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Motivation

The goal is the estimation of the volume of biomass in a forest area of
the northern region of Portugal, combining:

Field data collected in 2006
Spatial interpolation
Remote sensing data, including a vegetation index (VI)
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Field Sampled Data

Biomass volume information collected on the �eld during 2006 in 280
sample land plots in the study area:

Position (x , y)

Projected coordinate system: Lisboa_Hayford_Gauss_IGeoE
Geographic coordinate system: GCS_Datum_Lisboa_Hayford
Map Projection: Transverse Mercator

Vegetation type: Scrub forest and trees (Pinus Pinaster , oak, Eucalyptus
and mixed).
Weight of green and dry scrub forest (v and s) by hectare (ton/ha).
Cubic meters (m3) of biomass by hectare (m3/ha).
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LandSat Image

The image was acquired on day 12 December 2006.

The LandSat 5 TM image had been orthorecti�ed and to ensure
compatibility between image and the ground data, the image was
recti�ed and georeferenced to the Lisboa_Hayford_Gauss_IGeoE,
GCS_Datum_Lisboa_Hayford Map and map projection Transverse
Mercator.
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Field Data distribution on the Landsat image
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Field Sampled Data

Statistics of the �eld sampled data:

Descriptive statistics of data:

Min 1Qu. Median Mean 3Qu. Max SD

m3 2.21 194.8 685.9 2375 2638 35100 4602.48
logm3 0.34 2.29 2.84 2.79 3.42 4.54 0.82

Histograms
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Field Data: Histograms
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Field Data
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NDVI Vegetation Index from the Landsat Image

De�nition

Normalized Di�erence Vegetation Index (NDVI) is the normalized rate:

NDVI =
NIR − R

NIR + R

where R and NIR stand for the spectral re�ectance measurements acquired
in the red and near-infrared regions, respectively.
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Spatial Interpolation Methods

Methods of spatial interpolation:

1 Non geostatistics methods (deterministics methods): Inverse Distance

Weighted (IDW) and Radial Basis Functions (RBF)
2 Geostatistics methods: Ordinary Kriging (OK), Universal Kriging (UK)

and External Drift Kriging (EDK)
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Inverse Distance Weighted (IDW)

Linear interpolation on the basis of the spatial distance to the �eld
sample points:

The IDW estimator is (Flores, 2001):

Ẑ (s0) =
n

∑
i=1

wi (s0)
∑n
k=1 wk (s0)

· Z (si )

with

wi (sj ) =
1

d (si , sj )
p

where p is the power parameter and d (si , sj ) is the distance between
si and sj localizations.
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Kriging: basic de�nitions

The goal of kriging is to estimate the value of a random function
Z (s) in some non-sampled positions of a region D from a set of
observed data {Z (s1) , . . . ,Z (sn)} in positions s1, . . . , sn.
Kriging predictor, Ẑ (s0), is a linear combination of the observed
values:

Ẑ (s0) =
n

∑
i=1

λi · Z (si )
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Kriging: OK, UK and EDK

Some kriging methods work under asumptions of the structure of the
model expectation :

E [Z (s)] = µ (s)

Ordinary Kriging (OK): The mean is constant but unknown and must
be estimated.
Universal Kriging (UK): The mean is unknown but it is a linear
combination of known functions .
External Drift Kriging (EDK): This method uses exogenous variables,
i.e. the vegetation index NDVI.
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Ordinary Kriging (OK)

It can be used when the process is second order stationary or
intrinsically stationary.

Ordinary Kriging Estimator (OK) (Isaaks, 1989):

Z ∗OK (s0) =
n

∑
i=1

λOK
i (s0) · Z (si ) with

n

∑
i=1

λOK
i (s0) = 1

where s0 is an interest localization.

