectral
sensitivities of the light receptors. Color categories and physical speci�cations
of color are also associated with objects, materials, light sources, etc., based on
their physical properties such as light absorption, re�ection, or emission spectra.
The perception of color stems from the varying spectral sensitivity of di�erent
types of cone cells in the retina to di�erent parts of the spectrum, colors may be
de�ned and quanti�ed by the degree to which they stimulate these cells. These
physical or physiological quanti�cations of color, however, do not fully explain
the psychophysical perception of color appearance.

By de�ning a color space, colors can be identi�ed numerically by their co-
ordinates. Mainly there are two kind of color spaces. First one, the set of
color spaces created by addition of primary colors ( Red, Green and Blue) those
spaces are named �additive color spaces� because all colors are represent as a sum
of dimensional units, those colors are used for visualization using light, lamps,
screens and so on. This set is compound by RGB, sRGB, RGBa, HSV,HSI, HSL,
CIE l*a*b, CIE L*u*v color spaces and then. Second set of color spaces is per-
formed by the addition of secondary color (Cyan, Magenta , Yellow and Black)
those are named �subtractive color spaces� because they absorb the respective
wavelength. These spaces are used in paints, inks and printing systems. The
most famous is CMYK . There are also some speci�c color spaces for speci�c
devices like NTCS for TV sets.

2.3.1 RGB

The �rst part of this thesis is grounded on the RGB color space [11]. Fig.2.35

shows the RGB cube in the range [0-255]. In general, RGB is de�ned on the
Natural (discrete) range [0-255] because 28 = 256 and �rst computers work with
8 bits providing enough quality for the human vision on screens. We are going
to work in the Real (continuous) range [0-1] for a better precision. In this color
space the three orthogonal lines represent the primary colors (Red, Green and
Blue) which give the name to this space R-G-B. The other three orthogonal
lines have the secondary colors (Cyan, Magenta and Yellow). These six lines
begin on the origin [0,0,0] and �nish on its respective extrema. The achromatic
line begins on the black origin [0,0,0] and �nishes on the white corner.

2.3.2 Color

Colorimetrically, color is compound by two concepts; Chromaticity and Inten-
sity. Chromaticity has all chromatic information regardless to the intensity

5http://upload.wikimedia.org/wikipedia/commons/0/03/RGB_farbwuerfel.jpg
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Figure 2.3: RGB color space in the range [0-255].

Color

Chromaticity
{
Hue

Saturation

Intensity

Figure 2.4: Decomposition of color concepts

whereas intensity means the energy, the amount of electron by unit surface.
Hence chromaticity is compound by Hue and Saturation. First one has the
di�erence between color (perceived wavelength class) it detects the di�erence
between red and blue (e.g). Second one represents the relative mixture with
white. These ideas are drawn on Fig.2.4. If we interpret color on RGB like vec-
tors, previous ideas can be explained as follow: Intensity is the vector length,
Saturation is the distance with the achromatic line, and Hue is the rotational
distance over the achromatic line beginning from the Red corner.

2.3.3 Chromaticity

Chromaticity is an objective speci�cation of the quality of a color regardless
of its luminance. In HSx family chromaticity is de�ned as the couple (H,S).
In RGB Chromaticity is known as the normalized RGB; r + g + b = 1 and by
dimensional reduction usually us used the couple (r, g) as the chromaticity where
b = 1 − r + g. When normalizing an image by applying aforegoing equation,
all color pixels are proyected into the Maxwell triangle [12]. This triangle is
performed by the plane de�ned by the points {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}. We
will name this plane chromatic plane ΠΨ. Fig.2.5 shows these ideas.

Next section explain too, how to get the chromatic information of a RGB
color through spherical coordinates representation.

2.4 Spherical coordinates

An image pixel's color corresponds to a point in the RGB color space c =
{Rc, Gc, Bc} The vector going from the origin up to this point shown in Fig.
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Figure 2.5: Maxwell triangle

Figure 2.6: The vector corresponding to a color point in the RGB space

2.6 can be represented using spherical coordinates c = {θc, φc, lc}, where θ is
zenithal angle, φ is the azimuthal angle and l is the vector's magnitude.

In the RGB color space, chromaticity Ψc of a color point is represented by its
normalized coordinates rc = Rc

Rc+Gc+Bc
, gc = Gc

Rc+Gc+Bc
, bc = Bc

Rc+Gc+Bc
, such

that rc + gc + bc = 1. That is, chromaticity corresponds to the projection on
the chromatic plane ΠΨ, de�ned by the collection of vertices of the RGB cube
{(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}, along the line de�ned as Lc = {y = k·Ψc; k ∈ R}.
In other words, all the points in line Lc have the same chromaticity Ψc, which
is a 2D representation equivalent to one provided by the zenithal and azimuthal
angle components of the spherical coordinate representation of the a color point.
Given an image I (x) =

{
(R,G,B)x ;x ∈ N2

}
, where x refers to the pixel coor-

dinates in the image grid domain, we denote the corresponding spherical repre-
sentation as P (x) =

{
(φ, θ, l)x;x ∈ N2

}
, which allows us to use (φ, θ)x as the

chromaticity representation of the pixel's color.
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2.5 Color Constancy

Color Constancy (CC) is the mental ability to identify chromatically homoge-
neous surfaces under illumination changes [13, 14]. This mental ability is still
an open neupsicological research topic [10]. The CC property is inversely pro-
portional to the color discontinuity represented by the chromatic edges (CE).
Foster [15] speaks about CC, Relational Color Constancy and CE as di�erent
and complementary aspects under the neurological and retinal activity. CC is
the perceptual mechanism which provides humans with color vision which is rel-
atively independent of the spectral content of the illumination of a scene. It is
the ability of a vision system to diminish or, in the ideal case, remove the e�ect
of the illumination, and therefore "see" the true physical scene as the invariant
to illumination changes.

Measurements on human subjects lead to the conclusion that retinal process-
ing is not enough to extract chromatic features and chromatic based structural
image information. Some works demonstrate that CC analysis is done in the
visual cortex, in the areas V4 and V4A [13]. Assuming the analogy with the hu-
man vision biology, arti�cial vision systems need no trivial processing to ensure
CC results on the processing real images. Dark scenes are critical for CC, be-
cause dark image regions are usually very noisy, that is, the signal to noise ratio
is very high due to the low magnitude of the visual signal. In these regions, the
ubiquitous thermodynamical noise has an ampli�ed e�ect that distorts region
and edge detection ensuring CC conditions. Our approach obtains remarkable
good results in these critical regions.

In computer vision CC refers to the control of the illumination. Mainly, there
are two ways to face it. On the one hand by automatic image transform like
Spitzer [16] who proposes an algorithm which is based on retinal mechanisms
of adaptation (gain control): `local' and `remote'. Geusebroek [17] proposes a
physics-based method, valid for Lambertian re�ectance where considering spa-
tial and spectral derivatives of the image formation model, object re�ectance
properties are derived independent of the spectral energy distribution of the illu-
minant. On the other hand, a lot of methods estimate the illuminant chromatic-
ity and after that normalize the image respect to the illumination, transforming
the illumination to pure white. Yoon [18] uses the r − g chromaticity and look
for the chromatic lines, R. Tan [4] proposed a method by using the inverse in-
tensity space and the Hough transform. Usually these methods are grounded
on DRM [19]. Other approaches try to obtain segmentation procedures which
are inherently robust to illumination e�ects [20, 21].

2.6 Models of Re�ectance

A model of re�ectance could be de�ned as �a mathematical model which try to
explains the surface re�ection of a speci�c kind of materials under a speci�c kind
of illumination�. It means that now a days we haven't got an universal re�ection
model that explains the re�ection of all surfaces. Therefore there are a lot of
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re�ectance models who try to explain the re�ectance phenomenon. Mainly we
can group them in some sets:

• The used for image processing (photo retouching and color restoring, they
are inspired in human vision)

• The used for visualization (games, virtual reality and synthetic images)

• The used for computer vision (we can extract true information from im-
ages)

The �rst set, is compound by re�ectance models which are not based on physics
or optics. These models are inspired in the human (or mammalian) percep-
tion, therefore they are based in the more recently ophthalmological and neural
discoveries, focused on retinal behavior and visual cortex understanding. The
widely used of this set is Retinex [22, 23] which is inspired in the human vision.
It is inspired on the rods and cones retinal cells. Mainly it is used for color
restoration, but it present some shortcomings [24]. The retinex algorithm is
too sensitive to changes in the color of nearby objects to serve as an adequate
of human color constancy. More recently, new models have been proposed in
this line, like the Neuromorphic model introduced by Hong and Grossberg [25]
which shows more sophisticated than retinex.

The second set is compound by all models used for visualization, that is for
synthetic digital images. The widely used is the Bidirectional Re�ection Distri-
bution Function BRDF [26] which express the ratio between the irradiance and
surface radiance depending of the point of view and direction of the illumination.
As an improvement of this model Torrance & Sparrow [27] which add a pseudo-
spheric globe on the specular component. A betterment of both models have
been proposed by Ragheb and Edwin [28] who can simulate as wax (or glass)
layer over surfaces. Besides of this models Bidirectional Texture Functions BTF
are used to simulate textures [29, 30]. With these models (and similar models)
objects can be drawn showing di�use and specular re�ections. However these
models are not enough for to simulate all surfaces, e.g. human vision system is
very exact beholding the human skin, indeed no one of the previous models are
valid for simulate human faces. For this goal new models have been proposed.
Bidirectional Surface Scattering Distribution Function BSSRDF [31] can simu-
late light behavior through epidermis. A well parametrized BSSRDF function
have been introduced by Jensen & Donner[32] which can simulate all human
skin kinds.

The third set is compound by all re�ectance models who can be applied in
computer vision. These models are grounded in physics measurements, hence
we can extract some true conclusions. The �rst and widely used is BRDF [33,
34]. By observing a homogeneous surface, we can measure the BRDF re�ection
parameters using a scatterometer [35] even in the infrared [36]. Other important
re�ection model in this set is the Dichromatic Re�ection Model (DRM). It was
introduced by Shafer [37] and by di�erence with BRDF this one has better
meaning within linear color spaces. It has been widely used to separate di�use
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and specular component, and for estimation of the illuminat chromaticity. An
evolution of this model is the DRM under bi-illuminat conditions [38]. This
model try to help to understand illumination changes on chromatic edges.

This thesis is grounded in DRM, then we are going to explain it in detail.

2.6.1 DRM

The Dichromatic Re�ection Model (DRM) was introduced by Shafer [37]. It
explains the perceived color intensity I ∈ R3 of each pixel in the image as
the addition of two components, one di�use component D ∈ R3and a specular
component S ∈ R3. The di�use component refers to the chromatic properties
of the observed surface, while the specular component refers to the illumination
color. Surface re�ections are pixels with a high specular component. Therefore,
if an image does not have a bright area were the specular component is strong
relative to adjacent image regions, it is not possible to make Illumination Source
Chromaticity (ISC) estimation by any means. The mathematical expression of
the model, when we have only one surface color in the scene, is as follows:

I(x) = md(x)D +ms(x)S, (2.1)

where md and ms are weighting values for the di�use and specular components.
Equivalently, Eq.2.1 can be expressed in spherical coordinates as:

I(x) = (θD, φD, lD(x)) + (θS, φS, lS(x)),

where Λ = (θD, φD) is the di�use chromaticity,

lD(x) =
√

(md(x)DR)2 + (md(x)DG)2 + (md(x)DB)2,

and Γ = (θS, φS) is the specular chromaticity and

lS(x) =
√

(ms(x)SR)2 + (ms(x)SG)2 + (ms(x)SB)2.

For a scene with several surface colors, the DRM equation must assume that the
di�use component may vary spatially, while the specular component is constant
across the image domain:

I(x) = md(x)D(x) +ms(x)S, (2.2)

that in spherical coordinates is expressed as:

I(x) = (θD(x), φD(x), lD(x)) + (θS, φS, lS(x)),

where Λ(x) = (θD(x), φD(x)), and

lD(x) =
√

(md(x)DR(x))2 + (md(x)DG(x))2 + (md(x)DB(x))2,

and Γ = (θS, φS) and

lS(x) =
√

(ms(x)SR(x))2 + (ms(x)SG(x))2 + (ms(x)SB(x))2.
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(a) (b) (c)

Figure 2.8: Distribution of the ball image in the HSV color space (a) and in the
RGB color space (b)

The chromaticity of the specular component θS, φS is space invariant, meaning
that the ISC is constant all over the scene. This is the most common situation
in practice, where we have one colored illumination source irradiating over a
scene with objects of di�erent colors.

Figure 2.7: Dichromatic re�ection model

RGB has some advantages versus HSx family when working with DRM.
First, the DRM is de�ned as a vectorial sum in an euclidean space. This linearity
exist in RGB however do not exist in other spaces like in the HSx color family.
In Fig. 2.8(a) we can see the distribution of the pixels in the HSV color space.
On the one hand pixels with low 'Value' are very separated each others, when
'Value' is increasing they are shaping in a line (the chromatic line). On the
other hand specular pixels are in a curved shape like a horn. Comparing with
the Fig.2.8(b) the linearity is lost. Hence is di�cult to express DRM in HSx
parameters. Fig.2.8(c) shows original image.

A digital image taken with a camera is de�ned on DRM as:
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I(x) = wd(x)

ˆ

Ω

S(λ, x)E(λ)q(λ)dλ+ ws(x)

ˆ

Ω

E(λ)q(λ)dλ (2.3)

I(x) = wd(x)B + ws(x)G (2.4)

where:
I = {Ir, Ig, Ib} is the color of an image pixel obtained through a camera sensor.
x = {x, y} are the two dimensional coordinates of the pixel in the image.
q = {qr, qg, qb} is the three element vector of sensor sensitivity.
wd(x) and ws(x) are the weighting factors for di�use and specular components,
respectively. They depend on the geometric structure at location x.
S(λ, x) is the di�use spectral re�ectance.
E(λ)is the illumination spectral power distribution function, it is independent
of the spatial location x when we assume an uniform illumination color.
The integration is done over the visible light spectrum Ω.

Eq.2.4 is equivalent to Eq.2.1 therefore the spheric transformation can be
done in the same way.

2.7 Hyperspectral?

2.8 Chapter conclusion

In this chapter we have discussed about the main topics on the physical, cogni-
tive and mathematical aspects respect to surface re�ectance. Illumination is the
main aspect, on it depends it. This re�ectance is modeled in images by colors of
whatever color space. We have explained in detail the RGB color space in which
is grounded the �rst part of this thesis. Color is compound by di�erent elements
where chromaticity is a key concept explained accurately in RGB, both in eu-
clidean and in spherical representation. Chromaticity is the main image feature
which we'll use for CC in segmentation process. For a physical understanding
of the surface phenomenon there are a lot of models of re�ectance, where we are
focused on DRM and its meaning on RGB color through a spherical interpreta-
tion. We advocate that the spherical interpretation of RGB is the best way to
take pro�t of the DRM.
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Contributions on RGB
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Chapter 3

Illumination Correction

This chapter is outlined in the following manner: Sec.3.1 presents a review of
the state of the art respect to the current advances on illumination correction,
after that we will show the contributions in this area. Sec.3.2 corresponds
with a method for Illumination source chromaticity estimation [3], this section
corresponds with the process 2 and 3 of this thesis �owchart . The following
sections are three manners to separate the di�use and specular components each
one with its advantages, all them corresponds with the 4 process of this thesis.
First one, in Sec.3.3 we propose a way to reduce the shines using an evolutionary
algorithm[39], Sec.3.4.2 shows a Bayesian approach [40] and Sec.3.5 describes a
geometrical method [41] for separation of di�use and specular component. At
the end of this chapter we will give the chapter conclusions.

Note that the ISC contribution works with Spherical coordinates whereas
the other contributions works with Euclidean coordinates.

3.1 State of the Art

Illumination information is contained within the specular component of the im-
age, hence a key step is the detection and separation of the di�use and specular
components. Besides spots and shines are considered as a kind of noise or in-
terferences in the image. Therefore the detection of the specular component is
key in image processing and it covers two goals. On the one hand the specular
component of an image contains all illumination information, it depends also of
the geometrical properties of the image, then this information is used too for
'shape from shanding'[42, 43, 44]. On the other hand, once we know the specu-
lar component of an image, we can remove it from the original image obtaining
then a di�use image which has only the true chromatic surface properties.

The estimation of the illumination source chromaticity (ISC) [45] is a nec-
essary step for color image normalization which is a critical step for constant
color perception either in biological human perception [13, 10] or in the design
of robust arti�cial vision systems [46]. Color normalization to a reference ISC,

22
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usually white, allows the robust estimation of re�ectance components, and sub-
sequent segmentation of the image. Most ISC estimation algorithms [47, 45]
work on the normalized RGB color space (r + g + b = 1).

