
GIC Technical Report n. (GIC-RR-2009-11-12) :

Technical report on mathematical and geometric

tools for shape recognition using skeletons

Andoni Beristain Iraola (beristainandoni@yahoo.es) and Manuel Graña

November 2009

Abstract

This document introduces several general knowledge required for the
comprehension of shape recognition using skeletons. Shape skeletons, and
speci�cally the Medial Axis Transform (MAT) is a shape representation
method which permits a compact and accurate description of a shape. If
the Distance Transform function value is also provide for each skeleton
pixel, as it occurs in the case of the MAT, the shape reconstruction from
the skeleton is also possible. Skeleton matching algorithms usually involve
an initial abstraction of the skeleton into an Attributed Skeletal Graph
(ASG), and then graph matching techniques are used in order to obtain
the maximum isomorphism or homomorphism between a sample shape
and a set of template graphs corresponding to the shape classes to be
recognized.

1

Contents

1 Introduction 3

2 Distance Transform function (DT) 4

3 Discrete Curve Evolution (DCE) 6

4 Voronoi Tessellation in R2 8
4.1 Planar Ordinary Voronoi Tessellation/Diagram 8
4.2 Delaunay Triangulation . 9

5 Graph Matching 12
5.1 Introduction . 12
5.2 Isomorphism and Homomorphism Graph Matching 12
5.3 Graph Matching Techniques . 14

5.3.1 Elastic matching . 15
5.3.2 Morphological Graph Matching 15
5.3.3 Graph Edit Distance . 15
5.3.4 Error Correction Graph Matching 16
5.3.5 Other Approaches . 16
5.3.6 Multiple Graph Matching 16

6 Shock Graph 18
6.1 Introduction . 18
6.2 Shapes and shocks . 18
6.3 The Shock Graph . 20
6.4 The Shock Graph Grammar . 20
6.5 Shock Graph Matching . 22
6.6 Shock Graphs to Shock Trees . 22
6.7 The Distance Between Two Vertices 23
6.8 Algorithms for Shock Tree Matching 23

References 27

2

1 Introduction

This document presents several miscellaneous knowledge related to shape recog-
nition based in the Medial Axis and skeletons. Section 2 describes the Dis-
tance Transform function. Section 3 describes a shape boundary curve sampling
method called Discrete Curve Evolution. Section 4 describes the Voronoi Tes-
sellation. Section 5 introduces the di�erent Graph Matching problems and the
related algorithms. And �nally, Section 6 introduces and reviews Shock Graphs.
Most of the sections are introductory, but references to more advanced papers
on each topic are provided.

This information has been gathered during the PhD Thesis work carried out
by Andoni Beristain, and it is an extended version of one of the Appendixes in
his PhD Thesis Report.

3

2 Distance Transform function (DT)

A distance transform, also known as distance transformation, distance map or
distance �eld, is a representation of a digital image. The choice of the term
depends on the point of view on the object in question: whether the initial
image is transformed into another representation, or it is simply endowed with
an additional map or �eld. The map supplies each pixel of the image with the
distance to the nearest obstacle pixel. A most common type obstacle pixel is
a boundary pixel in a binary image. Usually the transform/map is quali�ed
with the chosen metric. For example, one may speak of Manhattan distance
transform, if the underlying metric is Manhattan distance. Common metrics
are:

� Manhattan distance, City block distance or Taxicab geometry (d1). This

distance is de�ned as d (p, q)1 = ‖p, q‖1 =
∑n

i=1 |pi − qi|, where p =
(p1, ..., pn)and q = (q1, ..., qn)are vectors of n dimensions, and |·| is the
absolute value.

� Chessboard distance, Chebyshev distance or Tchebychev distance (d∞).
It is de�ned as dChebyshev (p, q) = maxi (|pi − qi|)

� Chamfer distance, or weighted distance, with weights (a, b)(da,b). Let
r, s ∈ Z2and ρ a sequence of king's moves from p to q. m = number
of isothetic moves; n =number of diagonal moves Then it is de�ned as
da,b (p, q) = minρ (la,b (ρ)) with la,b (ρ) = ma+ nb.

