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Introduction

Problem statement

@ Goal: design a feedback controller with minimal input from the
designer

o Typically, manufacturers employ some kind of Proportional
Integrative Derivative (PID) controller

@ require manual tuning of parameters

o Researchers have started using Reinforcement Learning (RL) as
an alternative

@ require little input from the designer
o CACLA is considered the state of the art
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Introduction

Control goal

@ The goal of the controller is to minimize the error e, (7)
between the position of the table (x) and the setpoint (w (7))

ex(t) =[x (1) —w(7)]
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Introduction

Research question

@ How robust is CACLA to suboptimally learning tuned
parameters?
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Continuous Action-Critic Learning Automaton

Markov Decision Process

@ General RL methods model environments as MDPs

S: set of states (discrete / continuous)

A: set of actions (discrete / continuous)

P: transition function defined by the model

R: reward signal to be maximized, defined by the system
designer

http://www.ehu.es/ccwintco Empirical study of the sensitivity of CACI SOCO 2013 7/ 18



Continuous Action-Critic Learning Automaton

Actor-Critic methods

@ Two separate learning components are defined:

e The actor: learns a policy 7, (s)
o The critic: estimates the value V; (s) of each state s:

A

Vi(s) 2 E” Z”Hk?’kil s =s
k=1
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Continuous Action-Critic Learning Automaton

Actor-Critic methods

@ Each time step

e The actor observes the state s and selects an action following
its policy 7, (s)

o The critic observes the new state ', receives the reward r; and
updates its value estimate of s

o The critic sends a critique & to the actor, and the actor
updates accordingly its policy 7, (s)
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Continuous Action-Critic Learning Automaton

CACLA actor

@ Instead of directly using the output of the policy 7, (s), some
disturbance signal 1 (¢) is added in order to explore unknown
policies: a; = m, (s) + 1 ()

@ The update rule used by the actor is:

if6>0: 7 (s¢) = 7 () + 0 - (ar — Ta (1))

@ This means

e the policy is only updated if an improvement is observed
o the update is proportional to the distance in action space from
the actually taken action g, to the output of the policy 7, (s)
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Continuous Action-Critic Learning Automaton

Critic

@ We have used a standard TD(A) critic, which is similar to
TD(0):

Vi (8/) Vi1 (8:) + (rt + Y*Vt (s1) —V (St—l))
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Computational Experiments

Experiments

@ One experiment with each of the design parameters:

o Experiment A: the reward signal
o Experiment B: the number of features used to approximate the
value function and policy (Gaussian RBF)
o Experiment C: the learning gain o
@ Performance measurement

o Average absolute off-set error:

1 T

er(t) = T _Oex (7).
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Experiment A: reward signals
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Experiment A: results

Average offset error
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Experiment B:

o Different number of features ny to represent both the policy
and the value function: ny = { 10, 25,50 ,75,100 }

Computational Experiments
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Experiment C: learning gain

e Different gains were tested: a = {0.005,0.025,0.05,0.075,0.1}
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Conclusions

o CACLA offers an interesting alternative to classic PID
controllers in feedback control processes

e minimal input required from the designer
e robust behavior to suboptimal parameters
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Appendix

Thanks

Thank you very much for your attention.

o Contact:

Borja Ferndndez Gauna.

Computational Intelligence Group.

University of the Basque Country (UPV/EHU).

E-mail: borja.fernandez@ehu.es

Web page: http://www.ehu.es/computationalintelligence
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