Interactive Multimedia Tabletops (IMT)

Professor: Manuel Graña Romay. Phd. Student: Andoni Beristain Iraola Grupo de Inteligencia Computacional (GIC). Universidad del País Vasco (UPV-EHU).

Contents

- Introduction
- Technical building blocks
- Interaction
- Group Interaction dynamics
- Practical developments
- References

Introduction

- Increase on people's multimedia digital data management needs.
- Ordinary computers are not suitable to work in groups.
- Current Human-Computer Interaction is usually reduced to screen, mouse and keyboard.
- Computer's full ingraining into society habits and daily life still in progress.

Introduction

Design goals for Interactive Multimedia Tabletops:

- Natural interaction.
- Audio-visually rich.
- Computer humanization and ubiquity.
- Group work.

Introduction

Interactive <u>Multimedia Tabletop</u> (IMT) **definition**:

- Table-shaped furniture.
- Natural interaction methods.
- Multimedia as the main digital data type to manipulate and as a way to make interfaces more friendly.
- Collaborative work oriented.
- Interface with an underlying computer system.

Introduction (DiamondTouch)

Introduction (Microsoft Surface)

- Many different components.
- Multiple different final setups.

Technical building blocks

• Tabletop:

- _Similar to an ordinary table.
- _Ubiquity.
- _Standing or sitting on chairs.
- _ Comfortable size and height, depending on user number and task.

Struktable

Technical building blocks

• Interaction surface:

- _Flat screen LCD monitor or acrylic transparent surface. Depending on the configuration.
- _Protective layer on it. Improve hardness and protect from environmental lighting.
- Light polarization layer for background segmentation in Computer Vision techniques.

- Video projector:
 - _Projected through the surface or over it.
 - _One or several projectors.
 - _Require controlled environmental lighting.

- Video Camera:
 - _Color, grayscale, infrared, 3D.
 - One or several cameras.
 - _Require controlled environmental lighting.

- Multitouch surface:
 - _Computer Vision techniques: FTIR, Difussed Illumination.
 - _Capacitive. The human shunt and The human transmitter
 - _Acoustic.
 - _Surface computing.

Multitouch

FTIR- Frustrated Total Internal Reflection

Difussed Illumination

- Loudspeakers and microphones.
 - _Cocktail effect between users.
 - _ Unintended execution of actions.
 - _Users usually have to wear additional devices.

- Computer system
 - _High requirements:
 - Multimedia management.
 - Computer Vision techniques overload.
 - Speech processing.
 - Some multitouch techniques.
 - _In some cases one computer for user input processing and another for the system itself.

- Auxiliary screens:
 - _Purpose:
 - Remote collaboration.
 - Personal work.
 - _Usually vertical.

- Tangible objects.
 - _Wired or wireless electronic interface, or
 - Computer Vision based detection.
 - _Usually position and rotation
 - _Distinction between personal objects on the tabletop and actuators.

Tangible objects

Tangible objects

Technical building blocks

Auxiliary devices.

```
_Keyboard.
```

- _Mouse.
- _PDA.
- _Laptop.
- _Usually external, but also internal.

- Natural interaction methods in the IMT.
 - _ Hand gestures:
 - Ordinary hand gestures over the tabletop surface.
 - Multitouch gestures on the tabletop surface (Surface Computing).
 - Voice:
 - Speech recognition.
 - _Actuator based:
 - Physical objects to interact with data.
 - Virtual objects to interact with data.
 - _ Combination of previous methods.

- Direct interaction.
 - _Operating on the virtual object itself. Each abstraction layer makes the interaction less direct.
 - _Direct interaction methods are the most common in everyday life, therefore, they are the most natural.
 - _Natural interaction <-> Direct interaction.

- Interaction Languages
 - _Natural -> simulate the interaction method of the application context in reality.
 - Doe not require learning.
 - Allow for ambiguity.
 - _Symbolic -> artificial language designed under specific criteria.
 - Require a learning step.
 - · More efficient.

- GUI: Graphical User Interface.
 - _User Interface to interact with electronic devices.
 - _Graphical icons and visual indicators.
 - _Direct manipulation of the graphical elements.
 - _Current interaction standard.

Interaction. GUI Example.

Description: GNOME Graphical User interface in Linux Ubuntu

Interaction. TUI I

- TUI: **Tangible** User Interface.
 - _First introduced by Ishii and Ullmer at the CHI conference in 1997 (**Ishii1997**).
 - _Original definition: Graphical interfaces which augmented the real physical world by adding digital information to everyday use objects and physical environments.
 - _Complete review at **Fishkin2004** and **Kim2008**.