� Euclidean distance. It is de�ned as ‖p, q‖ =
√∑n

i=1 (pi − qi)2
.

Given a binary image, the distance transform function value of an image point
x ∈ R2, denoted as DT (x)is the minimum distance of x to any image back-
ground point. Formally, let a binary image I : R2 → {0, 1}where 0 corresponds
to the background B and 1 to the foreground F (i.e., the shape), and I = B∪F ,
and a distance measure |.|d. Then the distance transform function is a function
DT (x) so that,

DT (x) = min (|x− y|d) s.t. y ∈ B (1)

Initial Distance Transform computation algorithms made use of distance metrics
alternative to the Euclidean in order to improve the e�ciency, e.g., [1, 2, 3, 4].
These distance measures bene�t from the local properties of their metrics to
avoid the global minimization of the distance independently for each pixel. But
the euclidean distance does not have local properties. The main problem of this
alternative metrics is that they are usually less accurate (according to [5] there
is distance measurement error between 40 and 5 percentage with the Euclidean
distance) but also orientation dependent. The most rotational invariant metric
is the Euclidean. Fortunately, actual algorithms like like [6, 7, 8] can compute

4

Figure 1: Example of graphical representation of the Distance Transform func-
tion. The left image represents several connected components in gray, and the
background in black. And the image on the right shows the distance transform
value for each pixel in the left image. Brighter pixel color represents higher
Distance Transform value.

the Euclidean Distance Transform in O (n). For a review on Euclidean Dis-
tance Transform algorithms the reader is referred to [9, 10, 11]. A graphical
representation of this transform can be seen in �g. 1.

Some properties of the Distance Transform Function:

� Its value is positive de�nite, that is d (p, q) ≥ 0, and 0 only when p = q,
∀p, q ∈ S, where S represents the foreground of connected component set
in the image, and it is limited by the width and height of the image.

� It is symmetric, d (p, q) = d (q, p), ∀p, q ∈ S.

� Triangular d (p, q) ≤ d (p, r) + d (r, q) ,∀p, q ∈ S

5

3 Discrete Curve Evolution (DCE)

Discrete Curve Evolution [12], DCE henceforth, is a shape boundary curve
downsampling method that keeps the most meaningful geometrical informa-
tion for shape recognition [13, 14]. Boundary curves of digital binary images
usually include some degree of noise due to the digitization and segmentation
errors. And the set of boundary points usually includes redundant points, or at
least many points which provide very low information for the shape description,
i.e. they have low importance or salience. The main idea of the DCE procedure
is to downsample iteratively the shape boundary curves' point set, removing
the point with less contribution to the global shape at each step of the itera-
tion, therefore reducing the boundary curve complexity while keeping the most
important information of the shape.

Any digital curve can be described as a polygon, with the enough number of
vertices, and the main idea of the DCE procedure consists of removing one edge
of that polygon at each step of the procedure by replacing the two consecutive
segments connected to the point with the global minimum relevance value vmin
by one connecting the two points left after the removal of that vmin.

The salience of each vertex is given by the relevance valueK(Si, Si+1), which
computes the salience of the polygon vertex incident to the consecutive polygon
segments Si and Si+1. It is de�ned as:

K(Si, Si+1) =
β(Si, Si+1)l(Si)l(Si+1)

l(Si) + l(Si+1)
, (2)

where β(Si, Si+1) is the turn angle at the common vertex of segments Si and
Si+1 and l is the length function normalized with respect to the total length
of a polygonal curve C. The value K(Si, Si+1) is directly proportional to the
contribution of the arc Si ∪ Si+1 to the shape. The cost function K(Si, Si+1)
is monotonically increasing with respect to the relative lengths and the total
curvature of segments Si and Si+1

[12]Let Dm = s0, ...sm−1be a decomposition of a digital curve C into consec-
utive digital line segments. The algorithm that computes the decompositions
Dk for each stage of the discrete curve evolution k > 3 until Dk−1is convex is
the following:

This algorithm is guaranteed to terminate because the number of initial seg-
ments is �nite and one segment is removed at each step of the algorithm. It is
also proved in [12] that the DCE procedure converges into a convex polygon.
Although the original algorithm ends when the convexity of the DCE polygon
is achieved, other ending criteria is possible, e.g. de�ning a constant number of
iterations or �nal segment number. In [14] a more sophisticated criteria is em-
ployed based on a threshold value for the di�erence between the original shape
and the DCE approximation.