There are works on the specular re�ection reduction by using multi-�ash
mechanism [48] . The main drawback of this method is that it requires many
images taken with �ash devices. Other advance technics use only an image
giving a re�ectance estimation [1]. There are several works which are focused
in the illumination chromaticity estimation (ISC) [5, 6, 4]. These methods are
grounded in the DRM and only need one image. Kuk-jin method takes pro�t
of the DRM and uses chromatic lines estimation by local ratios. Roby Tan
method[4, 49] uses the inverse intensity space and by the Hough transform can
estimate the illumination chromaticity. Ebner [6] estimates the illuminat chro-
maticity by segmentation and �ltering looking for dichromatic lines by perform-
ing a linear regression on the x- and y-coordinates in CIE XYZ chromaticity
space. All these methods which estimate the illuminant chromaticity are well-
know as 'color constacy' methods, because once the illuminat chromaticity is
estimated, original image can be normalized respect to the illumination, hence
output image is independent of the illumination. The normalized image change
the original illuminat to a pure white illumination.In this thesis we will propose
a method for ISC estimation based on spheric coordinates [3] in Sec.3.2.

There are some works which separate the di�use and specular components
of the image [20, 41, 50, 51, 52, 53]. Mallick [20] presents a photometric stereo
method for non-di�use materials that does not require an explicit re�ectance
model or reference object. By computing a data-dependent rotation of RGB
color space, the specular re�ection e�ects can be separated from the much sim-
pler, di�use (approximately Lambertian) re�ection e�ects for surfaces that can
be modeled with dichromatic re�ectance. Hui-Liang [50] proposes a method to
separate re�ections in a color image based on the error analysis of chromaticity
and appropriate selection of body color for each pixel. By solving the least-
squares problem of the dichromatic re�ection model, re�ection separation is
implemented on a single pixel level, without requiring image segmentation and
even local interactions between neighboring pixels. R. Tan method [51] is based
solely on colors, particularly chromaticity, without requiring any geometrical
information. One of the basic ideas is to iteratively compare the intensity loga-
rithmic di�erentiation of an input image and its specular-free image. Umeyama
[52] shows a method where di�use and specular components of surface re�ec-
tion can be separated as two independent components applying Independent
Component Analysis to the images observed through a polarizer of di�erent
orientations. Kuk-jin method [54] proposes a specular-free two-band image that
is a specularity-invariant color image representation and then re�ection compo-
nents separation is achieved by comparing local ratios at each pixel and making
those ratios equal in an iterative framework.

Our contributions on this topic; separation of di�use and specular compo-
nents are carried out from three points of view. First one we propose an evolutive
approach by using Legendre polynomials for specular reduction [39] in Sec.3.3.
Second one we show a bayesian method supported by Random Markov Fields
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[40]in Sec.3.4. Finally we propose a geometrical method grounded on DRM and
on the spheric interpretation of the RGB color space [3] in Sec.3.5.
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3.2 Illumination Source Chromaticity Estimation

Spherical coordinates in the RGB color space provide direct chromatic informa-
tion. In this section we propose a novel method that uses this information for
ISC estimation. We test our method on synthetic images whose ISC is known.
This allows a quantitative comparison with a state of the art algorithm. This
algorithm improves over the competing algorithm.

In previous works [55] we have already noted that the zenith θ and azimuth
φ coordinates of a point in RGB space give the chromatic information of the
corresponding color. Moreover, we were able to derive e�cient chromatic gra-
dients in color normalized images. Here we will use this information in a novel
procedure to obtain an ISC estimation. This method does not need any previous
image segmentation and its computational complexity is linear in the number
of pixels, therefore it is suitable for real time.

3.2.1 Method

The proposed ISC estimation method is illustrated in Fig.3.1. The objects in
the Fig.3.1(a) are labeled as (1), (2) and (3). These object labels are used in
Fig.3.1(b),(c) and (d) for easy tracking the results of each step of the algorithm
in each of the �gures. The ISC information lies in the spherical coordinates of
the pure specular pixels, according to the DRM of equation (2). The process'
�rst step is the detection of the specular pixels in the image.

This detection is performed as follows: �rst we compute the specular free
image [56], second, we compute the pixelwise di�erence between the specular
free and original image intensities, third, we detect specular pixels setting a
threshold on this di�erence image. The specular regions identi�ed in Fig.3.1(a)
are shown in Fig.3.1(b) as corresponding blobs.

The second step is to compute the spherical coordinates in RGB space of the
specular pixels. We construct a 2D representation using the Zenith and Azimuth
angle values. In this plane, the specular regions are represented by elongated
shapes due to the transition between the pure ISC to the surface color that
occurs in those regions. Fig.3.1(c) shows the Zenith-Azimuth representation
corresponding to the specular regions in Fig.3.1(b). For each connected specu-
lar region we independently compute a linear regression. Fig.3.1(d) shows the
regression lines computed for the region corresponding regions in Fig.3.1(c).
The intersection between those lines corresponds to the estimation of the ISC's
spherical coordinates θS, φS.

To obtain the corresponding ISC's normalized RGB coordinates, ΨISC we
compute the intersection of the line determined by θS, φS with the chromatic
plane ΠΨ. If we want to perform the image color normalization to the pure white
illuminant, it su�ces to compute the di�erences θS = θS − π

4 and φS = φS − π
4 .

Applying this correction to the spherical coordinates of the pixels in the image
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(a) (b)

(c) (d)

Figure 3.1: (a) Original Synthetic Image, (b) Specular regions detected in the
original image, (c) distribution of spherical coordinates of specular pixels, (d)
linear regressions of each specular region and ISC detected as their intersection.

we obtain the image colors under pure white ISC. An Scilab implementation
of the algorithm is available at http://www.ehu.es/ccwintco/index.php/GIC-
source-code-free-libre.

In summary, the proposed method's steps are the following: (1) Compute
the specular free image, (2) perform detection of specular regions, extracting
their pixels, (3) plot them in the zenith-azimuth plane, (4) compute the linear
interpolation for each region, (5) estimate the intersection of the interpolation
lines.

3.2.2 Experimental Results

We apply the proposed approach and Tan's method [4] to synthetic images
generated under a known ISC. Therefore, we can compute the squared error of
the estimations given by the algorithms to achieve a quantitative comparison of
both approaches. Fig.3.1(a) shows an instance of the synthetic test images.

The experimental images have been generated as follows:

1. We selected three ISC values (left column in Table 3.1) as the means of
the Gaussian distribution of ISC, with standard deviation σ = 005.

2. We generated 30 samples of these ISC Gaussian distributions

3. We generated the synthetic images using a common re�ectance image
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Proposed Method R. Tan Method

ΨISC Ψ̃ISC ē Ψ̃ISC ē
r = .28 r = .2684 r = .2664
g = .32 g = .3102 .010790 g = .3403 .052410
b = .40 b = .4212 b = .3733
r = .32 r = .3301 r = .3232
g = .40 g = .4061 .006410 g = .4118 .052410
b = .38 b = .2637 b = .2627
r = .40 r = .3824 r = .4062
g = .32 g = .3246 .005964 g = .3321 .008008
b = 28 b = .2929 b = .2595

Table 3.1: Experimental ISC, estimated vales of the normalized RGB and the
estimation errors.

4. We apply both our approach and the competing method to estimate the
ISC from the synthetic images.

5. Finally, we computed the estimation error for each image and give sepa-
rate mean estimation errors for each separate Gaussian distribution. The
error is computed as the angle between the true and the estimated ISC
divided by the maximum possible error π

2 . Table 3.1 contains the average

ISC estimation Ψ̃ISC and the mean error ē for each method. It can be
appreciated that our approach improves always over Tan's method.

3.2.3 Work Conclusions

We present a method for Illumination Source Chromaticity (ISC) estimation
that is accurate and its complexity is linear in the number of pixels, therefore
it is suitable for real time. It works on the spherical coordinates of the specular
pixels of the image, which is a small fraction of the whole image. It does not lose
luminosity information, because it is preserved in the magnitude component of
the spherical representation which is not a�ected by color normalization. It can
be applied in real time. We have shown in computational experiments that it
improves over state of the art competing algorithms.
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Figure 3.2: Synthetic images of a ship hold. The images used in the experiments
were taken from the upper aperture of the hold.

3.3 Evolutive Parametric Approach for Specular

Correction

Assuming the dichromatic image model we propose a global reduction of spec-
ularity e�ects by means of parametric illumination gradient images obtained
by �tting 2D Legendre polynomials to the specular component of the images.
Fitting is done applying an Evolution Strategy. The method could be applied
to static robotic monitoring in teams of robots, where the illumination gradi-
ent image could be computed once and applied to successive frames until the
illumination conditions change drastically. The method could be useful for the
detection of image regions with di�erent chromatic properties.

The framework of this contribution is the work on the design of multirobot
systems for highly unstructured environments, such as shipyards. There a po-
tentially critical role is that of observer or monitoring, that is a member of the
team located in a position where it can monitor all the environment and serve
this information to the remaining members of the team. This robot will be static
once it has reached the surveillance position, so that images will be relatively
static also. That means that illumination conditions will vary slowly and it is
possible to perform illumination correction under real time constraints. The
Fig.3.2 shows two views of a ship hold that illustrate the point of view of the
images used in the experiments reported below. Naturally, the kind of images
obtained contain a lot of speculaties, because of the presence of water and metal
surfaces. Moreover, the illumination will change continuously (slowly) due to
changes in natural illumination.

Legendre polynomials have applied successfully to intensity inhomogeneity
correction in MRI [57], as a parametric model of the inhomogeneity �eld that can
be estimated by an energy minimization method like the Evolution Strategies
(ES). Our approach mimics that one, applying it to the dichromatic model.
We obtain a specularity bias that can be used to normalize the images easing
further segmentation and detection processes. Due to the slow change in natural
illumination, we expect that the estimated bias would valid for several frames,
reducing the time constraint for real life application.
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Figure 3.3: Flow diagram of the process of estimation of bms.

Figure 3.4: Illumination correction using the specular �eld bms.

3.3.1 Description of the approach

Fig.3.3 shows a �ow diagram describing the process followed to obtain an spec-
ularity �eld. The starting point is the captured image I that need to be normal-
ized in chromaticity. We use ISC estimation to obtain the illuminant chromatic-
ity estimation Iest and the normalized image is given by the ratio Inorm = I

Iest

. It is also needed to obtain in parallel an Specular-Free image [58] (SF ), we
use the Specular Free Two Band method [54]. Then we obtain the derivatives
of the logarithm of SF and Inorm, to obtain the di�use pixels. From them we
select the most representative k classes {µ1, ..., µk}, corresponding to chromatic
regions in the image. Finally, the ES estimates the parameters of the 2D Legen-
dre polynomials that gives the estimation of bms. Fig.3.4 shows the correction
of the image removing the specular �eld.

3.3.2 Normalization

In some methods before separating specular and di�use components it is neces-
sary to carry out a process of normalization, because they need that the specular
component must be pure white. This process requires the value of Iest which can
be obtained by some methods [5, 59, 6, 4, 47]. It is computed as Inorm = I

Iest .
After normalization, the image change its specular component Γ for pure white
[1, 1, 1] that is Inorm(x) = m′d(x)Λ′(x) +ms(x)[1, 1, 1]

Iest w Γ⇒ Γ

Iest
' [1, 1, 1]⇒
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Inorm(x) =
md(x)Λ(x) +ms(x)Γ

Iest
=
md(x)Λ(x)

Iest
+
ms(x)Γ

Iest
⇒

md(x)Λ(x)

Iest
+ms(x)

Γ

Iest
=
md(x)Λ(x)

Iest
+ms(x)[1, 1, 1]

where
md(x)Λ(x)

Iest
= m′d(x)Λ′(x)

then
Inorm(x) = m′d(x)Λ′(x) +ms(x)[1, 1, 1]

when working in normalized RGB

Inorm(x) = m′d(x)Λ′(x) +ms(x)/3

3.3.3 Specular-Free Image

The specular free image is critical for the detection of the re�ectance component,
we used the Specular-Free Two-Band method proposed by [5]. The process is
simple: it subtracts to each pixel its minimum band. The image is geometrically
identical to the original: Isf (x) = m′d(x)Λsf (x). An specular free image, is
a geometrical transformation of a image such, the returned image hasn't got
specular component, it means ms = 0.

3.3.4 Intensity Logarithmic Di�erentiation

This technique allows the detection of pure di�use pixels ms = 0, and, as a
consequence, the specular pixels. Pure di�use pixels allows us estimate the
chromaticity of the surface. Assuming uniform colour pixels (Λ becomes inde-
pendent from x) applying the logarithm and spatial di�erentiation

∂

∂x
log(Inorm(x)) =

∂

∂x
log

(
m′d(x)Λ′(x) +

ms(x)

3

)
For di�use pixels ms = 0, then ∂

∂x log(Inorm(x)) = ∂
∂x log (m′d(x)Λ′(x)).

Assuming which two neighboring pixels has the same di�use chromaticity, Λ′

don't depend of the spatial coordinate x, then

∂

∂x
log(Inorm(x)) =

∂

∂x
log (m′d(x)Λ′) =

∂

∂x
(log (m′d(x)) + log (Λ′)) =

∂

∂x
log (m′d(x))

For the Specular-Free image we have that

∂

∂x
log
(
Isf (x)

)
=

∂

∂x
log
(
m′d(x)Λsf (x)

)
=

∂

∂x

(
log
(
m′d(x)Λsf (x)

))
∂

∂x
log
(
Isf (x)

)
=

∂

∂x

(
log
(
m′d(x) + Λsf (x)

))
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Assuming which two neighboring pixels has the same di�use chromaticity, Λsf

don't depend of the spatial coordinate x, then

∂

∂x
log
(
Isf (x)

)
=

∂

∂x

(
log
(
m′d(x) + Λsf

))
=

∂

∂x
log (m′d(x))

Therefore, the test for a di�use pixel is that

∆(x) =
∂

∂x
log(Inorm(x))− ∂

∂x
log
(
Isf (x)

)
If ∆(x) = 0 then x is a di�use pixel.

3.3.5 Evolutionary Strategy

We are adapting the ideas about intensity inhomogeneity correction in MRI
[57] to our problem. The �rst step is to propose an energy function whose
minimization would solve our problem. This energy function comes from the
dichromatic model

Etot =
∑

x∈Inorm

(Inorm(x)− bms(x, p)− µk(x))
2

(3.1)

where the specular �eld is given by

bms(x, p) =

l∑
i=0

l∑
j=0

pi,jP (i)P (j)

and the P (i)P (j) denote products of 1D Legendre polynomials.
The parameters of the minimization are the Legendre polynomials linear

coe�cients. The energy includes some class representatives µk of the image
re�ectance given by the representatives obtained form the di�use pixels by some
clustering process (i.e. k-means). Image pixels must be classi�ed according to
the classes before performing the bias search.

To search for the optimal parameters of the Legendre 2D �eld, we use an -ES.
Each individual in the ES is a matrix of coe�cients of the Legendre polynomials.
They are mutated by random Gaussian values (still we have not implemented
any adaptive search method modifying their variances). The starting point is
population of 50 individuals, which are the seeds for the process. We select
the best 20 in an elitist selection process. They are the parents for the next
generation.

If we introduce the dichromatic model into the energy function of Eq.3.1, we
have

E(x) = (m′d(x)Λ′(x) +m′s(x)− bms(x, p)− µk)2

so that
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Figure 3.5: From left to right: Original image, the estimated specular bias
composed of polynomials of degree up to 2, and the corrected image obtained
removing the specular bias

E(x) = (m′d(x)Λ′(x)− µk)2

and the energy is proportional to the di�use component of the image:

E(x) u (m′d(x))2

3.3.6 Experimental Results

Experiments have been performed using Scilab and the SIP toolbox. The ES
always converge to good solutions.

Fig.3.10 shows the original full image of the ship hold being watered for
cleaning. It also shows the recovered image when the higher degree of the
Legendre polynomials composing the bias is 2. Fig.3.6 shows the bias and
the recovered image when the higher polynomial degree is 3. These �gures
illustrate how increasing the model order allowing higher degree polynomials
the estimated bias tends to �t also the variations in re�ectance. Lower order
models are desired to obtain more robust estimations of the illumination. Fig.3.7
and 3.8 show the e�ect of the algorithm on the region containing the images of
the human operators.