Interaction. TUI II

TUI: "An user makes use of his hands to manipulate one or several physical objects by means of physical gestures, then a computer recognizes them, communicates its state and offers a suitable response."

Interaction. TUI III. Reactable

Description: Universitat Pompeu Fabra. http://www.reactable.com

Group interaction dynamics

- Object access issues:
 - _Virtual object management on the IMT workspace.
 - _Privacy.
 - _Multiple access.
 - _Physical limitations to reach distant objects in direct interaction.

Group dynamics

- Territoriality:
 - _Spatial distribution of the tabletop workspace.
 - _Personal, group and storage territories.
 - _ User amount and distribution.
 - _Tabletop size.
 - _Territory distribution is performed instantly by users with minimal communication.

Group dynamics

• User Collisions:

- _Different actions performed by two or more users interfere with each other.
- _Unavoidable in direct interaction, and frequent.
- _Courtesy rules between users to solve them.
- _Consistency management by the underlying system.

Group dynamics

- Remotely working in groups:
 - _Working between several geographically distant IMT in a common group task.
 - _Distant users' presence perception.
 - Local users' perception about how they are seen by distant users.
 - _Communication between local and distant users.
 - _Coherence management between different IMT.
 - _Managament of subgroups among different IMT.

Practical developments. Microsoft Surface

- Multitouch interaction and actuator based.
- Video projector.
- Infrared light for multitouch, using diffused illumination.
- State of the art pc, with a modified version of Windows Vista.
- Developed Software: Image viewer, Paint, games, mobile phone information,...
 - _Still no group work management.

Practical developments. Microsoft Surface II

- 1. Diffuser acrylic surface.
- 2. Infrared light source.
- 3. Computer. Intel Core 2 Duo. 2 GB. 256 MB. Graphics card.
- 4. Projector.
- 5. Four infrared cameras, with a net resolution of 1280x960.

Practical developments. Microsoft Surface III

Practical developments. MERL DiamondTouch

- Initially only a multitouch surface, but many full prototypes developed.
- Multitouch using capacitive technology.
 - _ Users must wear a device or touch a surface to close the electric circuit.
- One or several video projectors.
- Speech processing available in several prototypes.
 - _ Users wear microphones and headphones.
- Software: architecture, Google Maps, games,...
- Special emphasis to group work.
- Further information at **Dietz2001**.

Practical developments. MERL DiamondTouch

Practical developments: ViCAT: Visualisation and Interaction on a Collaborative Access Table

- Hand gestures.
 - Overhead camera.
- Speech:
 - _Processing for interaction.
 - _To communicate with other remote tabletop users.
- Additional vertical screen to see distant users.
- Further information at Chen2006.

Practical developments: ViCAT: Visualisation and Interaction on a Collaborative Access Table

References

- **1. Ishii1997:** H. Ishii and B. Ullmer, Tangible bits: towards seamless interfaces between people, bits and atoms, in CHI '97: Proceedings of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 1997, pp. 234-241.
- **2. Fishkin2004:** K. Fishkin and P. Kenneth, A taxonomy for and analysis of tangible interfaces, Personal Ubiquitous Comput., vol. 8, no. 5, pp. 347-358, 2004.
- **3. Kim2008:** M. Kim and M. Maher, The impact of tangible user interfaces on spatial cognition during collaborative design, Design Studies, vol. 29, no. 3, pp. 222-253, May 2008.
- **4. Dietz2001:** P. Dietz and D. Leigh, Diamondtouch: a multi-user touch technology, in UIST '01: Proceedings of the 14th annual ACM symposium on User interface software and technology. New York, NY, USA: ACM, 2001, pp. 219-226.

References

5. Chen2006: F. Chen, P. Eades, J. Epps, S. Lichman, B. Close, P. Hutterer, M. Takatsuka, B. Thomas, and M. Wu, Vicat: Visualisation and interaction on a collaborative access table, Horizontal Interactive Human-Computer Systems, International Workshop on, vol. 0, pp. 59-62, 2006.

Contact Information

• Grupo de Inteligencia Computacional (GIC):

<u>http://www.ehu.es/ccwintco.</u>

Manuel Graña Romay:

<u>_ccpgrrom@si.ehu.es</u>

Andoni Beristain Iraola:

<u>beristainandoni@yahoo.es</u>