Properties of the Discrete Curve Evolution procedure:

6

Algorithm 1 Discrete Curve Evolution Algorithm (Dm)
k = m;

Do

Find in (Dk) a pair si , s(i+1)mod(k) such that K(Si, Si+1) is minimal

Dk+1 = Dk with segments si,si+1 replaced by s′ joining the endpoints of
siUsi+1;

k = k − 1;

until Dk−1 is convex;

� It leads to the simpli�cation of shape complexity, in analogy to evolutions
guided by di�usion equations.

� There are no blurring (i.e., shape rounding) e�ects and no dislocation of
relevant features, because vertices do not change their position.

� The relevance value K(Si, Si+1) is stable under deformations on the shape
boundary curves, because noise elimination takes place in the early stages
of the evolution.

� It allows to �nd line segments in geometrical objects even under noisy
images, due to the relevance order of the repeated processes of digital
linearization.

7

4 Voronoi Tessellation in R2

A Voronoi Tessellation, also called Voronoi diagram, Dirichlet diagrams or
Thiessen polygons, is a partition of the space into convex regions called Voronoi
polygons, each around a generator or Voronoi site, (belonging to a �nite set of
points in the space with at least two points), so that the pixels in the Voronoi
polygon o an speci�c Voronoi site are closer to it than to any other Voronoi site.
This partition is illustrated in �gure 2.

The �rst works presenting Voronoi diagrams and many related issues are
those of Peter Gustav Lejeune Dirichlet (1805-1859) [15] and Georgy Fedosee-
vich Voronoy (Georges Voronoi) (1868-1908) [16, 17, 18]. Dirichlet focused his
work in two and three dimensions, while Voronoi generalized his results to arbi-
trary high dimensions. Their concern was with the distribution of points with
integer coordinates that give the minimum of the values of a given quadratic
form. In that context, they considered the set of points regularly placed in the
m-dimensional space generated by linear combinations of M linearly indepen-
dent vectors with integer coe�cients. This set contains in�nitely many points,
and the Voronoi diagram generated by this set of points gives the partition of
the space into mutually congruent polyhedra. One of the �rst and most impor-
tant applications of Voronoi diagrams occurred in meteorology when Thiessen
(1911) [19] used Voronoi regions as an aid to computing more accurate esti-
mates of regional rainfall averages. Whitney (1929) [20] refers to the procedure
as `Thiessen's method' and since then the term Thiessen polygon has remained
a popular one in two-dimensional applications in meteorology, geography and
related social science disciplines.

The Voronoi Tessellation can be computed in O (n log n)[21], but an optimal
lower bound in O (n) is proved to be theoretically feasible in [22], with n being
the number of vi ∈ Vsites. For convex polygons the computational cost is O (n),
as proved by Aggarwal in [23]. Although this tessellation can be generalized
to n-dimensional spaces, this section is focused in the bi-dimensional space.
Next, the Voronoi Tessellation is mathematically de�ned, as well as its dual,
the Delaunay triangulation.