The resulting corrected image is, of course, more dark than the original
image, but it retains all the geometric information, which can be observed com-
puting the spatial gradient of the images, which we are not including for lack
of space. The e�ect on the hold �oor is that we get a constant intensity (color)
image of it. The almost specular region on the lower left corner is greatly en-
hanced, making it more similar to the remaining �oor surface. One of the goals
of this work is to obtain robust segmentations of objects lying in the surface of
the ship hold. It can be appreciated in Fig.3.7 and 3.8 that the human operators
are easily segmented despite the increased darkness of the image.

3.3.7 Work Conclusions

This work shows an image correction approach based on the modeling of the
specular component of the image as bias �eld obtained as the linear composition
of 2D Legendre polynomials. Model �tting is done by a (λ − µ) − ES on the
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Figure 3.6: From left to right: The estimated specular bias composed of polyno-
mials of degree up to 3, and the corrected image obtained removing the specular
bias

Figure 3.7: Detail from �gure 4 images. From left to right: original image,
estimated specular bias, corrected image obtained removing the specular bias.

Figure 3.8: Detail from �gure 5 images. From left to right: original image,
estimated specular bias, corrected image obtained removing the specular bias.
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space of the linear coe�cients of the Legendre polynomials. The approach is
based on the dichromatic re�ectance model. The e�ect is that we can remove
strong specularity e�ects from di�cult scenes, such as the ship hold treated as
example, allowing more robust segmentation of objects in the image.
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3.4 Bayesian Re�ectance Component Separation

We work on a Bayesian approach to the estimation of the specular compo-
nent of a color image, based on DRM. The separation of di�use and specular
components is important for color image segmentation, to allow the segmenta-
tion algorithms to work on the best estimation of the re�ectance of the scene.
In this work we postulate a prior and likelihood energies that model the re-
�ectance estimation process. Minimization of the posterior energy gives the
desired re�ectance estimation. The approach includes the illumination color
normalization and the computation of a specular free image to test the pure
di�use re�ection hypothesis.

Works on re�ectance map estimation usually need to impose some assump-
tions like the knowledge of a color segmentation of the image, the detection of
color region boundaries or color discontinuities, or the knowledge of the decom-
position into linear basis functions of the surface color. The approach presented
here does not impose any such assumption and does not need previous segmen-
tations of the image. We follow a Bayesian approach [60] to model the desired
result as constraints implemented in an a priori distribution. We postulate the
a priori distribution based on the idea developed in [58] that the derivatives of
the logarithmic images of both di�use image and specular free must be equal in
order to have pure di�use pixels.

3.4.1 Separation Method

We will base our Bayesian model in the derivative of the logarithm of the nor-
malized image respect to ISC and the specular free transform[4, 58]. As in the
aforegoing section, the pure di�use pixels can be characterized by the following
relation:

4(x) = dlog(I′(x))− dlog(Isf (x)) = 0, (3.2)

where dlog(Isf (x)) = ∂
∂x log(Isf (x)) and dlog(I′(x)) = ∂

∂x log(I′(x)), the log-
arithm is computed pixel wise, and the spatial derivative can be computed
in several ways, for instance in [?] it is computed on the scalar value image
given by the summation of the three channels. It can be easily veri�ed that
dlog(I′(x)) = ∂

∂x log(m′d(x)) = dlog(Isf (x)) for pure di�use pixels if the di�use
chromaticity of neighboring pixels is the same. That means that the method
works well inside homogeneous color regions, and needs the estimation of color
region boundaries. When 4(x) > 0 in Eq. 3.2 and the pixel is not at a color
boundary and a pure specular pixel, then it has some specular component that
can be removed to get the di�use re�ectance component. The method proposed
in [58] follows from an heuristic observation about the distribution of pixels
in the maximum chromaticity versus (normalized illumination color) intensity
space. Non di�use pixels are decreased in intensity iteratively to search for the
pure di�use pixel value.
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3.4.2 Bayesian Modeling

Given an image f and a desired unknown response of a computational process d,
Bayesian reasoning gives, as the estimate of d, the image which maximizes the
A Posteriori distribution P (d|f) ∝ e−U(d|f), where the A Posteriori energy can
be decomposed in to the A Priori U(d) and Likelihood (Conditional) U(f |d)
energies U(d|f) = U(f |d) +U(d). The Maximum A Posteriori (MAP) estimate
is equivalent minimize the posterior energy function

d∗ = arg min
d
U(d|f) (3.3)

The Likelihood energy U(f |d) measures the cost caused by the discrepancy
between the input image f and the solution d. The A Priori energy U(d) is a
model of the desired solution, usually built as a Random Markov Field (RMF),
so that the A Priori energy can be built up as the summation of the local
energies at the pixels, which are expressed as summations over the set of cliques
including the pixel, weighted by the local potential parameter. A Priori energy
usually incorporates any desired constraint, such as smoothness, into the model.

We will assume a Gaussian Likelihood distribution plus a Chromaticity
preservation constraint, therefore the Likelihood energy will have the follow-
ing expression:

U(d|f) =

m∑
i=1

(fi − di)2

2σ2
+

m∑
i=1

(
Ψf
i −Ψd

i

)2

,

where fi and di are the RGB pixel values a the i-th pixel position for the observed
and desired image, respectively. Also, Ψf

i and Ψd
i denote the chromaticity pixels

of the observed and desired image, respectively.
The A Priori energy is built up from two components. The �rst one is the

Chromaticity continuity:

UΨ(d) =

m∑
i=1

∑
j∈Ni

∑
c∈{r,g,b}

(
Ψd
i,c −Ψd

j,c

)2
.

The second modeling the estimation of the derivatives in Eq. ?? as the
cliques of the RMF. That is, we assume that the local energy at pixel di is
de�ned as

U4 (di) =
(
dlog(di)− dlog(dsfi )

)2

,

where dsfi is the i-th pixel of the specular free image, computed as described
above, and dlog(.) in means the local estimation of the derivative, which is
approximated as follows:

dlog(di) =
1

#N

∑
j∈Ni

log(
I(xj)

I(xi)
),
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where Ni is the local neighborhood of pixel di, and #N is its cardinality. After
some manipulations, the local derivative component of the A Priori energy is
derived as:

U4 (di) =

∑
j∈Ni

∑
c∈{r,g,b}

log
dj,cd

sf
i,c

di,cd
sf
j,c

2

.

This local energy is equivalent to the Kuk-Jin ratio criterion [54]. The deriva-
tive component of the A Priori energy is, therefore, the addition of these local
energies:

U4 (d) =

m∑
i=1

U (di) ,

and the A Priori energy is given by the addition U (d) = U4 (d) + UΨ (d).

3.4.3 Experimental results

In this section we report some experimental results applying the Bayesian ap-
proach described above. The starting value for the energy minimization process
is set to f = d (0) = I′. Each iteration step of the energy minimization involves
the computation of the specular free image dsf (t) of the current hypothesis
d (t) of the optimal estimation d∗. Instead of using a Monte Carlo minimization
technique [60], such as Simulated Annealing, we have employed a simple heuris-
tic to determine the new hypothesis d (t+ 1), consisting in the reduction of the
intensity of the pixels preserving their chromaticity components relative ratios.
Although simple, this strategy does in fact produce a minimization of the energy
function, as can be appreciated in Fig.3.9, where we plot an instance of the en-
ergy function evolution. We have tested our approach on some images already
tested by some authors in the literature i.e. [49, 58] among others. Fig.3.10
shows the result over a well known test image with two colors and two light
sources. Our algorithm does not include any modeling of the underlying color
regions in the scene, such as in [49], so it can be appreciated that the almost
pure specular pixels can not be corrected, because there almost no chromatic
information left in them. To improve our approach we will be including a color
map �eld in the model, to be able to assign those pixels the most likely color.
The Fig.3.11 shows a complex geometry image. Our estimation of the di�use
re�ectance component recovers the underlying geometry, with some blurring
e�ects.

3.4.4 Conclusions

We have presented a Bayesian approach to the problem of re�ection component
separation. As in previous works, our approach works with only one image [58]
and does not need any additional assumption, such as models of the colors in
scene o previous color segmentations of the image. We compute the specular
free image, which can be done on the �y for each hypothesis. We have tested
the approach applying a simple heuristic to provide new hypothesis from the
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Figure 3.9: Evolution of the energy function in an instance run of the algorithm

Figure 3.10: From left to righ, the original image, the estimated di�use re�ection
component, and the estimated specular component

Figure 3.11: From left to right, the original image, the estimated di�use re�ec-
tion component, and the estimated specular component
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previous iteration, with quite encouraging results. From the experiments we
detect the need to incorporate a color map �eld in the A Priori model, so
that the color of almost purely specular pixels can be recovered more easily.
The problem of diverse color illumination sources will be dealt with in further
works.
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3.5 A geometrical method of di�use and specular

image components separation

The approach presented here is based on observed properties of the distribution
of pixel colors in the RGB cube according to DRM. We estimate the lines in the
RGB cube corresponding to the di�use and specular chromaticities. Then the
specular component is easily removed by projection on the di�use chromaticity
line. The specular component is computed by a straightforward di�erence. The
proposed algorithm does not need any additional information besides the image
under study.

The di�use component estimation is useful for color based arti�cial vision
processes, while the specular component contains surface topological informa-
tion and is required for the estimation of re�ectance maps. Recent solutions
[61, 42] require uniform illumination and the identi�cation of constant color
regions, working on synthetic �clean� images. Color constancy analysis is a re-
quirement for such algorithms. Our approach does not need such analysis. The
process is as follows: �rst we estimate the chromatic lines, then we perform a
dychromatization process, we estimate the di�use image component, then we
compute the specular image component. We show some computational results
on well known benchmark images.

3.5.1 Pixels distribution on RGB color space

Following DRM we can classify image pixels into: Di�use pixels: showing the
observed surface color, with an almost null specular component. Specular pixels:
whose specular component is much bigger than the di�use component.

Placement of di�use and specular pixels is qualitative di�erent in the RGB
cube. Let us focus on the proximity of pixels to the black-white cube diagonal,
de�ned as Lw : r, g, b = P+su;∀s ∈ R where P = [0, 0, 0] and u = [1, 1, 1]. Given
a uniform color region, without any specular component, its representation in
the RGB cube would be a line, the di�use chromaticity line for this region.
However, due to noise, it appears as an elongated point cloud.

Given a uniform color region, with high specular component, from the DRM
point of view, it must appear like a line parallel to line Lw or approaching it.
Again, due to noise, an elongated pint cloud appears. Specular image regions
have RGB representations far from the color space origin.

Finally, a uniform color region (color constancy) with some non negligible
specular component must show a V shape. The point cloud beginning in the
coordinate origin and go away from line Lw contain the di�use points, while the
ones close to it are the specular ones. Using this knowledge, we can penalize
the specular component and magnify the di�use component.

3.5.2 General description of the method

We assume that the observed surface is decomposable into patches of homoge-
neous chromatic characteristics. The proposed method has the following phases:
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1. Chromatic line estimation: estimate the di�use line Ld and the specular
line Ls .

2. Dichromatization: We compute the parameters of the chromatic plane Πdc

in the RGB cube, and we project all the pixel colors into this plane. This
step involves some additive noise removal.

3. Component separation: We compute the pure di�use image component
and the specular image component.

3.5.3 Chromatic line estimation

In �gure 3.12 we have a plot of the pixels in the image of �gure 3.13 in the
three-dimensional RGB cube. Let us denote them {Ii; i = 1, ...,M}. We can
easily appreciate the two main directions in the data. The most clear is the
one corresponding to the di�use line Ld which rises from the coordinate system
origin. The second, less de�ned, appearing at the end of the di�use elongation,
is the specular direction identi�ed by the specular line Ls.

To estimate the di�use line, we start selecting the less bright pixels in the
image region corresponding to the surface, which will have the greatest di�use
component. We plot them in the RGB cube and we estimate the best linear
regression on the RGB data. In fact, we perform a Principal Component Anal-
ysis [?] (PCA) which give us the direction of the chromatic line −→u . Therefore
the di�use chromatic line is de�ned as Ld : (r, g, b) = P + s−→u ;∀s ∈ R . Anal-
ogously, we select the brightest pixels, obtaining a mean point Q in the RGB
cube and the largest eigenvector −→v for the specular color, therefore the specular
chromaticity line is expressed as follows Ls : (r, g, b) = Q+ t−→v ;∀t ∈ R.

Figure 3.12: Synthetic image plotted in the three-dimensional RGB space

3.5.4 Image dichromatic regularization

Once we know the chromatic lines, we build the dichromatic plane Πdc in R3

which is the best planar approximation to the color distribution in RGB. It can
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be expressed as follows: Πdc : (r, g, b) = P +s−→u + t−→v ;∀s, t ∈ R, and the normal

vector is
−→
N : −→u × −→v , where × denotes the conventional vector product. To

remove noise and regularize the image colors we project the pixel's colors into
this dichromatic plane Πdc . For each image point color in the RGB cube Ii
we compute the line Li : (r, g, b) = Ii + k ~N ;∀k ∈ R, which is orthogonal to the
dichromatic plane Πdc, and to regularize Ii we compute its projection Ici as the
intersection of Li with Πdc.

3.5.5 Component separation

Recalling the DRM de�nition I(x) = md(x)D + ms(x)S our goal is to bring
the pixels to the chromatic line, that is ∀x : ms(x) = 0. We proceed as follows:
for each regularized image point Ici lying in the plane Πdc we draw the line
Li : (r, g, b) = Ici + t−→v ;∀t ∈ R where −→v is the specular line vector director.
The pixel di�use component corresponds to the intersection point Idi of this line
with the di�use line Ld : (r, g, b) = P + s−→u ;∀s ∈ R and it exists because they
lie in the same plane Πdc and they are not parallel lines. We have obtained
Id(x) = md(x)D so that ∀x, : m(x) = 0, and the resulting image Id(x) is purely
di�use, without specular components. Obtaining the specular image component
is then trivial if we recall the DRM de�nition: Is (x) = I(x) − Id(x) = I(x) −
md(x)D = ms(x)S.

3.5.6 Experimental results

The experimental demonstration of our approach is shown in �gures 3.13 and3.14.
The �rst is a synthetic image (using Blender), and the second is a natural image.
Both are monochromatic. Original image is the leftmost image in both �gures.
Following our approach we obtain the di�use and specular images, shown at the
center and rightmost images, respectively, in both �gures. Both original im-
ages can be downloaded from http://www.ehu.es/ccwintco/index.php/Images.
The natural image has been used as benchmark by several researchers [58, 49].
The visual results are comparable or better than the state of the art results
in [58, 49]. As we know the original surface color (r = 0.790, g = 0.347 and
b = 0.221) in the synthetic image, we can compute an estimation of the error
committed by our estimation of the di�use image. If we denote Q the original
color, the error is the distance of this point to the di�use line, computed as
d(Q,Ld) = || ~PQ − ⊥( ~PQ, ~u)||, where ⊥(~a,~b) denotes the projection operator.
In the images shown in �gure 3.13 the error committed is 0.0116. Variations in
the error are due to the di�use region pixel selection.

http://www.ehu.es/ccwintco/index.php/Images
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Figure 3.13: Synthetic image, di�use image and specular image

Figure 3.14: Natural image, di�use image and specular image

3.5.7 Work Conclusions

As conclusion of this work, we have described an image component separation
for mono-color images which is very e�ective, fast and robust. It has been
developed from the DRM and is well theoretically grounded despite its sim-
plicity. It consists in the estimation of the di�use and specular lines as the
principal components of di�use and specular point clouds, respectively, selected
from the image by hand. Contrary to other approaches [48, 52] our approach
does not need speci�c hardware devices, and only needs one image. Our ap-
proach's complexity time is linear in the image size O (M), while others [54, 58]
are quadratic O(M2). Our approach does not need a Specular Free image,
it provides almost simultaneously both image components. On going work is
addressing the extension of this approach to images containing several surface
colors, i.e. I(x) = md(x)D + ms(x)S, and to images with illumination sources
of di�erent colors, i.e. I(x) = md(x)D +ms(x)S(x).



CHAPTER 3. ILLUMINATION CORRECTION 44

3.5.8 Chapter conclusions

This chapter shows the importance of illumination correction in computer vision
systems. First we have propose a method for ISC estimation that is accurate
and its complexity is linear in the number of pixels, therefore it is suitable for
real time. It is the �rst step in our segmentation model that let us normalize
the images respect to the illumination chromaticity obtaining robustness re-
spect to illumination changes. After that we have proposed three technics for
illumination correction. First one, an evolutive strategy for specular component
reduction with chromaticity preservation, which let us to obtain good results
in segmentation. By other hand we have propose two manners to separate the
specular and the di�use components from a single image. A Bayesian method
which does not need any additional assumption, such as models of the colors in
scene o previous color segmentations of the image. It converges linearly by in-
tensity reduction in the ISC line. Finally we have propose a geometrical method
for separate the di�use and specular components. This method is faster that
other ones and provides excellent results. A further work is to extend this model
to multi-chromatic surfaces.



