Empirical study of the sensitivity of CACLA to sub-optimal parameter setting in learning feedback controllers

Borja Fernandez-Gauna, Igor Ansoategui, Ismael Etxeberria-Agiriano, Manuel Graña

> Computational Intelligence Group University of the Basque Country (UPV/EHU)

101000100010101010101 SOCO 2013, Salamanca

Outline

- Introduction
- Continuous Action-Critic Learning Automaton
- Computational Experiments
- 4 Conclusions

- Goal: design a feedback controller with minimal input from the designer
 - Typically, manufacturers employ some kind of Proportional Integrative Derivative (PID) controller
 - require manual tuning of parameters
 - Researchers have started using Reinforcement Learning (RL) as an alternative
 - require little input from the designer
 - CACLA is considered the state of the art

$$\ddot{x} = rac{ au}{M \cdot rac{p}{2 \cdot \Pi} + \left(J_c + J_s + J_m
ight)\left(rac{2\pi}{P}
ight)}$$

Control goal

• The goal of the controller is to minimize the error $e_r(t)$ between the position of the table (x) and the setpoint (w(t))

$$e_x(t) = |x(t) - w(t)|$$

Introduction

- General RL methods model environments as MDPs
 - S: set of states (discrete / continuous)
 - A: set of actions (discrete / continuous)
 - P: transition function defined by the model
 - R: reward signal to be maximized, defined by the system designer

Actor-Critic methods

- Two separate learning components are defined:
 - The actor: learns a policy $\pi_a(s)$
 - The critic: estimates the value $\hat{V}_t(s)$ of each state s:

$$\hat{V_t}\left(s
ight)\simeq E^{\pi}\left\{\sum_{k=1}^{\infty}r_{t+k}\gamma^{k-1}\left|s_t=s
ight.
ight\}$$

Actor-Critic methods

- Each time step
 - The actor observes the state s and selects an action following its policy $\pi_a(s)$
 - The critic observes the new state s', receives the reward r_t and updates its value estimate of s
 - The critic sends a critique δ_t to the actor, and the actor updates accordingly its policy $\pi_a(s)$

- Instead of directly using the output of the policy $\pi_a(s)$, some disturbance signal $\eta(t)$ is added in order to explore unknown policies: $a_t = \pi_a(s) + \eta(t)$
- The update rule used by the actor is:

if
$$\delta_t > 0$$
: $\pi_t^a(s_t) \leftarrow \pi_t^a(s_t) + \alpha_t \cdot (a_t - \pi_a(s_t))$

- This means
 - the policy is only updated if an improvement is observed
 - the update is proportional to the distance in action space from the actually taken action a_t to the output of the policy $\pi_a(s)$

Critic

ullet We have used a standard $TD(\lambda)$ critic, which is similar to TD(0):

$$\hat{V}_{t}\left(s_{t}\right) \leftarrow \hat{V}_{t-1}\left(s_{t}\right) + \alpha_{t}\left(r_{t} + \gamma * \hat{V}_{t}\left(s_{t}\right) - \hat{V}_{t}\left(s_{t-1}\right)\right)$$

1 01010101010101010101

- One experiment with each of the design parameters:
 - Experiment A: the reward signal
 - Experiment B: the number of features used to approximate the value function and policy (Gaussian RBF)
 - ullet Experiment C: the learning gain lpha
- Performance measurement
 - Average absolute off-set error:

$$e_T(t) = \frac{1}{T} \sum_{t=0}^{T} e_x(t).$$

◆ロト ◆問ト ◆意ト ◆意ト 夏目 りなの

Experiment A: reward signals

Experiment A: results

Experiment B: number of features

• Different number of features n_f to represent both the policy and the value function: $n_f = \{10, 25, 50, 75, 100\}$

Experiment C: learning gain

 \bullet Different gains were tested: $\alpha = \{0.005, 0.025, 0.05, 0.075, 0.1\}$

Conclusions

- CACLA offers an interesting alternative to classic PID controllers in feedback control processes
 - minimal input required from the designer
 - robust behavior to suboptimal parameters

Thanks

Thank you very much for your attention.

- Contact:
 - Borja Fernández Gauna.
 - Computational Intelligence Group.
 - University of the Basque Country (UPV/EHU).
 - E-mail: borja.fernandez@ehu.es
 - Web page: http://www.ehu.es/computationalintelligence