4.1 Planar Ordinary Voronoi Tessellation/Diagram

Planar ordinary Voronoi diagram. Given a set of two or more but a �nite
number of distinct points in the Euclidean plane, we associate all locations
in that space with the closest member(s) of the point set with respect to the
Euclidean distance. The result is a tessellation of the plane into a set of the
regions associated with members of the point set. We call this tessellation the
planar ordinary Voronoi diagram generated by the point set, and the regions
constituting the Voronoi diagram ordinary Voronoi polygons. Mathematically,

Let the Voronoi Tessellation V consists of a decomposition of the image
plane domain D into convex regions around a set of points, the Voronoi sites
Vsites = {v1, ..., vn} , and called Voronoi polygon Vpoly (i). A Voronoi polygon
Vpoly (i) around a Voronoi site vi is de�ned as:

8

Vpoly (i) =
{
x, vi, vj ∈ R2 | ‖x− vi‖ ≤ ‖x− vj‖ ∀vj 6= vi

}
(3)

Then, the Voronoi Tessellation is mathematically de�ned as,

V =
n⋃
i=1

Vpoly (i) = {Vpoly (1) , ..., Vpoly (n)} (4)

Each Voronoi polygon is bounded by several Voronoi segments and vertices.
A Voronoi segment is the locus of the intersection of exactly two and no

more di�erent Voronoi polygons, and it is therefore determined only by two
Voronoi sites. Consequently the Voronoi segment shared by the Voronoi sites vi
and vj , denoted as sij is de�ned by the next equation:

sij = Vpoly (i) ∩ Vpoly (j) (5)

or alternatively,

sij =
{
x ∈ R2 | ‖x− vi‖ = ‖x− vj‖ ∧ ∀k 6= i 6= j, ‖x− vk‖ > ‖x− vi‖

}
(6)

A Voronoi vertex is the intersection of three or more Voronoi polygons. The
set of Voronoi vertices is de�ned as:

T =

x ∈ R2

∣∣∣∣∣∣W ⊂ Vsites ∧ ||W | ≥ 3| s.t. x ∈
⋂

ij,∈W
sij

 (7)

In �g. 2 a graphical representation of a simple planar Voronoi Tessellation
is shown. These de�nitions show that there must be at least two points in order
to compute the Voronoi Tessellation.

4.2 Delaunay Triangulation

A Voronoi diagram has its `dual tessellation', called a Delaunay triangulation,
which is represented in �g. 3. We consider a Voronoi diagram in the Euclidean
plane, and assume that generator points of the Voronoi diagram are not on the
same line, and also that there are at least three Voronoi sites, but they are �nite
3 ≤ |Vsites| <∞, otherwise the Delaunay triangulation is not possible.

To obtain the Delaunay Triangulation from the Voronoi Tessellation, �rst
we choose a Voronoi edge in a Voronoi diagram (the heavy broken line in �g
3(a)). This Voronoi edge is shared by two Voronoi polygons. We join the gen-
erator points (the �lled circles) of these Voronoi polygons by a line segment
(the heavy solid line in �g 3(a)). We carry out this line generation with respect
to all Voronoi edges in the Voronoi diagram. As a result, we obtain a second
tessellation of the convex hull of the generator points (the solid lines in 3(a)).
Another tessellation is shown in �g. 3(b). These two tessellations are di�erent
in that the tessellation in panel (a) consists of only triangles, whereas the tes-
sellation in panel (b) contains a quadrangle. We call the former tessellation a

9

Figure 2: Graphical representation of a simple planar Voronoi Tessellation. v
correspond to Voronoi sites, while x correspond the ordinary points. x′ belongs
to s13.

Delaunay triangulation. The latter is not a triangulation, but since it is to be
triangulated, we call it a Delaunay pretriangulation.

A Delaunay pretriangulation has polygons having four or more vertices.
These non-triangular polygons are decomposed into triangles by non-intersecting
line segments joining the vertices, For example, the quadrangle in �g. 3(b)
with vertices pi1, pi2, pi3, pi4 can be partitioned into two triangles by the seg-
ment pi1pi3 or pi2pi4 obtaining the triangulations in the bottom left and right
pictures, therefore this procedure is not unique and both are valid triangula-
tions. This kind of tessellation is usually called Delaunay Triangulation too,
but in some cases is called degenerate Delaunay triangulation to distinguish it
from the above Delaunay triangulation. If the noncollinearity assumption and
3 ≤ |Vsites| <∞ are not satis�ed, this procedure does not produce triangles but
line segments, or triangles which degenerate into line segments.