Chapter 4

Specular Free Images

In this chapter cover the process 8 and 9 of the thesis �owchart , where process
8 correspond with the Specular Free image and the process 9 its application for
image segmentation, and it is outlined as follow: Sec.4.1 discuss about the state
of the art, Sec.4.2 present the �rst contribution and Sec.4.3 presents the second
contribution. The chapter �nish in Sec.4.4 with the chapter conclusions.

4.1 State of the Art

There are few works which discusses about specular free images (SF). These
were introduced by Roby Tan [49] and Kuk-jin Yoon [54] more or less at the
same time. In the �rst case, the basic idea is to make the saturation constant for
all surface colors while retaining their hue values. In other words, if these images
preserve their hue and saturation, then preserve the chromaticity, therefore they
change only the intensity respect to the original image. In the case of Kuk-Jin
technique, the transformation project all RGB points within the nearest plane
using the achromatic direction. In both cases, specular free transformations are
geometrical and injective transformations within a color space (RGB) where the
output image, the specular free image has not specular component.

4.1.0.1 SF2 and SF3

We are going to present two new kind of specular free images and its applica-
tions. First one, Sec.4.2 [62] introduces a SF transformation (SF2) based on
the pseudo-norm of the saturation. This work is applied to landmark detection
in robotic context, illumination correction (as a reduction of specular compo-
nent) and in robot detection in real time. Second one, Sec.4.3 shows other SF
transformation (SF3) which is based in an angular de�nition of the saturation
following DRM behavior in RGB. SF3 applies the intensity depending of the
pixel chromaticity. This SF image is applied on natural and synthetic images.
Both SF transformations uses the HSV color space for a better understanding.

45
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4.2 A color transformation for robust detection

of color landmarks in robotic contexts

This work presents a robust color transformation which has been applied suc-
cessfully to natural scenes allowing the fast and precise segmentation of regions
corresponding to color landmarks under uncontrolled lightning. The process is
grounded in the DRM and the properties of the RGB space.

Robust and fast detection of color regions is one of the typical arti�cial vision
problems. Given our color perception, color clustering is not an appropriate
approach most of the times. Among the various color spaces, the HSV and CIE
L*a*b are the ones closest to human perception.

The need to detect color regions stems from its conventional use in signaling:
red for danger, blue and green for informative, yellow for danger advice. Also
Red, Green and Blue are the basic colors in the RGB space unit cube. All
the remaining colors are represented as linear combinations of these colors. In
robotic contexts, working on arti�cial environments, we must bene�t from this
information source by the robust detection of signaling symbols drawn in the
basic colors.

A critical problem is removing the re�ections in the image, which interfere
with the observed surface. The two goals of the color image processes are
identi�ed as: e�cient color detection and re�ection removal.

In the following, Sec. 4.2.1 presents a brief explanation of the DRM model
and its justi�cation in the RGB space. We present our method in Sec. 4.2.2.
We present some experimental results in Sec. 4.2.4. We give our conclusions
and further work lines in Sec. 4.3.3.1

4.2.1 Some properties of the RGB cube and the DRM

Human chromatic perception is the result of biological evolution along millions
of years. The mental interpretation of colors is subject to subjective aspects:
philosophical, cultural and evolution. We can say that the human beings have
developed individual color perception traits. However we have a consensus on
the basic color interpretation which is represented in the color space used for
their representation. The HSV color space is one that matches the human
perception better than the RGB space. The pair Hue-Saturation de�nes the
chromatic space, while V is the light intensity. The most used color space is
RGB. From the computational point of view, and the arti�cial vision one, the
RGB space has the following interesting properties:

1. It is the default color representation space for all the machines, from
perception (Bayer's mosaic) up to the monitor visualization.

2. The vertices of the unit RGB cube represent the primary colors (red,
blued, green), the secondary colors (yellow, cyan, magenta) and the black and
white colors. The ones most used in signalization.

3. The re�ections or brights are characterized in the RGB cube for its
proximity to the black-white diagonal.
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Algorithm 4.1 Code for SF2

//I is a RGB image
// IR is the transformed image
Function IR = SF2(I)
New_Intensity = (max(I,3) � min(I,3));
Imghsv = rgb2hsv(I);
Imghsv(:,:,3) = New_Intensity;
IR = rgb2hsv(Imghsv);
Endfunction

4. DRM has been de�ned in the RGB space.
As we explain in the background chapter, one of the main properties of DRM

on RGB is that chromatically homogeneous and di�use regions are collinear
within RGB as we can see in Fig. . Therefore, we prefer to work with RGB
than with other color spaces.

4.2.2 Method

Being interested in pure color regions, we expect their color representation in
the RGB cube far from the achromatic line. On the other hand, we want
to penalize specular regions, those close to achromatic line and far from the
coordinate system origin.

A main feature of achromatic line is that the three components of its points
are equal r = g = b;∀r, g, b ∈ [0, 1]. For pixels close to this region, we r u
g u b;∀r, g, b ∈ [0, 1]. As the pixels fall away from this line, the di�erences
among their components are greater. We use this di�erence as the intensity of
the processed image. As we want to preserve the chromatic information, only
the intensity is modi�ed, boosting the di�use pixels and nullifying the specular
pixels. The new intensity of the pixels is computed as di�erence between the
maximum and minimum of their RGB components:

Intensity(x) = max{r,g,b}(x)−min{r,g,b}(x)

This intensity replaces the V component in the HSV representation, thus
preserving the chromatic content of the pixel. We show in Algorithm 4.1 an
implementation for SciLab.

4.2.3 Application

The SF2 image, the one obtained after the described transformation, is charac-
terized by the absence of re�ections, substituted by dark spots. Also the di�use
regions are boosted in the image. With an straightforward analysis we can �nd
all the di�use regions.
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Figure 4.1: Natural images

Figure 4.2: SF2 images

4.2.4 Experiments

We have performed experiments in three di�erent contexts: �rst the detection
of markers in real scenes, other with synthetic images, and the last about the
detection of robots in real time. All the results can be viewed in the following
web address: http://www.ehu.es/ccwintco/index.php/SMC

4.2.4.1 Mark detection

The de�nition of the experiment is as follows:
1. Context:
a) Place: a lab corridor, with arti�cial illumination of diverse intensity and

uniform color.
b) Markers are DIN A4 sheets of di�erent colors: red, cyan, yellow and blue.
c) Standard web cam Phillips SPC 900NC/00
2. Experiment:
From each image (recorded in a MPEG �le) we �nd the SF2 images, and

there we �nd the markers.
In Fig.4.1 we have three images from the described scenario. The ones on the

left are the closest ones to the camera, the ones on the right are the farthest ones.
Notice variations in illumination along the corridor. In Fig.4.2 we show the SF2
images as follows: left corresponding to the middle one in Fig.4.1 , middle after
the analysis of the intensity and to the right a zoom of the previous one, showing
that one mark is missing. In table 4.1 we show the detections performed on each
mark, where 'x' means good detection and '+' incomplete detection.
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Milestone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance 2.6 4 6 8.4 10.8 12.8 14.5 17.3 20.7 26.02 31.7 36 41.9 46 50

Label 1 x x x x x x x x x x x + x

Label 2 x x x x x x +

Label 3 x x x x x x x x x x x x + x

Label 4 x x x x x x x x x x +

Table 4.1: Measurements

Figure 4.3: Synthetic images

4.2.4.2 Synthetic images

The above color transformation has been applied to natural and synthetic im-
ages. Synthetic images have the advantage that we know with precision the
color and geometry of the surface, as well as the illumination color. Fig.4.6
shows some of these images, in the top row we place the original image and on
the bottom the computed SF2 images. First image is a monochromatic image,
with a green surface. The second is a Voronoi tessellated surface painted with
random colors. Last image is a bi-chromatic oval. We observe that SF2 im-
ages remove completely all the re�ections, canceling the specular component.
In the Voronoi tessellated ring surface, besides canceling brights spots, colors
have been enhanced.

The SF2 method has been ideated for robotic contexts. In Fig.4.8 we show
results on three natural images. The two �rst ones are customary marks in the
previously described experiment, and the last one is used by other researchers in
the literature of specular correction. The �rst two scenes show the magni�cation
of the markers in the image. In the last case we see that the bright spots are
cleanly removed, respecting original color.
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Figure 4.4: Natural images

Figure 4.5: Robots detection

4.2.4.3 Real robot detection

The last experiment is the detection of small robots (SR1) in a real scene and
real time. The robots are yellow color against a yelowist background, making
visual detection tricky. The �oor is very bright with many bright spots front
above illumination. Besides, robot's upper part contains the printed board and
some �xing for the cable being carried. The robots have lots of shadows, thus
only a small part of the robot can be clearly detected as pure yellow. Fig.4.5
contains three images: �rst the capture from the scene, second its SF2 image,
third the SF2 image intensity analysis to detect the robots. The web address
http://www.ehu.es/ccwintco/index.php/SMC contains the original video. We
must point out that illumination is not constant, there are doors, windows, etc.

4.2.5 Work Conclusions

The work presented here proposes a method for color detection in images, char-
acterized by:

1. Being fast and e�cient.
2. Removes the specular component.
3. Magni�es color, preserving scene chromaticity, modifying only the inten-

sity.
4. Can work in real time.
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Other methods for the removal of the specular component are based on
iterative methods that render them unsuitable for real time processing.
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4.3 Hybrid Color Space Transformation to Visu-

alize Color Constancy

Color constancy and chromatic edge detection are fundamental problems in arti-
�cial vision. Here we present a way to provide a visualization of color constancy
that works well even in dark scenes where such humans and computer vision
algorithms have hard problems due to the noise.

This work presents a hybrid and non linear transformation of the RGB image
based on the assignment of the chromatic angle of the pixel (computed in the
RGB space) as the luminosity value in the HSV space. The image is preprocessed
to remove the specular component. The chromatic angle was de�ned on the basis
of DRM, having thus a physical interpretation supporting it. In the HSV color
space the intensity is represented in the V value, changing it does not change the
pixel chromatic information. Thus, to visualize CC we assign constant intensity
to the pixels having common chromatic features, by assigning the chromatic
angle as the V value in HSV space.

4.3.1 Chromaticity and Chromatic distance

In the HSV color space, chromaticity is identi�ed with the pair (H,S), and the V
variable represents the luminosity or light intensity. Plotting on the RGB space
a collection of color points that have constant (H,S) components and variable
intensity I component, we have observed that chromaticity in the RGB space is
geometrically characterized by a straight line crossing the RGB space's origin,
determined by the φ and θ angles of the spherical coordinates of the points over
this chromaticity line. The plot of the pixels in a chromatically uniform image
region appear as straight line in the RGB space. We denote Ld this di�use line.
If the image has surface re�ection bright spots, the plot of the pixels in these
highly specular regions appear as another line Ls intersecting Ld. This idea is
correctly explained on [ref]

For di�use pixels (those with a small specular weight ms(x), of the image
expresed on the DRM Eq.[ref]) the zenith φ and azimuthal θ angles are almost
constant, while they are changing for specular pixels, and dramatically changing
among di�use pixels belonging to di�erent color regions. Therefore, the angle
between the vectors representing two neighboring pixels I (xp) and I (xq), de-
noted ∠ (Ip, Iq), re�ects the chromatic variation among them. For two pixels in
the same chromatic regions, this angle must be ∠(Ip, Iq) = 0 because they will
be collinear in RGB space.

The angle between Ip, Iq is calculated with the equation:

∠(Ip, Iq) = arccos

 I (xp)
T

I (xq)√
‖I (xp)‖2 + ‖I (xq)‖2

 . (4.1)
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4.3.2 An Approach for Regular Region Intensity

The basic idea of our approach is to assign a constant luminosity to the pixels
inside an homogeneous chromatic region. To do that we must combine manip-
ulations over the two color space representations of the pixels, the HSV and
RGB. The process is highly non linear and it is composed of the following steps:

1. Isolate the di�use component removing specular components (ms = 0):
we are interested only in the di�use component because it is the represen-
tation of the true surface color. We use the Roby T. method presented in
[58] to perform the di�use and specular component separation.

2. Transform the di�use RGB image into the HSV color space.

3. Compute for each pixel in the image the chromaticity angle as the angle
between the gray diagonal line in the RGB space, going from the black
space origin to the pure white corner, and the chromaticity line of the
pixel.

4. Assume the normalized chromaticity angle as the new luminosity value in
the HSV space pixel representation.

In an homogeneous chromatic region, all pixels fall on the same di�use line
Ld : (r, g, b) = O + sΨ;∀s ∈ R+ where O = [0, 0, 0] and Ψ = [Ψr,Ψg,Ψb]
is the region chromaticity expressed in Euclidean coordinates. The chromatic
reference is the achromatic (pure white) line Lpw which is de�ned as Lpw :
(r, g, b) = c+ su;∀s ∈ R+ where O = [0, 0, 0] and u = [1, 1, 1]. Therefore, if all
pixels is a region belong to the same chromatic line, the angle between each pixel
and the line Lpw must be the same, and the result of this angular measurement
is a constant for whole region. Our strategy is to normalize this measure in his
domain of de�nition (the RGB cube) and assume it as the constant luminosity
value V . This method is expressed with the equation:

V new(x) =
∠ (I(x),u)

arccos(ϑ)
(4.2)

where the denominator arccos(ϑ) is the normalization constant corresponding
to the maximum angle between the extreme chromatic lines of the RGB space
(red, green or blue axes) and the pure white line. Algorithm 4.2, shows a
Matlab/Scilab implementation of the method, where ϑ takes the value 1

3 and
arccos(ϑ) = 0.9553166.

4.3.3 Experimental Results

We present the results from three computational experiments. The �rst one
using a synthetic image and the remaining using natural images. Fig.4.6 dis-
plays the �rst experimental results. Fig.4.6a is the original image. Fig.4.6b is
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Algorithm 4.2 Regular Region Intensity

function IR = SF3(I)
Idi� = imDi�use(I); // look for the di�use component
new_intensity = angle(Idi�, [1 1 1]); // return a matrix of chromatic angles
Ihsv = rgb2hsv(Idi�);
Ihsv(:,:,3) = new_intensity; // assign the normalized angles as image intensity
IR = hsv2rgb(Ihsv);

endfunction

the di�use image obtained applying the method in [49]. Fig.4.6(c) is the re-
sult applying our proposed method in Fig.4.6(a). Fig.4.6(d) display the result
applying the method in Fig.4.6(b). It can be appreciated that our method is
able to identify the main chromatic regions even without component separation
(Fig.4.6c), with some artifact due to the bright re�ections. After removal of
these re�ections, the method has a very clean identi�cation of the chromatic
regions.

(a) (b)

(c) (d)

Figure 4.6: Synthetic image results (a) original image, (b) di�use component of
the image, (c) our method on image (a), our method on image (b).

For the next experiments we use natural images that have been used by other
researchers previously. The Fig. 4.7 and 4.1 show the experimental results. In
both cases the sub-�gure (a) has the original image, sub-�gure (b) shows the
di�use image, sub-�gure (c) displays the results applying our proposed method
to the original image (a), sub-�gure (d) show the results applying our method in
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(a) (b)

(c) (d)

Figure 4.7: Natural image results, (a) original image, (b) di�use component of
the image, (c) our method on image (a), our method on image (b).

the di�use image (b). In both experiments we can see a similar e�ect of applying
specular correction. The images (c) obtained without component separation,
show a better chromatic preservation, although with some degradation in the
regions corresponding to the specular brights. The images obtained after di�use
component identi�cation [49] are less sensitive to specular e�ects, however they
show some chromatic region oversegmentation. It is important to note that no
clustering process has been performed to obtain these images.
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(a) (b)

(c) (d)

Figure 4.8: Natural images, (a) original image, (b) di�use component of the
image, (c) our method on image (a), our method on image (b).

4.3.3.1 Work Conclusions

This work presents a color transformation that enables good visualization of
Color Constancies in the image, changing only the image luminosity and pre-
serving its chromaticity. The result is a new image with strong contrast between
chromatic homogeneous regions, and good visualization of these regions as uni-
form regions in the image. This method performs very well in dark regions,
which are critical for most CC methods and image segmentation based on color
clustering processes. The method could be the basis for such a process, applying
the clustering process to the chromaticity angle.

We have found that specular correction of the image improves the results on
highly specular regions of the image, however our approach performs well also
on images that have not been preprocessed.