Ordinary Kriging variance :

σ2
OK (s0) = C (0)−

n

∑
i=1

λOK
i · C (si − s0)− µOK (s0)

with C (0) = var [Z (s)]. It is greater than the Simple Kriging variance.
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Universal Kriging (UK)

Universal Kriging Estimator (UK) is:

Z ∗UK (s0) =
n

∑
i=1

λUK
i (s0) · Z (si )

where

µUK (s0) =
n

∑
i=1

λUK
i (s0) ·m (si ) =

p

∑
k=1

ak ·
n

∑
i=1

λUK
i (s0) · fk (si )

subject to the condition:

n

∑
i=1

λUK
i (s0) · fk (si ) = fk (s0) k = 0, . . . p

where fk are the known position functions and ak are unknown
parameters to estimate.
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Universal Kriging (UK)

Universal Kriging Variance is:

σ2
UK (s0) = CR (0) +

n

∑
i ,j=1

λUK
i · λUK

j · CR (si − sj )−

−2
n

∑
i=1

λUK
i · CR (si − s0)

being CR (.) residual covariance.

In this case, the mean is the polynomial function:

µUK (s0) = m (x , y) = a0 + a1x + a2y
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External Drift Kriging (EDK)

External Drift Kriging (EDK) allows the use of an external variable to
guide the interpolation of the variable to predict (Goovaerts, 1997).

If the variable of interest, i.e. Z , is accurate but sparsely sampled,
while the secondary variable, i.e. q, is less accurate but densely
sampled, we can combine both:

µEDK (s0) = a + b · q (s)
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External Drift Kriging (EDK)

External Drift Kriging Estimator (EDK) is:

Z ∗EDK (s0) =
n

∑
i=1

λEDK
i (s0) · Z (si )

with
n

∑
i=1

λEDK
i (s0) · qk (si ) = qk (s0) k = 1, . . . , p

where Z are spatial data (values of �rst variable), qk are p predictor
variables and

µEDK (s0) =
p

∑
k=0

µk (s0) · qk (s0)

being µk (s0) Lagrange parameters.
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External Drift Kriging (EDK)

External Drift Kriging Variance is:

σ2
EDK (s0) = C (0)−

n

∑
i=1

λEDK
i (s0) · C (si − s0) +

p

∑
k=0

µk (s0) · qk (s0)

where C (0) is residual stationary covariance, µk (s0) are Lagrange
parameters and qk (s0) are tendency functions.
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Inverse Distance Weighted (IDW)
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Ordinary Kriging (OK)

Carmen Hernández, Helder Viana, Miguel Angel Veganzones, Leónia Nunes, Manuel Graña, Domingos Lopes (Computational Intelligence Group (UPV/EHU) and Forestry Department (UTAD))Biomass estimation combining �eld data and remote sensing: A Case Study in a Forest Area of Northern Portugal
Portugal, Vila Real 6-8 October 2010 22

/ 36



Universal Kriging (UK)
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External Drift Kriging (EDK NDVI)
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External Drift Kriging (EDK NDVI+x+y)
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Cross-Validation Kriging

The cross validation compares the e�ectiveness and accuracy of
assessment methods and assess the model behavior.

We have used Cross-validation Kriging (Goovaerts, 1997) with 1
folder (Leave-One-Out, LOO), 5 and 10 folders.

This type of validation involves:

The estimate for all sampling locations
The comparison of estimates to the values observed in these locations
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Cross-Validation Kriging: OK

Carmen Hernández, Helder Viana, Miguel Angel Veganzones, Leónia Nunes, Manuel Graña, Domingos Lopes (Computational Intelligence Group (UPV/EHU) and Forestry Department (UTAD))Biomass estimation combining �eld data and remote sensing: A Case Study in a Forest Area of Northern Portugal
Portugal, Vila Real 6-8 October 2010 27

/ 36



Cross-Validation Kriging: UK
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Cross-Validation Kriging: EDK NDVI
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Cross-Validation Kriging: EDK NDVI+x+y
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Cross-Validation Kriging: RMSE
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Conclusions and Future Work

The results showed that kriging methods are useful in estimation tasks
forest area data such as biomass, forest fuels, etc.

The use of the remote sensing information provided by the Landsat
image improved the estimation quality.
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Conclusions and Future Work

Futher work will be addressed to asses the usefulness of new external
variables in the EDK approaches.

Leaf Area Index (LAI)
Field data plot altitude
Type of vegetation in the study area.

Applicability of other spatial interpolation approaches.
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