Most of the Delaunay triangulation algorithms can perform in O (n · log (n))
time, but in [24] a method is proposed to compute it in expectedO (n) time. And
the conversion between the Voronoi Tessellation and the Delaunay triangulation
can be performed in lineal time (O (n)).

Delaunay edge: Let Vsites be a �nite set of points in a sub-domain Ω2 of the
bi-dimensional space R2. Two points vi and vj are connected by a Delaunay
edge e if and only if there exists a location x ∈ Ω2 which is equally close to vi
and vj and closer to vi, vj than to any other vk ∈ Vsites. The location x is the
center of an circle which passes through the points vi, vj and which contains no
other points vk of Vsites.

10

Figure 3: Delaunay triangulation example. Filled circles correspond to Voronoi
sites, empty circles correspond to Voronoi vertices, dotted lines correspond to
the Voronoi polygons and �lled lines correspond to the delaunay triangulation.
Figure a shows a complete triangulation, while b is a pretriangulation and the
�gures below are two possible �nal Delaunay triangulations computed from b.

eij = ∃x ∈ Ω2 ∧ ‖x− vi‖ = ‖x− vj‖ ∧ ∀k 6= i, j ‖x− vi‖ < ‖x− vk‖ (8)

Delaunay triangle: Let Vsites be a �nite set of points in a sub-domain Ω2

of the bi-dimensional space R2. Three non-collinear points vi, vj , vk form a
Delaunay triangle t if and only if there exists a location x ∈ Ω2 which is equally
close to vi, vj and vk and closer to vi, vj and vk than to any other vm ∈ Vsites.
The location x is the center of only one circle (the circumcircle of t) which passes
through the points vi, vj , vk and which contains no other points vm ∈ Vsites.

tijk = ∃x ∈ Ω2∧‖x− vi‖ = ‖x− vj‖ = ‖x− vk‖∧∀m 6= i, j, k ‖x− vi‖ < ‖x− vm‖
(9)

11

5 Graph Matching

Most of the information contained in this section has been summarized from
chapters 2 and 6 of the thesis work by Bengoetxea [25]. For more detailed
explanations the user is referred to that work.

5.1 Introduction

Let G (V,E) be a graph where V is the set of vertices or nodes and E → V × V
(also de�ned as E[V]2 in the literature) is the set of edges (also known as arcs,
links or lines). The order (or size) of a graph G is de�ned as the number of
vertices of G and it is represented as |V | and the number of edges as|E|, or
also |G| and ‖G‖ . If two vertices in G, sayu, v ∈ V , are connected by an
edge e ∈ E, this is denoted by e = (u, v) and the two vertices are said to
be adjacent or neighbors. Edges are said to be undirected when they have
no direction, and a graph G containing only such types of graphs is called
undirected. When all edges have directions and therefore (u, v) and (v, u) can
be distinguished, the graph is said to be directed. Usually, the term arc is used
when the graph is directed, and the term edge is used when it is undirected. In
addition, a directed graph G = (V,E) is called complete when there is always
an edge(u, u′) ∈ E = V × V between any two vertices u, u′ in the graph. A
graph G′ (V ′, E′) is called a subgraph of G (V,E) if V ′ ⊆ V and E′ ⊆ E.

Graph vertices and edges can also contain information. When this infor-
mation is a simple label (i.e. a name or number) the graph is called labeled

graph. Other times, vertices and edges contain some more information. When
only nodes include attributes the graph is said to be vertex-attributed, or sim-
ply an attributed graph and when only the edges are attributed it is called
edge-attributed or weighted graph. When both edge and vertex attributes are
present, the graph is called an attributed relational graph.