CHAPTER 4. SPECULAR FREE IMAGES 57

4.4 Chapter Conclusions

SF images are a resourceful solution to overcome the noise aberration induced by
shines. Those straightforward transformations provides good results despite its
easiness. In both cases those transformations are based on the image saturation
and hue, hence in its chromaticity. The main di�erence between both methods
are the de�nition of the saturation; whereas �rst one trusts in the well-know
pseudo-norm of the saturation, second one improves it with an angular de�nition
of the saturation. This one has a physical support on the DRM, providing CC
properties.

SF image is a new topic in computer vision or image processing which can
help to solve task related with to avoid specular e�ects on images. We advocate
its application and further improvements.



Chapter 5

Gradients

This chapter correspond with the process 5 of the thesis �owchart and is outlined
as follow: Sec.5.1 discuss about the state of the art, Sec.5.2 presents the chapter
contribution and Sec.5.3 concludes with the contribution conclusion and chapter
conclusions.

5.1 State of the Art

Edge detection is a key step in most computer vision applications, on it depends
the successful of the application because it is one of the �rst steps, and the
�ability of following steps depend on it. The detection of edges provides a way
to �nd shapes in images. The knowledge about object boundaries is enough to
describe its shape, and hence it is equivalent to the detection of regions with
constant values. Edge is understood as a line whose neighbor pixels have a
signi�cant variation each others respect to its gray level, that is, respect to
the intensity. Speaking about edges we refers about signi�cant di�erences in a
neighborhood due to the scene features and not due to the noise. Edges are lines
whereas isolated points with strong di�erences in a neighborhood are referred
as edgels.

Images edges are studied respect to the gray image or image intensity. The
limited resolution of the imaging systems blurs the edges, the nonlinear sensor
and the electronic thermal noise disturbs on the task of �nd edges.

The principal method for edge detection is based on the Gradient Vector. It
is the application of the �rst derivative in a bidimensional space. This approach
gives the edge magnitude and direction, but generally in computer vision, the
direction is ignored (regarding to edge detection). Another well-known method
for edge detection is the Laplacian operator. It is a second-order derivative
operator, it is the addition of the derivation in all directions, and it is an isotropic
edge detector. A good use of these tools is using the magnitude of the gradient
vector as edge detector and using the sign of the Laplacian to determine if the
edge point belong to the dark side of the border or to the light side. There are

58
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some methods based on the Laplacian of the Gaussian these ones have biological
justi�cation in accordance with retinal cells structure.

It is signi�cantly more di�cult to analyze edges en multichannel images
(color images, multi-spectral and hyper-spectral images). The �rst idea detect-
ing edges on his kind of images is applying the gradient vector on each channel
and sum them. However in this case, the main drawback comes from that each
channel has di�erent information of the image, then in a point the gradient could
have di�erent directions at each channel and the sum of all channels could be 0.
To overcome this shortcoming, can be used S = JTJ where J is the Jacobian
matrix and S is a diagonal matrix. If only one member of S is non-zero, then
is is called a perfect edge and it gives de direction of the variation. However,
usually this diagonal matrix has more members bigger than zero, as a conse-
quence of the noise. The trace of S measures the edge strength. A good review
of edges is shown in [63] where these topics are more deeply explained.

In the literature we can �nd some well-known methods based on he �rst
derivative like Sobel [64] and Prewitt [65] that are performed by convolution
masks. Canny [66] has the property to avoid edgels, therefore all line edges are
connected. Canny is an algorithm which uses the direction of the gradient vector
to �nd the nearest edge point, then the output is compound by convex regions,
whereas Sobel and Prewitt approached follows the mathematical de�nition of
gradient but these ones not use the gradient direction. Sobel and Prewitt need
a threshold to decide whether a point is a edge or not.

Roberts operator [67] was one of the �rst contributions on edge detection,
it marks only the edge points without their direction. This operator is too
fast and has good results when working with binary images. Kirsch masks
[68] also known as 'compass' because they are de�ned by using a simple mask
and rotating in the eight main directions (North, Northwest, West, Southwest,
South, Southeast, East and Northeast). Robinson masks [69] follow the same
compass idea but in this case by using one of the Sobel masks. These aforegoing
methods are performed in the eight neighborhood but they could be extended
easily to a bigger neighborhood like 5x5, 7x7, and then.

Now a days, edge detection keeps as an active research topic. Watershed
technique [70, 71, 72] has not physical support, it has a topographic inspiration.
We'll see a deep insight on watershed in the next chapter. These topological
technics have an important contribution in image segmentation, where for ex-
ample Ségonne[73] presents a novel framework to exert topology control over a
level set evolution. It is an active contour which works in a three dimensional
space and have excellent results in medical image segmentation. Respect to
the evolution of the traditional gradients, McIlhagga [74] discuss about Canny's
work. He improves it solving two problems. First, he provides a more accurate
localization criterion, and second, the width of the optimal detector is limited
by considering the e�ect of the neighboring edges in the image.
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5.1.1 Chromatic Gradients

A common feature of all gradients explained in previous section, is the lack of
chromatic information. That is, all these gradients works within gray scale.
We advocate color is an important descriptor and we must take pro�t of all
information; intensity and chromaticity too. In fact, all gradients which works
only with intensity can not detect a lot of chromatic edges, because for each
color to intensity transformation exist in�nite colors with identical intensity.
Firstly we focus in chromatic gradient because chromaticity is independent of
the intensity and therefore of the surface geometry having invariance respect to
the illumination. This is one of the desired goals for optimal image segmentation.

Next section presents an image color gradient which preserves color con-
stancy [75].
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5.2 An Image Color Gradient preserving Color

Constancy

This work presents a color gradient with good color constancy preservation
properties. The approach does not need a priori information or changes in color
space. It is based on the angular distance between pixel color representations
in the RGB space. It is naturally invariant to intensity magnitude, implying
high robustness against bright spots produced be specular re�ections and dark
regions of low intensity.

Color constancy (CC) is fundamental problem in arti�cial vision [18, 46, 76],
and it has been the subject of neuropsicological research [13], it can be very in-
�uential in Color Clustering processes [47, 77, 78]. In the arti�cial vision frame-
work, CC assumes some color space, the illumination chromaticity estimation
[51, 18] and the separation of di�use and specular image components [58, 54, 50].

In this work, we assume a physical interpretation of the image re�ectance and
its behavior in the RGB space. We use polar coordinates to specify points in the
RGB space, because we will be interested in the zenithal φ and azimuthal angles
θ, because the characterize the chromatic component of the RGB point. We are
looking for color image edge detection under a CC constraint and founded on
DRM.

5.2.1 Dichromatic Re�ection Model

From the DRM we can deduce some interesting features of the distribution of the
pixels in the RGB cube. In Fig. 5.1 we illustrate the main expected e�ects for a
single color image (disregarding the black background) with a bright spot due to
the illumination source. According to DRM we need to know only two colors: D
corresponding to the observed surface and S corresponding to the illumination
source. Drawing a line in the RGB cube passing over these colors and the RGB
origin (black), we obtain two chromatic lines Ld and Ls, respectively. These two
lines de�ne a chromatic plane in RGB illustrated as the stripped region in Fig.
5.1a. All the image pixels must fall in this plane, discounting additive Gaussian
noise perturbations, according to DRM equation ?? for image colors D and S.
Looking to the image pixel distribution inside the chromatic plane, we obtain
the plot in Fig. 5.1b, whose axes are the chromatic lines Ld and Ls. We have
that non-specular pixels fall close to the di�use line Ld, while specular pixels go
away from the origin and the di�use line parallel to the specular line Ls. There
is an intensity threshold for the pixels having a signi�cative specular component
(ms(x) >> 0 ). This threshold is the albedo of the material in the scene. For
intensities greater than the albedo, pixels fall away from the Ld di�use line along
the direction of Ls.

Fig.5.2 shows the pixel distribution for a synthetic image. The RGB cube
plot in 5.2(b) shows the pixel RGB color distribution of the image 5.2(a). These
images con�rm our previous discussion, for a case of a single color object in
the image. When there are more than one color in the image, we can expect
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(a) (b)

Figure 5.1: Expected distribution of the pixels in the RGB cube according to
DRM for a single color image.

several di�use lines, so that the we can base our image segmentation on this
observation. All these lines cross the RGB origin, therefore the pixel polar
coordinates of di�use pixels contain much information relative to underlying
re�ectance regions.

(a) (b)

Figure 5.2: Distribution of pixels in the RGB space

For an scene with several surface colors, the DRM equation assumes that the
di�use component may vary spatially: I(x) = md(x)D(x) +ms(x)S. However,
the specular component is space invariant in both cases, because the illumination
is constant for all the scene. Finally, assuming several illumination colors we
have the most general DRM I(x) = md(x)D(x) +ms(x)S(x) where the surface
and illumination chromaticity are space variant.

5.2.2 Color Constancy in the RGB Space

The CC is the mental ability to identify chromatically homogeneous surfaces
under illumination changes. This mental ability is still an open neupsicological
research topic [10]. The CC property is inversely proportional to the color
discontinuity represented by the color edges (CE). In essence, given a chromatic
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image gradient, low intensity gradient magnitude corresponds to CC and high
magnitude to CE. In the HSI and HSV color spaces, chromaticity is identi�ed
with the pair (H, S) and the I or V variable represents the intensity. We have
observed that chromaticity in the RGB space is characterized by a straight
line crossing the RGB space's origin, determined by the φ and θ angles of the
polar coordinates of the points over the line, by plotting on the RGB space
a collection of color points that have constant HS components and variable
intensity I component. The plot of the pixels in a chromatically uniform image
region appear as straight line in the RGB space. We denote Ld this di�use line.
If the image has surface re�ection bright spots, the plot of the pixels in these
regions appear as another line Ls intersecting Ld.

For di�use pixels (those with a small specular weight ms(x)) the zenithal
φ and azimuthal θ angles are almost constant, while they are changing for
specular pixels, and dramatically changing among di�use pixels belonging to
di�erent color regions. Therefore, the angle between the vectors representing two
neighboring pixels Ip and Iq, denoted ∠ (Ip, Iq), re�ects the chromatic variation.
For two pixels in the same chromatic regions, this angle is ∠(Ip, Iq) = 0 because
they will be collinear in RGB space.

5.2.3 Gradient Operators

The notion of CC is closely related to the response to the gradient operators
[17]. Regions of constant color must have low gradient response, while color
edges must have a strong gradient response. To set the stage for our chromatic
gradient proposition, we must recall the de�nition of the image gradient

G[I(i, j)] =

[
Gi
Gj

]
=

[ ∂
∂iI(i, j)
∂
∂j I(i, j)

]
, (5.1)

where f(i, j) is the image function at pixel (i, j). For edge detection, the usual
convention is to examine the gradient magnitude:

G (I) = |Gi|+ |Gj |. (5.2)

For color images, the basic approach to perform edge detection is to drop all
color information, computing the intensity Intensity = (Red+Green+Blue)/3
(sometimes computed as Intensity = .2989 ∗Red+ .587 ∗Green+ .114 ∗Blue),
and then convolve the intensity image with a pair of high-pass convolution
kernels to obtain the gradient components and gradient magnitude. The most
popular edge detectors are the Sobel and the Prewitt detectors, illustrated in
Fig.5.3 because we will build our own operators following a similar pattern
structure. To take into account color information, the easiest approach is to
apply the gradient operators to each color band image and to combine the results
afterwards: G(I) = [G(Ir)+G(Ig)+G(Ib)]/3 . Fig.5.4 illustrates these ideas. It
can be appreciate how the gradient magnitude ampli�es noise on one hand when
we combine the color band gradient magnitudes, and how the color edge is not
detected by the edge operator applied to the intensity image, because the two
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Figure 5.3: Convolution kernels for the (a) Sobel and (b) Prewitt edge detection
operators.

(a) (b)

(c) (d)

Figure 5.4: (a) Original synthetic RGB image, (b) Intensity image, (c) Gradient
magnitude computed on the intensity image, (d) gradient magnitude combining
the gradient magnitudes of each color band

color regions have quite near intensity values. The edge magnitude computed by
the straightforward approaches is also misled by the specular surface re�ections,
which highlighted as can be appreciated in Fig.5.4(d).

5.2.4 Proposed Method

We �rst discuss how do we build a distance between color pixel values which
preserves chromatic coherence and, thus, color consistency. Then we formulate
the gradient operators which are consistent with this color distance.
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5.2.5 A chromatic coherent RGB pixels distance

First, we convert the RGB Cartesian coordinates of each pixel to spherical co-
ordinates, with the black color as the RGB space origin. Let us denote the

Cartesian coordinate image as I =
{

(r, g, b)p ; p ∈ N2
}
and the spherical coor-

dinate as P =
{

(φ, θ, l)p; p ∈ N2
}
, where p denotes the pixel position. In this

second expression, we discard the l because it does not contain chromatic infor-
mation. For a pair of image pixels p and q, the color distance between them is
de�ned as:

∠(Pp, Pq) =

√
(θq − θp)2

+ (φq − φp)2
, (5.3)

that is, the color distance corresponds to the euclidean distance of the Azimuth
and Zenith angles of the pixel's RGB color polar representation. This distance is
not in�uenced by the intensity and, thus, will be robust against specular surface
re�ections.

5.2.6 Chromatic coherent gradient operators

We will formulate a pair of Prewitt-like gradient convolution operations on the
basis of the above distant. Note that the ∠(Pp, Pq) distance is always positive.
Note also that the process is non linear, so we can not express it by convolution
kernels. The row convolution is de�ned as

CGR (P (i, j)) =

1∑
r=−1

∠ (P (i− r, j + 1) , P (i− r, j − 1)) ,

and the column convolution is de�ned as

CGC (P (i, j)) =

1∑
c=−1

∠ (P (i+ 1, j − c) , P (i− 1, j − c)) ,

so that the color distance between pixels substitutes the intensity subtraction
of the Prewitt linear operator. The color gradient image is computed as:

CG(P ) = CGR (P ) + CGC (P ) (5.4)

5.2.7 Experimental Results

To demonstrate the e�ciency of our proposed approach, we will show three
experimental results. Two of the experiments are done on synthetic images
whose ground truth is know.

Fig.5.5 contains two synthetic images Fig.5.5(a) and 5.5(b) which are chro-
matically identical. The image in Fig. 5.5(a) hs constant intensity inside each
color region, while the image in Fig.5.5(b) contains a central square with lower
intensity (0.8), preserving the chromatic content of Fig. 5.5(a). Applying the
Prewitt operator to each color band of Fig.5.5(b) we obtain the detection shown
in Fig.5.5(c), while applying our color edge detection of Eq.5.4 we obtain the
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(a) (b)

(c) (d)

Figure 5.5: Results of the color edge detection on a synthetic image with nine
uniform chromatic regions and a variation of intensity. (a) Original color distri-
bution, (b) lower intensity central square, (c) Prewitt detection on RGB bands,
(c) our approach in equation (5.4).

detection in Fig.5.5(d). It is clear that our approach has superior CC properties
and an improved intensity invariant detection of color edges.

The second computational experiment was performed on the image shown
in Fig.5.4(a). This image has a strong specular re�ection region, and two color
regions with a black background. We have tested a Sobel like and a Prewitt
like variation of the basic schema of Eq.5.4. The Fig.5.6 gives the results of the
RGB band combined detection and our approach. It can be appreciated that
our approach discovers the edge even in very dark areas, it is also robust against
specular re�ections, which the linear operators do confound with color edges.
The color edge between the two regions is better detected in both cases by our
approach.

Final results are given on a natural image, shown in Fig.5.7. This image con-
tains many color regions, with specular re�ections, shadows and light e�ects.
Fig.5.8 shows the results of the linear operators based on the Sobel and Prewitt
masks. Besides the lower response of the Prewitt operator, it can be appreciated
the high sensitivity to specular re�ections and low color constancy. All bright
spots are interpreted as color edges. In the Fig.5.9 we show the results of our
approach under two variations of the neighborhood considered. The 4 neighbor-
hood follows the same pattern of Eq.5.4 but over a reduced set of neighboring
pixels. Again our approach is very robust against specular re�ectance. Bright
spots do not appear to be detected. Dark regions of the image are equalized
in their results relative to brighter regions. A very signi�cative result is the
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(a) (b)
Sobel

(c) (d)
Prewitt

Figure 5.6: Color edge on the synthetic image of Fig.5.4(a) with two color
regions. (a) The Sobel operator over the RGB bands with specular component,
(b) our approach in a Sobel-like structure, (c) the Prewitt linear operator, (d)
our approach in a Prewitt like structure.
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Figure 5.7: Natural image

detection of color edges even in the almost black background. A drawback that
appears in our approach is the high spurious detection in the black background.
This is due to the high angular variations induced by noise. It could be avoided
by a simple intensity thresholding.

