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2.6 Discriminant Functions for the Normal Density

In Sect. 2.4.1 we saw that the minimum-error-rate classification can be achieved by
use of the discriminant functions

gi(x) = In p(x|w;) + In P(w;). (46)

This expression can be readily evaluated if the densities p(x|w;) are multivariate nor-
mal, i.e., if p(x|w;) ~ N(p;,2;). In this case, then, from Eq. 37 we have

d
2
Let us examine the discriminant function and resulting classification for a number of
special cases,

gi(x) = —é(x ) S k= ) — S 2 — % In [ +In P(w).  (47)
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2.6.1 Case 1: ¥, = 0?1

The simplest case occurs when the features are statistically independent, and
when each feature has the same variance G2.

llx = ol *
gr;[x] = -Tﬂt +In F(w,—], {43}

Simplificando
we obtain the equivalent linear discriminant functions

#(x) = Wix + wyg, (51)
where
1
Wi = —TH (52)
and
—1
ity = Ej&:_ﬂ‘ +In P{m;]. {53}

We call wyp the threshold or s in the ith direction,
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2.6.1 Case 1: ¥, = 0?1

Simplificando mas
w'(x — %) =0, (34)
where
W=y — [y (55)
and
_1 o Plus)
xo = 5 + pg) T JLleIEI Pl (ht; — s} (56)

This equation defines a hyperplane through the point x; and orthogonal to the
VeCtor W. Since W = g, — p,, the hyperplane separating W; and R is orthogonal to
the line linking the means. If Plw;) = P(w;), the second term on the right of Eq. 56
vanishes, and thus the point xp is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2,117, If Plas) # Plw,),
the point xg shifts away from the more likely mean
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2.6.1 Case 1: X, = 0“1

If the prior probabilities P(w;,) are the same for all ¢ classes, then the In P(w,)
term becomes another unimportant additive constant that can be ignored.

When this happens, the optimum decision rule can be stated very simply:
to classify a feature vector x, measure the Euclidean distance |[x - p;|| from
each x to each of the ¢ mean vectors, and assign X to the category of the
nearest mean.

Such a classifier is called a minimum distance classifier.

If each mean vector is thought of as being an ideal prototype or template for
patterns in its class, then this is essentially a template-matching procedure.



Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
i5 A peneralized hyperplane of o — 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and S-dimensional examples, we indicate p(xjw; ) and the
boundaries for the case Plw,) = Plwa). In the 3-dimensional case, the prid plane
separates Wy trom R,

21/12/2011 Grupo de Inteligencia Computacional 6 de 13



2.6.1 Case 1:

Figure 2.11: As the priors are changed, the decision boundary shifts: for sulhiciently
disparate priors the boundary will not lie between the means of these 1-, 2- and

Fdimensional spherical Gaussian distributions.
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2.6.2 Case 2: X2, = X

Another simple case arises when the covariance matrices for all of the classes are
identical but otherwise arbitrary. Geometrically, this corresponds to the situation in
which the samples fall in hyperellipsoidal clusters of equal size and shape, the cluster
for the ith class being centered about the mean vector p,. Since both |X;| and the
(d/2) In 27 term in Eq. 47 are independent of 7, they can be ignored as superfluous
additive constants. This simplification leads to the discriminant functions

1 _
gi(x) = —5(x— i) ZH(x = ) + In Pluwy). (57)
Simplificando
6i(X) = Wix + wyp, (58)
where
w; = * 1;4{- [r,q;,
and
1
T —E,ujz-lp,,. +1In Plw,). (60)
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2.6.2 Case 2: X2, = X

Since the discriminants are
linear, the resulting decision
boundaries are again
hyperplanes.

The hyperplane separating R,
and R; is generally not
orthogonal to the line between
the means.

However, it does intersect that
line at the point x, which is
halfway between the means if
the prior probabilities are
equal. If the prior probabilities
are not equal, the optimal

boundary hyperplane is shifted Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and

. ellipsoidal surfaces in three dimensions) and decigion regions for equal but asyimmetric
away from the maore “kely Claussian distributions. The decision hyperplanes need not be perpendicular to the

mean (Flg 212) line connecting the means.
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In the general multivariate normal case, the covariance matrices are different for
each category.
The resulting discrirninant functions are inherently quadratic.

gi(x) = " Wix + wix + wi,

where

and

Wi = —%uEE;‘.u.- - %ln 1%+ In Ple).
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The decision surfaces are hyperquadrics, and can assume any of the general
forms: hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids,
hyperparaboloids...
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Example 1: Decision regions for two-dimensional Gaussian data

To clarify these ideas, we explicitly calculate the decision boundary for the two
category two-dimensional data.
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The computed Baves decision boundary for two Gaussian distributions, each based
on four data points.
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Example 1: Decision regions for two-dimensional Gaussian data

Let wl be the set ofthe four black points, and wg the red points. For now we
simply assume that we need merely calculate the means and covariances

pel2] e ) e[ 4] (3 8)

We assume equal prior probabilitiea, Plw) } = Plwy) = 1L5, and zubatitute theze into
the general form for a discriminant, Eqgs. 64 — 67, setting g,(x) = g2(X) to obtain the
decision boundary:

rg = 3.514 — 1.1252; 4 0.1875x7.
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The computed Baves decision boundary for two Gaussian distributions, each based
on four data points.

21/12/2011 Grupo de Inteligencia Computacional 13 de 13