A path between any two vertices u, u′ ∈ V is a non-empty sequence of k
di�erent vertices < v0, v1, ..., vk > where u = v0, u′ = vk and (vi=1, vi) ∈ E, i =
1, 2, ..., k. Finally, a graph G is said to be acyclic when there are no cycles
between its edges, independently of whether the graph G is directed or not. An
example of a graphical representation of a graph is shown in �g. 4

5.2 Isomorphism and Homomorphism Graph Matching

The graph matching problem, applied to recognition, consists of obtaining the
minimum distance between a sample graph Gs and a set of template graphs
GT =

{
GT0 , ..., GTp

}
corresponding to the classes, i.e. the similarity value be-

tween them. The similarity or best correspondence of a graph matching problem
is de�ned as the optimum of some objective function which measures the simi-
larity between matched vertices and edges. This objective function is also called
�tness function. This similarity between two graphs is usually asymmetric in
the way that d (G1, G2) 6= d (G2, G1). In those cases the maximum or average
distance is used. The �tness function can consider several information sources:

12

Figure 4: Example of non directed cyclic labeled graph. The circles represent the
nodes and the lines represent the links. The numbers in the nodes correspond
to their labels.

it can use only the information of the correctly matched vertices, or include
the similarity between the labels in the matched vertices too; it can discard
graph edge information of those matchings involving n node in the sample to
the same node in the model; and it can also use a function based in distribution
divergence, which requires the creation of a new graph model using probability
parameters.

Formally, given two graphs Gs = (Vs, Es) and GTi = (VTi , ETi), with |Vs| =
|VTi
|, the graph matching problem is to �nd a one-to-one mapping f : Vs → VTi

such that(u, v) ∈ Es iff (f (u) , f (v)) ∈ ETi
. When such a mapping f exists,

this is called an isomorphism, and Gs is said to be isomorphic to GTi
. This type

of problems is said to be exact graph matching.
The term inexact applied to some graph matching problems means that it

is not possible to �nd an isomorphism between the two graphs to be matched.
This is the case when the number of vertices is di�erent in both the model and
data graphs. This may be due to the schematic aspect of the model and the
di�culty to segment accurately the image into meaningful entities. Therefore,
in these cases no isomorphism can be expected between both graphs, and the
graph matching problem does not consist in searching for the exact way of
matching vertices of a graph with vertices of the other, but in �nding the best
matching between them. This leads to a class of problems known as inexact

graph matching, or homomorphism. In that case, the matching procedure aims
at �nding a non-bijective correspondence between a data graph and a model
graph. In an inexact graph matching problem the goal is to �nd a mapping
f ′ : Vs → VTi such that (u, v) ∈ Es iff (f (u) , f (v)) ∈ ETi , assuming that
|VTi
| < |Vs|. This corresponds to the search for a small graph within a big one.

An important sub-type of these problems are sub-graph matching problems, in
which we have two graphs G = (V,E) and G′ = (V ′, E′), where V ′ ⊆ V and
E′ ⊆ E, and in this case the aim if to �nd a mapping f ′ : V ′ → V such that
(u, v) ∈ E′ i� (f (u) , f (v)) ∈ E. When such a mapping exists, this is called a
subgraph matching or subgraph isomorphism.

13

Figure 5: Graph matching type classi�cation

The classi�cation of the di�erent graph matching problems is graphically
shown in �g. 5.

5.3 Graph Matching Techniques

A Graph matching algorithm should met this characteristics according to [25]:

1. Its similarity value should increase as the solutions approaches to the
optimal, and should avoid local maximas.

2. It should avoid ambiguity, i.e. di�erent samples should have di�erent
values.

3. It should take into account only the most relevant attributes of the nodes
and links. And in most of cases give di�erent weights to the similar-
ity measure among nodes and among links, because links usually contain
more relevant information about the relationship between parts than in-
formation about the regions themselves.

4. It should be easy and computationally e�cient.

Unfortunately, graph matching problems are known to be NP-complete, with an
increasing complexity starting by exact isomorphism, following with subgraph
isomorphism and �nishing with attributed graph and sub-graph homomorphism
matching which are the most complex. Consequently the e�ciency of graph
matching algorithms is one of the most important goals, including many heuris-
tics, and even trying to transform the graph into a rooted tree when possible,
because its lower matching complexity.