5.3 Work and Chapter Conclusions

This chapter has only one contribution where we have presented an innovative
chromatic gradient computation, which is chromatically coherent, preserves the
Color Constancy and gives good detection of Color Edges. The method is
grounded in the DRM which is a widely accepted image model for re�ectance
analysis. The method is intensity invariant, and, thus, is robust against the
bright spots of specular re�ections. It does not imply or need color segmentation,
on the contrary can provide good color region separation with little assumptions.
It works on the RGB space, which the most common color processing space.
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(a) (b)

Figure 5.8: Results of the linear operators on the natural image (a) Sobel de-
tector, (b) Prewitt detector

(a) (b)

Figure 5.9: Results of our approach on the natural image (a) taking 8 neighbors,
(b) taking 4 neighbors



Chapter 6

Segmentation

This chapter corresponds with the process 6 and 7 of the thesis �owchart and
it has two contributions; Sec.6.4 presents a segmentation method which follows
a region growing strategy, whereas in Sec.6.5 presents a segmentation method
based on watershed. Previously to these contributions, Sec.6.1 de�nes segmenta-
tion, Sec.6.2 present a state of the art, Sec.6.3 talks about the main segmentation
problems and we'll �nish this chapter with the Sec.6.6 where we summarize this
chapter.

6.1 Image Segmentation

Image segmentation is one of the foremost topics in image processing and in
computer vision. It is the �rst step in a large number of computer vision sys-
tems. The whole system performance may be dependent on the segmentation
results. Unfortunately previous gradient detectors are not enough for image
segmentation due to not exist an universal edge detector based on gradients.
Popular instances of segmentation methods for color images proposed in the lit-
erature are based on watershed transform [79, 80, 72, 71, 70], and on clustering
procedures [81, 82, 78, 83].

Image segmentation can be de�ned as a process which de�nes a partition of
the image domain F according to some pixel property [84, 85]: If P (x) is some
homogeneity predicate de�ned on groups of connected pixels, then the image
segmentation is a partition of the set F into connected regions (S1, S2, ..., Sn)
such that

⋃n
i=1 Si = F with ∀i 6= j, Si ∩ Sj = ∅, and each pixel in a region

ful�lls the same property, i.e. ∀x, y ∈ Si;P (x) = P (y).
In other words, image segmentation is the process by which the input image

is divided in regions following some criterion, and the union of all these regions
gives the input image.

70
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6.2 State of the Art

The segmentation task can be carried out by two di�erent ways; �rst one, by
clustering technics within the color space (or gray level) then, some sets could
be disjoint into the image domain. The other way is having in account the pixel
neighborhood, in this case the algorithm works in the image domain. The �rst
one is referred as pixel based segmentation and the second one is refereed as
region based segmentation.

In color images, pixel based segmentation have been widely performed by
the c-means algorithm [83, 86]. There are three major di�culties in this way:
(1) determining the optimal number of clusters to be created, (2) choosing the
initial cluster centroids, and (3) handling data characterized by variabilities in
cluster shape, cluster density, and the number of points in di�erent clusters.
Usually, the two �rst ones problems are solved by user speci�cation whereas
the third one is application dependent. There are some improvements. Dae-
Won [86] proposes an automatic initialization of the fuzzy c-means for color
clustering (1 and 2 points) however, the third point is de�ned by the user, it is
the color space where the author advocate by the CIElab. More recently, the
same idea has been applied on hypersptectral images [83], where pixel feature
is de�ned by its hyperspectral signature. In both cases, the shortcoming is the
absolute dependence with the color space, spectral signature for hyperspectral
images or the strategy for dimensional reduction in the second case. In fact,
only by changing the color space or the method for dimensionality reduction, the
results are going to be di�erent. This drawback comes from the distance used
in c-means, usually the euclidean distance. In this way, Oussalah[87] de�nes the
distance in terms of divergence distance, which builds a bridge to the notion
of probabilistic distance. A good idea for image segmentation, is to have in
account a pixel distance and the neighborhood, like in [88] where for clustering
uses c-means and for the neighborhood Random Markov Fields.

Mathematical morphology (MM) belong to the region based segmentation
methods and it is growing up regard to image segmentation. It is the application
of lattice theory [89, 90, 91]. First introduced as a shape based tool for binary
images, MM has become a powerful non-linear image analysis technique with
operators for image segmentation, image �ltering and extraction of features in
binary or gray-scale images. The de�nition of morphological operators is based
in a totally ordered complete lattice structure: each element in a set is ordered
without uncertain, in other words, for whatever two elements in a lattice, we can
determine if they are equals or one is bigger than the other one. Here, one more
time, despite it works with the pixel neighborhood, we have the drawback of
the pixel based segmentation methods; the di�cult task to determine a correct
distance and the dependence of the color space. Like in the aforementioned
clustering strategies, changing the color space or the method for dimensionality
reduction, the results are going to be di�erent. Hanbury [92, 93, 94] presents
a work of MM for the CIElab and HSL color spaces, where at last he present
IHSL color space. Angulo [95] applies this technics extracting information from
cartographic images.
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Watershed algorithm is de�ned within the MM methods, therefore it is a
region based segmentation method. It was introduced by Beucher [70] three
decades ago. This algorithm has a topological inspiration, it takes a gray-scale
image as a topological surface and after a �ooding process after a �ooding
process, each region is a catchment basin. The widely used gray-scale image is
the gradient image, therefore, watershed algorithm �nd the regions based in a
edge image. This original algorithm has done some improvements. For example,
this algorithm is based on the gradient image, therefore depending of the used
gradient we are going to obtain di�erent results. In this way, Wang [96] proposes
a multiescale gradient for watershed, he uses morphological gradient and try to
avoid the over-segmentation detecting isolated minimal local. In fact, this one
is the main drawback of the watershed transformation, the over-segmentation.
To avoid over-segmentation, a solution comes by applying a �region merging�
process. There are some interesting solutions too in the literature, like Dagher
[97] who presents Waterballoons. Waterballoons is a mixture of �balloon snakes�
and watershed; on each minimal of the gradient image an active contour is
initialized, now, the �ooding process is replaced by a growing up of the snakes
(like balloons). This strategy helps to avoid isolated little regions, like points,
which can suppose that they are a noise consequence. Other improvements of
the standard watershed are focused on the speed-up. An original idea is to apply
a raining simulation instead of the �ooding process [79]. This strategy helps to
�nd in a faster manner the edges. The key idea to sort the computational cost
is by optimizing the algorithm in the neighborhood looking for shorter paths
[80, 71].

For whatever used algorithm, one of the more di�cult task is the evaluation
of the method. To design a good measure for segmentation quality is a known
hard problem. Each person has di�erent idea of segmentation and di�erent
applications may function better using di�erent segmentations, while the criteria
of a good segmentation are often application-dependent. A good review of
measures for the validation of segmentation process is done by H. Zhang [98]
where a interesting feature is the lack of measures for color images and multi or
hyperspectral images.

6.3 Main Segmentation Problems

There are four main sources of problems in image segmentation: illumination,
noise, edge ambiguity and computational cost. In this section we discuss those
topics, o�ering some ideas about how our segmentation algorithm addresses
these problems.

Illumination in real environments: both real and arti�cial illumination sources
introduce some important problems in image understanding. Because of shines
or shadows, both depending on the illuminant position, a surface of a scene can
produce a lot of di�erent image perceptions. In digital image processing, it is
very usual to assume a uniform chromatic illumination because it makes easier
to deal with the problems derived from the illumination. Our approach works
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on a chromatic representation derived from a spherical coordinate interpreta-
tion of the RGB color space which is rather insensitive to achromatic variations
in the image pixel colors. That means that we avoid shines introducing falsely
detected regions. Dark image regions, such as object shadows, are character-
ized by the fact that small pixel color perturbations introduce strong chromatic
shifts. Therefore, the chromatic representation is useless in these regions. Imi-
tating the human vision system (HVS), we shift our computation of pixel color
distance to a grayscale representation in such dark regions.

Noise: there are two main sources of image noise, introduced, on one hand,
by thermal noise of the camera and robot motion, and, on the other hand, by
lossy compression algorithms. The chromatic representation is rather insensitive
to additive noise in high intensity regions. However, it is very sensitive to it in
dark image regions. The proposed compound hybrid distance is robust in all
cases.

Edge ambiguity: The proposed segmentation algorithm is region-oriented,
therefore edge detection is obtained indirectly as the boundaries between de-
tected regions. An edge appears where two neighboring pixels have di�erent
properties. Therefore, any edge detector is always based on the de�nition of a
distance between pixel properties. If this distance is bigger than a given thresh-
old, we can declare that there is an edge between the pixels, otherwise they
belong to the same region. A chromatic representation helps to avoid spurious
edge detection due to shines. Usually shines modify color in a neighborhood
slowly whereas in true boundaries between surfaces the chromatic information
changes dramatically.

Computing time: Most image segmentation methods are not designed with
real time applications in mind, therefore they have high computational costs.
However, for some applications like robotics, computing time is critical because
these applications have to run in real time. Our algorithm performs only one-
pass over the image, processing each pixel only once. The order of pixel process-
ing is row-wise therefore we use the 4-WN neighborhood for pixel processing.
The algorithm implementation that we have published does obtains real-time
performance on o�-the-shelf personal computers for small images.

In this chapter we present two contributions; �rst one works in a 4-NW
neighborhood in order to obtain a good speed-up whereas the second one follows
watershed strategy. Both contributions works with spherical coordinates taking
pro�t of colorimetric properties of this approach and avoid strict dependence
of the euclidean RGB representation. Finally both segmentations has a human
validation of the results.
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6.4 Image Segmentation on the Spherical Coor-

dinate Representation of the RGB Color Space

This work presents an image segmentation algorithm working on the spherical
interpretation of the RGB color space. The algorithm uses a hybrid chromatic
distance inspired in the human vision system (HVS) that shifts its emphasis
from the chromatic to the grayscale distance depending on the pixel's lumi-
nance value. For dark areas, the chromatic distance is too much sensitive and
the gray scale distance is used instead. Color constancy properties of this seg-
mentation can be easily deduced from the dichromatic re�ection model (DRM).
The segmentation doesn't need preprocessing steps, such as illuminant source
color estimation. The approach is strongly robust regarding shines and dark
spots, and it is amenable to work in real time on a robotic platform. We give
results on benchmark databases and robot camera images. A public implemen-
tation is made available for independent test of the algorithm image segmenta-
tion results. Following the segmentation de�nition done in Sec.6.1, we assign
one region label to each and all image pixels, where each label corresponds to
a connected region characterized by a chromaticity vector, which is computed
along with the segmentation. Therefore, two separated regions with the same
chromatic representation will have two di�erent labels. The algorithm's out-
put are a bi-dimensional matrix of integer labels and a bidimensional matrix of
chromatic vectors corresponding to the identi�ed image regions.

This work introduces a new hybrid distance to measure the similarity be-
tween pixel colors, which is used in a one-pass pixel region labeling algorithm.
This hybrid distance is a mixture of an intensity di�erence and a chromatic dis-
tance based on the spherical representation of the RGB color space, inspired in
the sensitivity of the HVS. Its de�nition allows to parameterize the algorithm's
noise tolerance, and to tune it for optimal color edge detection. Furthermore, it
is easy to see that the chromatic component of this distance has some inherent
color constancy, analyzing its behavior under the dichromatic re�ection model
(DRM). The labeling algorithm uses only the four north-west (4-NW) topolog-
ical neighbors of the current pixel, because it process each pixel onces and does
not perform relaxation processes. According to [85] �the image segmentation
problem is basically one of psycho-physical perception, and therefore not sus-
ceptible to a purely analytical solution�. The parameters of the mixture of the
hybrid distance allow a �ne tuning of the algorithm to the characteristics of the
image being segmented.

To allow for users to test our algorithm we make available1 a C# implemen-
tation, using Emgu 2 running on windows platforms.

1http://www.ehu.es/ccwintco/index.php/Hybrid_Image_Segmentation. In the sources,
the method name corresponding with this paper is �fastSegmentation2�

2http://www.emgu.com/wiki/index.php/Main_Page
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6.4.1 The Chromatic Distance

Image segmentation detect an edge between two neighboring pixels when they
have di�erent color properties [96]. The simplest edge detectors are based on
spatial gradients of the image intensity, i.e. the Sobel or Prewitt convolution
kernels. These approaches ignore the chromatic information leading to poor
color edge detection. To improve this approach, the convolution masks can be
extended to color representations using hybrid distances [55]. The core of all
edge detection methods is the de�nition of an appropriate distance between
pixel colors.

According to the DRM model presented in section ??, the di�use component
is expressed by the angular components (θ, φ), which are almost constant in
regions with homogeneous chromatic properties, and it is independent of the
luminosity component, therefore independent of the illumination assuming an
uniform chromatic illumination. If we use only the di�use component for edge
detection, black-white borders may be undetected because both colors belong
to the same achromatic line, and hence they have the same chromaticity. On
the other hand it is important to avoid the e�ect of shines, because they do
not correspond to a true surface. Fig.6.1 illustrates the problem of false image
regions in the image due to shines that do not correspond to real objects in the
scene.

Figure 6.1: Image with shines

Fortunately, some di�erences exist between edge features due to shines and
due to boundaries between di�use color surfaces. When two surface regions of
di�erent chromatic properties are adjacent, this chromatic di�erence is clear and
detectable measuring the di�erence on the zenithal and azimuthal angles of the
spherical representation of pixel colors. In the shines, the chromaticity of pixels
changes smoothly, o�ering the opportunity to �lter the false detection setting
a threshold on the chromatic distance based on the di�use color component
. For the human vision the main di�culty is to detect a color accurately in
dark regions. In fact, chromaticity in dark regions is very unstable because
it ampli�es small color perturbations due to noise. According to the HVS,
in regions with poor illumination it is more appropriate to use the luminance
component. In the human eye's retina we have two kind of photoreceptor cells;
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Figure 6.2: Chromatic activation function α(x)

rods and cones. The �rst one is an luminance detector and the other one is a
chromatic detector. Both need di�erent energy for his activation. Rods need
few energy for its activation, for this reason under poor illumination human
vision becomes grayscale. Cones needs more energy, for this reason color are
detected only with a good illumination.

Fig.6.2 shows the activation function α (x) of the chromatic distance com-
ponent of the proposed hybrid distance. For luminance values below a, the
chromatic component of the distance is inactive, for intensity values in the in-
terval [a, b], we smoothly change the contribution of the chromatic component
of the hybrid distance from zero to its maximum c ≤ 1 according to a sinusoidal
function. Finally, for intensity values above b its contribution is always c. The
three parameters a, b, c are in the range [0, 1].

The function α(x) depends of the image intensity. The below Eq.6.1 is the
mathematical expression of α(x) :

α(x) =


0 x ≤ a
c
2 + c

2 cos
(

(x−a)·π
b−a + π

)
a < x < b

c x ≥ b
(6.1)

We can de�ne a hybrid distance between the color of two pixels p, q as follows:

dH(p, q) =

(
1− α

(
lp + lq

2

))
·dI(p, q) + α

(
lp + lq

2

)
· dC(p, q) (6.2)

where lp, lq are the intensity l in spherical coordinates of the pixels p and q
respectively. dI is a grayscale intensity distance computed as dI(p, q) = |lp− lq|
and dC is a chromatic distance computed as

dC(p, q) =

√
(θq − θp)2

+ (φq − φp)2
. (6.3)

The foregoing Eq.6.2 follows a HVS inspiration, where the �rst term express
the behavior of the rod retinal cells which are sensitive to intensity. They need
few energy for its activation. On the other hand, the second term express the
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Figure 6.3: 4-WN Neighbors of pixel site x.

behavior of cone retinal cells which can detect chromaticity. They need more
energy for its activation. Alfa function depends of the image intensity and the
intensity of two pixels is the mean of both.

6.4.2 Proposed Segmentation Method

The segmentation method proposed in this section combines the spherical inter-
pretation of the RGB space and the aforegoing hybrid distance expressed in the
Eq.6.2. Edge detection can be accomplished using a threshold on the distance
between pixels. In order to decrease the computing time, we use a 4-WN neigh-
borhood as illustrated in Fig.6.3. This structure allows to obtain acceptable
results processing only once each pixel. This method travels over the image by
rows, hence along the computing the 4-WN neighbors are always labeled. Our
segmentation method is explained by the following algorithm .

6.4.3 Algorithm

This algorithm returns a bi-dimensional integer matrix where each label is an
integer. While performing the computation, we also need a structure that relates
each label with a chromaticity and the amount of pixels labeled with it. That
is necessary because each time that we assign a new pixel to a label we must
actualize the chromaticity of this label, the chromaticity of a label is the mean
chromaticity of all pixels labeled with it.

