

A Hybrid Intelligent System for Robot Ego-Motion Estimation with a 3D Camera

Ivan Villaverde and Manuel Graña

Computational Intelligence Group University of the Basque Country http://www.ehu.es/ccwintco

HAIS 2008

Hybrid Intelligent Systems for Multi-robot and Multi-agent Systems

Contents

- Introduction
- ToF 3D Camera
 - Data Preprocessing
- Hybrid Intelligent System
- Experimental Settings and Results
- Conclusions

Introduction

- Use of new ToF 3D cameras.
- Final objective: full SLAM capabilities on multirobot systems.
- First step: Learn data processing and feature extraction from the 3D data provided by the camera.
- Simple task: ego-motion estimation.

ToF 3D Camera

- SwissRanger SR-3000
- Phase measuring Time of Flight principle.

- Led array illuminates the scene.
- Known wavelength amplitude.
- Phase delay used to measure traveled distance.

ToF 3D camera

Data Preprocessing

• Pros:

- Full 3D scene information.
- On-line operation.
- On-board operation.

• Cons:

- Big data size.
- Ambiguity range.
- Specular reflections.
- Measurement uncertainty.

Data Preprocessing

• Filtering: Confidence value $C_i = I_i \times D_i$

Hybrid Intelligent System Self Organizing Map

First step: Self Organizing Map used to fit the data.

- Grid G.

Keeps the spatial shape of the 3D data.

 Reduces data amount to a fixed, small size.

Hybrid Intelligent System Ego-motion Estimation

- Robot at time t:
 - Position: $P_t = (x_t, y_t, \theta_t)$
 - Observed Grid: G_t
- Time *t*+1:
 - $-G_{t+1}$ obtained from the camera.
 - $-P_{t+1}$?

Hybrid Intelligent System Ego-motion Estimation

- P_t and P_{t+1} are close.
- Same environment, but from different PoV.
 - Most objects visible from P_t should be also visible from P_{t+1} .
 - G_{t+1} should be similar to G_t , after a slight transformation.
 - Transformation gives the spatial relation between P_t and P_{t+1} .
- Objective: calculate the transformation T between G_{t} and G_{t+1} .

Hybrid Intelligent System Evolution Strategy

- An ES is used to search for the transformation
 T.
- Individuals h_i are hypothesis of position P_{t+1} and their traits the parameters of the transformation T_i between P_t and hypothesized P_{t+1} .

$$h_{i} = (x_{i}, y_{i}, \theta_{i})$$

$$T_{i} = \begin{bmatrix} \cos(\theta_{i} - \theta_{t}) & -\sin(\theta_{i} - \theta_{t}) & x_{i} - x_{t} \\ \sin(\theta_{i} - \theta_{t}) & \cos(\theta_{i} - \theta_{t}) & y_{i} - y_{t} \\ 0 & 0 & 1 \end{bmatrix}$$

Hybrid Intelligent System Evolution Strategy

 For each hypothesis h_i we have a prediction of the observed grid:

$$(\hat{G}_{t+1})_i = T_i \times G_t$$

 Fitness function as a matching distance between grids:

$$e(h_i) = \|(\hat{G}_{t+1})_i - G_{t+1}\|^2$$

Hybrid Intelligent System Algorithm Flow Diagram

Experimental Settings

- Pre-recorded walks.
 - Odometry and optical views as reference.
 - Very noisy 3D images due non-optimal configuration.
- Experiment result: Sequence of consecutive robot positions.
- 20x20 SOM Grid.
 - SOM Toolbox with default parameters.

Experimental Settings

- Evolution strategy implementation:
 - Population of 20 individuals.
 - New generation:
 - The 1/3 best fitted directly.
 - Remaining 2/3 by adding Gaussian perturbations to best fitted.
 - Fitness function: node to node euclidean distance between G_{t+1} and $(\hat{G}_{t+1})_i$
 - Stop condition: no improvement in the new generation.

Experimental Results

Conclusions

- Mobile robot ego-motion estimation algorithm.
 - 3D camera measurements.
 - Hybrid intelligent system.
 - SOM
 - ES
- Current work improving results.
 - Cloud of points fitted with a Neural Gas.
 - More efficient genetic algorithm.
- Future work:
 - Integration in a Kalman or particle filter SLAM architecture.
 - 3D environment reconstruction.