14

Graph Matching using dummy nodes is a special case of the exact graph
matching, when |G1| 6= |G2|. In such cases arti�cial nodes can be added, so
that |G1| = |G2| , and given values such that the similarity between nodes is
very low, to penalize their use in the matching process. It is a one-to-one graph
vertex matching, although it is also a homomorphic graph matching, just in the
limit with the isomorphic graph matching procedure. It is less computationally
complex than conventional many-to-many graph node matching procedures, i.e.
graph homomorphic matching, but imposes much more restrictions to the graphs
being matched.

Some other graph matching problems allow many-to-many matches, that
is, given two graphsGTi

= (VTi
, ETi

) and Gs = (Vs, Es), the problem consists
on searching for a homomorphism f : Vs → W where W ∈ P (VTi) \ {Ø}
and W ⊆ VTi . In case of using also dummy vertices, W can take the value
/O and therefore W ∈ P (VTi

). This type of graph matching problems are more
di�cult to solve, as the complexity of the search for the best homomorphism has
much more combinations and therefore the search space of the graph matching
algorithm is much bigger.

5.3.1 Elastic matching

Elastic graph matching is a graph representation and matching technique that
takes into account the possible deformation of objects to be recognized. It
usually consists of two steps. First of all both graphs are matched with a
rigid grid, and then the grid is deformed, permitting certain �exibility. In
shape matching, the second step permits certain deformation, rotation and scale
between the template and the sample. In a [26] several algorithms of this type
are compared in a practical problem.

5.3.2 Morphological Graph Matching

Morphological graph matching applies hyperplanes or deformable spline-based
models to the skeleton of non-rigid discrete objects. The graph is built from
the most salient point set in the skeleton. Partial shape recognition is possible
interactively de�ning shape features using a sub-graph matching algorithm.

5.3.3 Graph Edit Distance

The graph edit distance between two graphs is de�ned as the number of modi�-
cations that one has to undertake to arrive from one graph to be the other. The
distance between two graphs is de�ned as the weighted sum of the costs of edit
operations (insert, delete, and relabel the vertices and edges) to transform one
graph to the other. The fact of applying these concepts and removing vertices
or edges in graphs is analyzed in many works, as removal will lead to smaller
graphs and therefore the graph matching problem can be reduced in complexity.

15

5.3.4 Error Correction Graph Matching

In error-correcting graph matching (or error-tolerant graph matching as it is
also called) one considers a set of graph edit operations, and de�nes the edit
distance of two graphs G1 and G2 as the shortest (or least cost) sequence of
edit operations that transform G1 into G2 . Error-correcting graph matching
is a powerful concept that has various applications in pattern recognition and
machine vision, and its application is focused on distorted inputs. It constitutes
a di�erent approach very similar to other graph matching techniques. In [27]
this topic is addressed and a new distance measure on graphs that does not
require any particular edit operations is proposed. This measure is based on
the maximal common subgraph of two graphs. A general formulation for error-
correcting subgraph isomorphism algorithms is presented in [28] in terms of
adjacency graphs, and [29] presents a study on the in�uence of the de�nition of
�tness functions for error correcting graph matching.which reveals guidelines for
de�ning �tness functions for optimization algorithms in error correcting graph
matching. In addition, in [30] an algorithm for error-correcting subgraph iso-
morphism detection from a set of model graphs to an unknown input graph is
introduced.

5.3.5 Other Approaches

Many other techniques have been applied to the graph matching problem. Evo-
lutionary algorithms, and speci�cally genetic algorithms [31, 32, 33], and the
use of techniques based on probability theory [34, 35, 36], including the appli-
cation of probabilistic relaxation to graph matching [37] and the Expectation
Maximization (EM) algorithm [38]. Decision trees have aso been used for graph
matching like in [39], Neural Networks [40, 41], clustering techniques [42], etc
[43, 44, 45, 46, 47, 30].