The most important parameter for this algorithm is the threshold δ. The
granularity and the noise tolerance depends on it. For small threshold values
we will obtain a lot of regions, and, conversely, with a high value we obtain
big coarser regions. On the other hand, the parameters a, b, c of Eq.6.2 allow
to tune the hybrid distance . If b = 0 and c = 1 it becomes a pure chromatic
distance. If a = 1 it becomes a pure intensity distance. In any other cases it is
a hybrid distance.

The algorithm 6.1 gives the details of our method. In this algorithm L (x)
denotes the region label of pixel x, L4 (x) denotes the set of labels of the 4-
WN neighbors of pixel x, that can be expressed as L4(x) =

⋃
x′∈N4(x) L (x′),

where N4 (x) the 4-WN neighborhood of pixel x illustrated in Fig.6.3. The
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algorithm may be applied to any color image Ω (x) represented in RGB spherical
coordinates. It needs the speci�cation of the distance dH (x, y) that gives a
measure of the similarity between pixel colors Ω (x) and Ω (y). We build a map
Ψ` = (θ`, φ`) assigning to region labeled ` a chromatic value. We denote R` the
current set of pixels labeled in region `, R` = {x s.t. L (x) = `}, the number of
pixels in a region is its cardinality |R`|. Function newlabel creates a new region
label. Function merge (`1, . . . , `n) creates the union of the regions R`1∪ . . .∪R`n
relabeling pixels accordingly with label `, �nally, merge returns the new label.
The chromatic distance of Eq. (6.3) is extended to the chromatic representation
of two regions of labels `1 and `2 as follows:

dC(`1, `2) =

√
(θ`1 − θ`2)

2
+ (φ`1 − φ`2)

2
. (6.4)

Algorithm 6.1 Image Segmentation Algorithm

Input: Ω (x) the color image in spherical coordinates
Threshold δ, distance parameters values a, b, c

-Initialize the pixel labels ∀x;L (x) = Ø
-The �rst region is composed of the �rst pixel x0 = (0, 0): L (x0) = newlabel.
The region chromaticity is that of the �rst pixel ΨL(x0) = Ψ (x0) .
for each x do

if L4 (x) = {`} /there is only one region label in N4 (x)/

d← min {dH(x, y) |y ∈ N4 (x)}
if d < δ /some neighbor's color is similar enough/

L(x) = `; /assign region label/

Ψ` = 1
|R`|

∑
y∈R`

Ψ (y) /update region label chromaticity representation/

else
L (x) = newlabel. /create a new region label/

ΨL(x) = Ψ (x) . /update region label chromaticity/

else

D ← {dC(L(y), L(z)) |y, z ∈ N4 (x) &L (y) 6= L (z)}
if min(D) < δ

L (x) = merge (L4 (x)) /create region fusion label /

ΨL(x) = 1

|RL(x)|
∑
y∈RL(x)

Ψ (y) /update region chromaticity rep./

else /regions can not be merged/

d← min {dH(x, y) |y ∈ N4 (x)}
if d < δ /assign to region with the lower chromatic distance/

L(x) = L (y) s.t. dH(x, y) = d;
ΨL(x) = 1

|RL(x)|
∑
y∈RL(x)

Ψ (y) /update region chromaticity repre-

sentation/

else /current pixel can not be assigned to existing regions/

L (x) = newlabel. /create a new region label/

ΨL(x) = Ψ (x) . /update region label chromaticity/

end for
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6.4.3.1 Experimental results

In this section we present some computational results of the algorithm described
in section 6.4.3. The algorithm parameter values were: δ = 0.02, a = 0.2, b = 0.4
and c = 0.5. With these values for the dark regions (intensity less than .2) we
use only the intensity distance, whereas for pixels with an intensity greater than
.4 we use a hybrid distance where intensity and chromaticity have the same
importance. In order to validate our approach, we have tested the proposed
algorithm �rstly with the well-known Berkeley database [99], and, secondly, with
images obtained from the camera of a real robot Nao, Aldebaran Robotics, Paris,
because we have developed the algorithm with robotic applications in mind. The
main features of the images taken by the robot on-board camera are, �rstly, the
low signal to noise ratio, due to the poor quality of this cameras and, secondly,
the appearance of many shines in the images due to illumination sources of
the real environment where the robot is working. For a visual assessment of
the results, the output images are pictured using the mean color image of each
region.

6.4.3.2 Results on the Berkeley database

Fig.6.4 shows the segmentation results on some images from the Berkeley im-
age database [99]. The �rst row show original pictures as provided with the
database. The second row shows segmentation results using the chromatic dis-
tance of Eq.6.3. We present results using the hybrid distance of Eq.6.2 in the
third row. Comparison of images in those rows show the improvement obtained
using the hybrid distance, obtaining more natural segmentations, specially in
shadowy regions, like the tree or the sky in the right-most image. Smooth re-
gions in the images are identi�ed as homogeneous regions despite small color
�uctuations and brightness. The fourth row shows the edges between regions
identi�ed in the images of the third row. Finally, the last row shows the hu-
man segmentation provided with the Berkeley data-set. Comparison between
these edge images must take into account that the human edge delineation is
an idealization of the actual image, drawing regions whose identi�cation in-
volve semantic processing of the image. Nevertheless, our approach captures
most of the salient image partitions. Small detail edges appear in regions with
randomized textures such as the tree, forest or rocky soil. Notice that in the
chromatic images of the third row this over-segmentation is less apparent, sug-
gesting that post-processing the chromatic segmentation image those textures
could be removed if desired. Smooth regions, like the river in the left-most im-
age or the wave in the surf image are identi�ed quite closely to the hand made
edge delineations, minimizing spurious detection due to shines.

6.4.3.3 Results on NAO's camera images

The images obtained from the Nao robot's camera are characterized by strong
illumination e�ects and high noise ratios due to the poor camera quality and
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Figure 6.4: Segmentation of Berkeley data-set images using the chromatic
distance of Eq.6.3 (second row) and the proposed hybrid distance (third row)
of Eq.6.3
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robot motion. In Fig.7 we show the segmentation results for some original im-
ages. The left column shows the original images. The middle column shows the
color region segmentations, and the right column shows the edges between iden-
ti�ed regions. The most salient feature of the segmentation results obtained on
these images is that most of the shines on the �oor are not identi�ed as distinct
image regions and the object shadows are ignored as well. All the segmented
regions correspond to actual objects in the scene. For robotic applications, this
robustness may be critical for task accomplishment. Although it was not the
main goal of our work at this point, to obtain real time performance (of the or-
der of 50 milliseconds per image) we downsampled the images to 80× 60 pixels.
This experiment has been carried out in a laptop with a processor Intel Core i3
M330 with 4GB of memory. The code has been written in C#.

6.4.4 Conclusions

In this work we have presented a novel image region segmentation method, with
the following features: (a) It is a one-pass method which can achieve real time
performance for small images. (b) It doesn't need an image preprocessing for
edge detection contrary to other approaches. (c) It is grounded in the dichro-
matic re�ection model and, therefore, it has a physical modeling support. (d) It
uses a hybrid distance inspired in the HVS whose parameters can be tuned to op-
timize segmentation for di�erent image conditions. (e) It avoids spurious region
detection due to shines produced by illumination, detecting color edges with a
physical interpretation as boundaries of surfaces with di�erent re�ectances.

Even thought the returned label matrix is the desired image segmentation
information, we maintain that the chromatic information is also important for
further processes. A region label is associated with a chromaticity value which
must be close to the true chromatic characterization of the imaged surface.
This chromatic information is a photometric invariant, which will be used in
future works to implement new algorithms for visual saliency and unsupervised
learning of objects.

Regarding real-time performance, current experiments on the NAO robot
o�-loading the image segmentation to an auxiliary workstation give real-time
responses for small image frames (20 frame/second).
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Figure 6.5: Segmentation of the images captured by the Nao Robot camera,
using the hybrid distance of Eq.6.2.
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6.5 A robust color Watershed transformation and

image segmentation de�ned on RGB Spheri-

cal Coordinates

The representation of the RGB color space points in spherical coordinates allows
to retain the chromatic components of image pixel colors, pulling aparteasily the
intensity component. This representation allows the de�nition of a chromatic
distance and a hybrid gradient with good properties of perceptual color con-
stancy. In this work we present a watershed based image segmentation method
using using this hybrid gradient. Over-segmentation is solved by applying a
region merging strategy based on the chromatic distance de�ned on the spher-
ical coordinate representation. We show the robustness and performance of
the approach on well known test images and the Berkeley benchmarking image
database.

Color images have additional information over grayscale images that may al-
low the development of robust segmentation processes. There have been works
using alternative color spaces with better separation of the chromatic compo-
nents like HSI, HSL, HSV, Lab [100, 93] to obtain perceptually correct image
segmentation. However, chromaticity's illumination can blur and distort color
patterns.

Color constancy is closely related to the response of the gradient operators
[17]. Regions of constant color must have low gradient response, while color
edges must have a strong gradient response. Image segmentation methods based
on spatial gradients need a correct de�nition of the spatial color gradient and
unambiguous contour de�nition. In fact, formulation of watershed segmentation
methods in color images is still an open research issue. A straightforward but
inexact approach is the independent application of the watershed segmentation
on image channel [101]. This approach loses chromatic information, and has
di�culties merging the subsequent independent segmentations into one.

In this work we will use the RGB spherical coordinates representation to
archive color constancy properties of our image segmentation approach [55, 75,
56]. We de�ne a chromatic distance on this representation. The robustness
and color constancy of the approach is grounded in the dichromatic re�ection
model (DRM) [37]. We propose a chromatic gradient operator suitable for the
de�nition of a watershed transformation on color images and a robust region
merging for meaningful color image segmentation. The baseline chromatic gra-
dient operator [55, 56] su�ers from noise in the dark areas of the image. We
propose in this work a hybrid gradient operator overcoming this problem and
we use it to build a watershed transformation on color images. To achieve a
natural segmentation, we perform region merging on the basis of our proposed
chromatic distance over the chromatic characterization of the watershed regions.
We give a general schema that combines watershed �ooding with region merg-
ing in a single process. Finally, we specify our proposal as an instance of the
aforementioned general schema.
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6.5.1 Gradient operators

Here, we remember the chromatic gradient de�nition presented on the previous
chapter.

The row pseudo-convolution is de�ned as

CGR (P (i, j)) =

1∑
r=−1

dC (P (i− r, j + 1) , P (i− r, j − 1)) ,

and the column pseudo-convolution is de�ned as

CGC (P (i, j)) =

1∑
c=−1

dC (P (i+ 1, j − c) , P (i− 1, j − c)) ,

where dC is the chromatic distance of Eq. 6.3. So, the color distance between
pixels substitutes the intensity subtraction of the Prewitt linear operator. The
color gradient image is computed as:

CG(x) = CGR (x) + CGC (x) (6.5)

And the intensity gradient de�nition is:

The row pseudo-convolution is de�ned as

GR (J (i, j)) =

1∑
r=−1

‖J (i− r, j + 1)− J (i− r, j − 1) ‖,

and the column pseudo-convolution is de�ned as

GC (J (i, j)) =

1∑
c=−1

‖J (i+ 1, j − c)− J (i− 1, j − c) ‖,

where J is the intensity image, then the intensity gradient image is computed
as:

G(x) = GR (x) +GC (x) (6.6)

6.5.2 Hybrid Gradient

Empirical experiments show that the aforegoing chromatic gradient is very sus-
ceptible to image noise. The angular distance of Eq.6.3 is more sensitive to
noise for pixel colors lying close to the origin in RGB space. This is due to the
fact that the angular distance between two points at a given euclidean distance
grows as the points are closer to the origin. Small perturbations as measured by
the euclidean distance are mapped into big angular di�erences. The background
noise which has little e�ect in lighted regions is ampli�ed in the dark regions.



CHAPTER 6. SEGMENTATION 85

Figure 6.6: E�ect of distance to the origin in the angular distance for pairs
points at the same euclidean distance.

Inspired in HVS, we propose a hybrid gradient which is an intensity gradient
when the illumination is poor, and a chromaticity gradient in better illuminated
image regions. For intensity values below a threshold a it is an intensity gra-
dient, for values above another threshold b it is a chromatic gradient, and for
values between both it is a mixture of the two kinds of gradients whose mixing
coe�cient is sinusoidal function of the image intensity. This idea is expressed
mathematically as a convex combination of the two gradient operators:

HG(x) = β (x)G (x) + β (x)CG (x) (6.7)

where x is the pixel location, G(x) is the intensity gradient magnitude of
Eq.6.6, CG(x) is the chromatic gradient of Eq.6.5 and β(x) = 1 − β(x), hence
β(x) + β(x) = 1, β(x) is normalized to the range [0, 1] which corresponds with
Eq.6.1 of the previous work.

β(x) =


1

1
2 +

cos( x−a
b−a π)

2

0

I(x) < a

a ≤ I(x) < b

b ≤ I(x)

, (6.8)

where I(x) is the pixel intensity.
Note that by di�erence with the α mixing function presented in the previous

work, this β function has not the c parameter, therefore this hybrid function is
a chromatic gradient or a intensity gradient except in the range [a,b]. Fig.6.7
shows the activation of the intensity gradient depending of the intensity.

This hybrid gradient does not su�er from noise sensitivity in dark regions
of the image, the e�ect of bright spots is reduced because it is chromatically
consistent in bright image regions, and it detects chromatic edges.



CHAPTER 6. SEGMENTATION 86

Figure 6.7: Hybrid gradient convex combination factor as a function of the
image intensity.

(a) (b) (c) (d)

Figure 6.8: Response of di�erent gradient operators. (a) original image (b)
intensity gradient, (c) chromatic gradient, (d) hybrid gradient.

Fig.6.8 shows the response of di�erent gradient operators on the same test
image. Fig. 6.8(a) presents the original image. Fig. 6.8(b) contains the response
of the intensity gradient, it shows false border detection in some di�use regions,
i.e. the yellow ball, green thorax. It also shows false edge detection in bright
spots. Fig.6.8(c) shows the response of the chromatic gradient operator. It
does not give false edge detection inside di�use regions. It does not give false
edge detection in bright spot areas. However, it is very sensitive to noise in
the dark regions, showing false edge detections due to small random variations.
Fig.6.8(d) presents the response of the hybrid gradient which has the good
detection properties of the chromatic gradient operator and it is not sensitive
to noise in the dark image regions.

6.5.3 Watershed

Watershed transformation is a powerful mathematical morphology technique
for image segmentation. It was introduced in image analysis by Beucher and
Lantuejoul [70], and subsequently a lot of algorithm variations and applications
have been proposed [101, 72, 97].

The watershed transform considers a bi-dimensional image as a topographic
relief map. The value of a pixel is interpreted as its elevation. The watershed
lines divide the image into catchment basins, so that each basin is associated
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with one local minimum in the topographic relief map. The watershed transfor-
mation works on the spatial gradient magnitude function of the image. The crest
lines in the gradient magnitude image correspond to the edges of image objects.
Therefore, the watershed transformation partitions the image into meaningful
regions according to the gradient crest lines.

The baseline watershed transformation computation method is as follows.
The image pixel sites with local minimum gradient are selected as the sources
of their respective catchment basins. A �ooding process �lls each catchment
basin from its respective source. When a catchment basin is full, the contour
points which are in touch with a neighbor catchment basin are the dam points.
The process is �nished when all gradient surface is covered. The closed lines
de�ned by the dam points give us the watershed transformation, and, implicitly,
the image partition. Usually, this partition is very �ne, therefore a further step
of region merging is needed to obtain partitions closer to the natural segmen-
tation of the image. Region merging needs the speci�cation of when and why
two neighboring catchment basins are merged into one region. In other words,
region merging criterion de�nes which watershed lines are going to be removed.
Watershed regions are image regions with homogeneous properties. We look for
homogeneous chromatic regions on the basis of the aforegoing hybrid chromatic
gradient.

6.5.4 General schema of a watershed method

The general schema of the watershed method perform a �ooding process which
performs a region growing based on the ordered examination of the level sets
of the gradient image. In fact, an ordered succession of thresholds are applied
to produce the progression of the �ooding. The image is examined iteratively
n times, each iteration step the threshold is raised and pixels of the gradient
image below the new threshold are examined to be labeled with a corresponding
region. Initially each region will contain the source of its catchment basin when
the �ooding level reaches it. Each �ooded region is also characterized by a
chromaticity value, that corresponds to the source pixel chromaticity. This
chromaticity value is used to perform region merging simultaneously with the
�ooding process. A pixel whose neighboring pixels belong to di�erent regions
is a watershed pixel. When a watershed pixel is detected, the adjacent regions
may be merged into one if the chromatic distance between the region chromatic
values is below a chromatic threshold. The merged region chromatic value is the
average of that of the merged regions. The �nal labeling of the image regions
is performed taking into account the equivalences established by the merging
process. Watershed pixels whose adjacent regions do not merge into one are
labeled as region boundary pixels and retain their chromaticity.

The algorithm 6.2 gives the details of our method. In this algorithm L (x)
denotes the region label of pixel x, L8 (x) denotes the set of labels of the 8
neighbors of pixel x, that can be expressed as L (x) =

⋃
x′∈N8(x) L (x′), where

N8 (x) the 8-th neighborhood of pixel x. The algorithm may be applied to any
color image Ω (x) and gradient magnitude image Φ (x). The algorithm needs
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the speci�cation of a chromatic distance ∆ (Ω (x) ,Ω (y)) that gives a measure
of the similarity between pixel colors Ω (x) and Ω (y). To label the regions
we keep a counter R, and we build a map ΨR assigning to each region label
a chromatic value. While the �ooding process performs region growing, the
region chromatic value is updated to the average chromaticity of the pixels in
the region. Each region R has a corresponding chromatic value ΨR which can
be used for visualization.

6.5.5 The proposed approach

Our color image segmentation process proposal can be precisely speci�ed by
Algorithm 6.2 applied on the zenithal and azimuthal angles of the color repre-
sentation P (x) of Eq., the gradient magnitude image computed by the hybrid
gradient HG (x) of Eq.6.7, using the chromatic distance of Eq.6.5

6.5.6 Experimental results

The watershed-merge Algorithm 6.2 is parametrized by:

• The number of iterations n, which determines the resolution of the �ooding
process going over the gradient magnitude image level sets.

• The gradient operator used to compute the gradient magnitude image,
which can be either the intensity gradient G (x) of Eq. 6.6 or the hybrid
gradient HG (x) of Eq.6.7.

• The color representation of the image. Assuming the RGB space, it can
be either the Cartesian representation I (x) or the zenithal and azimuthal
angles of the Spherical representation P (x). This selection determines the
selection of the chromatic distance.

• The Chromatic distance, which can be either the Euclidean distance in
the RGB Cartesian space, or the chromatic distance of Eq.6.3.

• The Chromatic distance threshold δ, which determines the chromatic res-
olution of the region merging process.

This section reports results of two experiments, the �rst one compares our pro-
posal of section 6.5.5 with other instances of the algorithm, whereas in the sec-
ond one we will to provide a more extensive qualitative validation our method
using the well know Berkeley benchmark image collection[99] which provides
hand-draw artistic shape boundaries.

6.5.6.1 Behavior

In this section we will use a well known benchmark image [58] to compare
our proposed segmentation process with variations of Algorithm 6.2 obtained
with other parameter settings. The dark regions are critical to the perceptually
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Algorithm 6.2 General scheme of watershed and region merge for color image
segmentation.

Set number of iterations n, the chromatic distance threshold δ, initialize the
pixel labels ∀x;L (x) = Ø, the region label counter R = 0,
Ω (x) is the color image, Φ (x) is the gradient magnitude image.

1. Calculate Φmin = min
x
{Φ (x)} and Φmax = max

x
{Φ (x)}. Calculate the

step at each interaction s = (Φmax − Φmin) /n
Initialize t = Φmin;

2. Iterate n times, setting

(a) Calculate threshold t = t+ s.

(b) Consider X ′ (t) = {x′ |Φ (x′) < t}, for each x ∈ X ′ (t) perform:

i. If L (x) = Ø the pixel is unprocessed, then one of the following
cases apply

A. If L8 (x) = Ø
- Assign new label R← R+ 1; L (x) = R.
- Assign the region chromatic value ΨR = Ψ (Ω (x)).

B. If |L8 (x)| = 1
- L (x) = L8 (x)
- Update ΨL(x) using Ψ (Ω (x)).

C. If |L8 (x)| > 1 there are at least two adjacent regions, x is
a gradient watershed pixel. Consider all pairs of adjacent
regions of labels r1 and r2

- If 4 (Ψr1 ,Ψr2) ≤ δ then we can merge both regions into

one of label r∗. Compute Ψr∗ =
(
|r1|Ψr1

+|r2|Ψr2

|r1|+|r2|

)
. We

keep record of the detected equivalence. Update Ψr∗ using
Ψ (Ω (x)). L (x) = r∗.
- If 4 (Ψr1 ,Ψr2) > δ the pixel x is a region boundary pixel
with a special label L (x) = b.

3. From the recorded label equivalences compute the �nal region labels, and
assign de�nitive labels.

4. Each region R has a corresponding chromatic value ΨR which can be used
for visualization
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correct gradient computation, while the bright spots may induce false edge
detection. The algorithm does not compute any specular free image to remove
this latter problem.

The operational parameter setting are n = 100 and δ = 0.1. In Fig.6.9 we
show the segmentation results on this image for all combinations of the remain-
ing Algorithm 6.2 parameter settings. The column of images labeled �Gradient�
has the gradient magnitude images. From top to bottom, Fig.6.9(a), 6.9(e),
6.9(i) show, respectively the result of the intensity gradient, the chromatic gradi-
ent of equation Eq.5.4, and the hybrid gradient of Eq.6.7. The column of images
labeled �Watershed� correspond to the image region partition performing only to
the �ooding process, without any region merging, on the corresponding gradient
magnitude images. It can be appreciated that the hybrid gradient watershed
removes most of the dark microregions originated by the chromatic gradient.
There are, however, some regions with di�erent colors in this rough dark region
which are not fully identi�ed by the intensity gradient watershed of Fig.6.9 (b)
and are better detected by the hybrid gradient watershed in Fig.6.9(j). The
two image columns with the heading �segmentation� show the results of the re-
gion merging from the corresponding gradient watershed in the same row. The
left column shows the results of using of the Euclidean distance on the RGB
Cartesian coordinates. The right segmentation column show the results of the
using the chromatic distance of Eq.??. If we want to ascertain the e�ect of the
color representation and the chromatic distance we must compare the rightmost
columns in Fig.6.9. We �nd that the general e�ect is that the chromatic distance
on polar coordinates is better identifying the subtle color regions in the darkest
areas of the image, it detects better the shape of the objects, has better color
constancy properties, and it is much less sensitive to bright spots or shining
areas. Comparing the gradient operators attending to the �nal segmentation
we observe that the hybrid gradient is better than the others in removing noise
from the dark regions and maintain the object integrity. Overall the best result
is obtained with our proposal as shown in Fig.6.9(l), where we can easily identify
the subtle regions in the upper dark area, the shadow of the lowermost object,
and we can clearly identify object with the same color una�ected by shading
and bright spots.

6.5.6.2 Validation on the Berkeley images

In the Fig.6.10 we can show the experimental results using the Berkeley DB
[99]. The �rst and fourth rows shows the original images, the second and �fth
shows our respective outputs, whereas the third and sixth rows shows the human
segmentation reference. As we can see our method gives always homogeneous
regions, and the segmentation output is close to the human segmentation. Some
facts that we �nd comparing our segmentation with the hand-drawn segmenta-
tion:

• Large chromatically smooth regions are well segmented by our approach
despite variations in intensity, e.g. the face skin of the portraited man,
the river, the road in the road race image.
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Original image

Gradient Watershed Segmentation

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.9: Image segmentation results with di�erent parametrizations of Algo-
rithm 6.2.
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• Some subtle chromaticity variations are detected and segmented, like the
re�ections in the water of the jungle river image.

• The algorithm does not use any spatial information to segment textured
objects. However it can cope with some textured spatial intensity varia-
tions of chromatically constant regions, outlining the corresponding object,
i.e. the clouds in the �ying plane image, the yellow skirt in the jungle river
image.

• The hand-draw contours obviate some regions of the image that the artist
may have found irrelevant, i.e. the clouds in the sky in some images, the
texture details of some bushes. Some of these regions can not be segmented
as a unit unless some spatial texture information is used, like the bushes
in the jungle river image, or the skyscraper windows.

6.5.7 Work Conclusions

This work introduces a watershed and region merging segmentation algorithm
based on the zenithal and azimuthal angles of the spherical representation of
colors in the RGB space. We have shown that this representation is equiv-
alent to the chromaticity representation of the color. Considering the DRM
we �nd that most of the di�use re�ectance is preserved. Moreover the color
representation and the chromatic distance de�ned on it possesses has color con-
stancy properties. These de�nitions allows the construction of a robust hybrid
chromatic spatial gradient that we use to realize a robust chromatic watershed
segmentation. This gradient operator has good color edge detection in lightened
areas and does not su�er from the noise in the dark areas. The watershed is
complemented by a region merging based on the de�ned chromatic distance. We
give a general schema of the algorithm performing both watershed and region
merging. Our proposal can be stated by this algorithm �xing the color rep-
resentation, gradient operator, and region merging distance. We compare our
approach with other algorithms obtained with di�erent setting of the general
schema, obtaining the best qualitative segmentation. The results on the Berke-
ley database images �nd excellent approximations to the provided hand-drawn
segmentations, without using spatial or semantic information.
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Figure 6.10: Segmentation results on some of the Berkeley images. Second and
fourth rows show the results of our approach. Third and last row show the
hand-drawn shapes.
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6.6 Chapter Conclusions

In this chapter we are discussed about image segmentation, making a brief
survey of some strategies for image segmentation. After that, we have presented
two innovative image segmentation methods, �rst one in Sec.6.4 and second one
in Sec.6.5. Both methods has somethings in common:

• they are grounded on DRM having a physical support

• they use the spheric approach introduced too in this thesis

• they have a good behavior avoiding shines and shadows e�ect

• they belong to region based segmentation methods

• they are fast and can be used for real time applications.

By other hand they have some di�erences:

• they use di�erent hybridization equations α and β respectively

• �rst method follow a strict order by rows whereas second one follows an
algorithm which depending of the image the seeds are going to be located
at di�erent positions.

• �rst method works in the 4-NW neighborhood whereas the second one
works on the 8th neighborhood

• due to the neighborhood �rst method looks faster than second one.
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Chapter 9

Glosary

Albedo of an object is the extent to which it di�usely re�ects light from the
sun. It is therefore a more speci�c form of the term re�ectivity. Albedo
is de�ned as the ratio of di�usely re�ected to incident electromagnetic
radiation. It is a unit less measure indicative of a surface's or body's
di�use re�ectivity. The word is derived from Latin albedo "whiteness", in
turn from albus "white". The range of possible values is from 0 (dark) to
1 (bright).

Azimuth is the horizontal angular distance from a reference direction, usu-
ally the northern point of the horizon, to the point where a vertical circle
through a celestial body intersects the horizon, usually measured clock-
wise. Sometimes the southern point is used as the reference direction, and
the measurement is made clockwise through 360 grades.

Chromaticity is an objective speci�cation of the quality of a color irrespective
of its luminance, that is, as determined by its colorfulness (or saturation,
chroma, intensity, or excitation purity) and hue.

Colorfulness, chroma, and saturation are related concepts referring to the
intensity of a speci�c color. More technically, colorfulness is the perceived
di�erence between the color of some stimulus and gray, chroma is the col-
orfulness of a stimulus relative to the brightness of a stimulus that appears
white under similar viewing conditions, and saturation is the colorfulness
of a stimulus relative to its own brightness. Though this general concept is
intuitive, terms such as chroma, saturation, purity, and intensity are often
used without great precision, and even when well-de�ned depend greatly
on the speci�c color model in use.

Di�use re�ection is the re�ection of light from an uneven or granular surface
such that an incident ray is seemingly re�ected at a number of angles.
It is the complement to specular re�ection. If a surface is completely
non specular, the re�ected light will be evenly spread over the hemisphere

100
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surrounding the surface (2π steradians). The most familiar example of
the distinction between specular and di�use re�ection would be matte
and glossy paints as used in home painting. Matte paints have a higher
proportion of di�use re�ection, while gloss paints have a greater part of
specular re�ection.

Fresnel equations, deduced by Augustin-Jean Fresnel, describe the behavior
of light when moving between media of di�ering refractive indices. The
re�ection of light that the equations predict is known as Fresnel re�ection.

Hue is one of the three main attributes of perceived color, in addition to light-
ness and chroma (or colorfulness). Hue is also one of the three dimensions
in some color spaces along with saturation, and brightness (also known as
lightness or value). Hue is that aspect of a color described with names
such as "red", "yellow", etc.

Insolation (Incident solar radiation) is a measure of solar radiation energy re-
ceived on a given surface area in a given time. It is commonly expressed
as average irradiance in watts per square meter (W/m2) or kilowatt-hours
per square meter per day ( kW∗h

m2∗day ) , or in the case of photovoltaic it is com-

monly measured as kWh/kWp ∗ y (kilowatt hours per year per kilowatt
peak rating). Sometimes, as in the text below, a long-term average inten-
sity of incoming solar radiation will be given in units such as watts per
square meter (W/m2 or W*m-2) and called insolation, with the duration
(such as daily, annual, or historical) stated or only implied.

Irradiance, radiant emittance, and radiant exitance are radiometry terms
for the power of electromagnetic radiation at a surface, per unit area. "Ir-
radiance" is used when the electromagnetic radiation is incident on the
surface. "Radiant exitance" or "radiant emittance" is used when the radi-
ation is emerging from the surface. The SI units for all of these quantities
are watts per square meter (W ∗m−2).

Lambert's cosine law in optics says that the radiant intensity observed from
a "Lambertian" surface is directly proportional to the cosine of the angle
θ between the observer's line of sight and the surface normal. The law
is also known as the cosine emission law or Lambert's emission law. It is
named after Johann Heinrich Lambert, from his Photometria, published
in 1760.

Lambertian re�ectance, light falling on it is scattered such that the apparent
brightness of the surface to an observer is the same regardless of the ob-
server's angle of view. More technically, the surface luminance is isotropic.
For example, un�nished wood exhibits roughly Lambertian re�ectance,
but wood �nished with a glossy coat of polyurethane does not (depending
on the viewing angle, specular highlights may appear at di�erent locations
on the surface). Not all rough surfaces are perfect Lambertian re�ectors,
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but this is often a good approximation when the characteristics of the sur-
face are unknown. Lambertian re�ectance is named after Johann Heinrich
Lambert.

Luminance is a photometric measure of the density of luminous intensity in a
given direction. It describes the amount of light that passes through or is
emitted from a particular area, and falls within a given solid angle. The
SI unit for luminance is candela per square met re (cd/m2). The CGS
unit of luminance is the stilb, which is equal to one candela per square
centimeter or 10 kcd/m2.

Radiance and spectral radiance are radiometric measures that describe the
amount of light that passes through or is emitted from a particular area,
and falls within a given solid angle in a speci�ed direction. They are
used to characterize both emission from di�use sources and re�ection from
di�use surfaces. The SI unit of radiance is watts per steradian per square
meter (W ∗ sr−1 ∗m−2).

Re�ectivity is the fraction of incident radiation re�ected by a surface. In full
generality it must be treated as a directional property that is a function of
the re�ected direction, the incident direction, and the incident wavelength.
However it is also commonly averaged over the re�ected hemisphere to give

the hemispherical spectral re�ectivity: ρ(λ) =
Grefll(λ)
Gincid

where Gre�(λ)

and Gincid(λ) are the re�ected and incident spectral (per wavelength)
intensity, respectively.

Re�ection is the change in direction of a wave front at an interface between
two di�erent media so that the wave front returns into the medium from
which it originated. Common examples include the re�ection of light,
sound and water waves.

Snell's law (also known as Descartes' law or the law of di�raction), is a for-
mula used to describe the relationship between the angles of incidence
and refraction, when referring to light or other waves, passing through a
boundary between two di�erent isotropic media, such as water and glass.
The law says that the ratio of the sines of the angles of incidence and of
refraction is a constant that depends on the media.

Specular re�ection is the perfect, mirror-like re�ection of light (or sometimes
other kinds of wave) from a surface, in which light from a single incoming
direction (a ray) is re�ected into a single outgoing direction. Such behav-
ior is described by the law of re�ection, which states that the direction of
incoming light (the incident ray), and the direction of outgoing light re-
�ected (the re�ected ray) make the same angle with respect to the surface
normal, thus the angle of incidence equals the angle of re�ection; this is
commonly stated as θi = θr.
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Zenith is the direction pointing directly above a particular location (perpen-
dicular, orthogonal). Since the concept of being above is itself somewhat
vague, scientists de�ne the zenith in more rigorous terms. Speci�cally, in
astronomy, geophysics and related sciences (e.g., meteorology), the zenith
at a given point is the local vertical direction pointing away from direction
of the force of gravity at that location.
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