5.3.6 Multiple Graph Matching

Sometimes a sample graph Gs has to be compared against a whole database
of graphs representing di�erent classes GT =

{
GT0 , ..., GTp

}
. In such cases,

the goal is to �nd the model template more similar to the sample graph, i.e.
d (Gs, GT) = min0≤i≤p d (Gs, GTi

), and assign that graph template class GTi
to

the input sample Gs. And that minimum distance d (Gs, GTi) also gives a mea-
sure the di�erence between the input sample and the assigned class. Comparing
this measure to the distance with the second and third most similar graph tem-
plate classes, also gives a con�dence measure of the class assignment.

Obtaining the most similar graph template class initially requires to com-
pute the similarity between the sample graph and every graph template in the
database, which requires a high computational cost as the size of the database
increases. In order to minimize the cost of this procedure, graph template in-
dexing can be performed over the database avoiding to compute every similarity
measure. Graphs in the database are structured as a decision tree, where sev-
eral steps analyzing di�erent speci�c characteristics of the input sample graph

16

discard part of the database at each step. The process ends when only the X
most similar graphs in the database remain similar. If X = 1 only one graph
template and the similarity value is returned, and otherwise a ranking of the
X graph is provided in descending order of the similarity. In [48] a attributed
graph database indexing is proposed.

17

6 Shock Graph

6.1 Introduction

A Shock graph is a shape representation method. It is based in the Medial
Axis but includes additional information, producing a graph representation of
the shape which keeps global and local information of the shape, but also the
relationship between parts. The main goals of this representation are:

� Viewpoint independent to start.

� Generic, in the sense that a notion of equivalence classes of qualitatively
similar shapes emerges (e.g., hands, houses,...).

� Applicable to natural as well as man-made objects (i.e., amorphous against
regular shaped objects).

� Reliably and stably computable.

� Supporting e�cient (e.g., polynomial-time) recognition in the presence of
occlusion and noise.

� Places special importance on certain boundary segments.

Figure 6: Shock Graph example

6.2 Shapes and shocks

Shocks [49] are entropy satisfying entities, and the locus of shock positions forms
the Blum's Medial Axis. The categorization of shocks according to the local
variation of the radius function along the medial axis produces a labeled Medial
Axis which provides a much richer shape descriptor than an unlabeled skeleton.
To illustrate the labeling, imagine traversing a path along the medial axis. At
a 1-shock the radius varies monotonically, as is the case for a protrusion. At a

18

2-shock the radius function achieves a strict local minimum such that the medial
axis is disconnected when the shock is removed, e.g., at a neck. At a 3-shock
the radius function is constant along an interval, e.g., for a bend with parallel
sides. Finally, at a 4-shock the radius function achieves a strict local maximum,
as is the case when the evolving curve annihilates into a single point or a seed.
A visual representation of each category can be seen in �gure 7.

Formally, this medial axis labeling based in shock categories is de�ned as
follows. Let X be the open interior of a simple closed curve, and Me (X)its
medial axis (the set of points reached simultaneously by two or more �re fronts).
Let B (x, ε) be an open disk of radius ε centered at x ∈ X, and let R (x)denote
the radius of the largest such disk contained in X. Let N (x, ε) = Me (X) ∩
B (x, ε)\{x}de�ne a �punctured� ε-neighborhood of x, one that does not contain
x itself. A medial axis point x ∈Me (X) is

1. Type 4 if ∃ε > 0 s.t. R (x) > R (y) ∀y ∈ N (x, ε) ;

2. Type 3 if ∃ε > 0 s.t. R (x) = R (y) ∀y ∈ N (x, ε) and N (x, ε) 6= 0;

3. Type 2 if ∃ε > 0 s.t. R (x) < R (y) ∀y ∈ N (x, ε) and N (x, ε) 6= 0 and
N (x, ε) is not connected; and

4. Type 1 otherwise.

It should be clear that there is a relationship between the above labeling and
the velocity function dR

dx along the Medial Axis [50].

Figure 7: Shock categories. First-order(1-shock): derives from a protrusion, and
traces out a curve segment of �rst-order shocks. Second-order (2-shock): arises
at a neck, and is immediately followed by two 1-shocks �owing away from it in
opposite directions. Third-order (3-shock): correspond to an annihilation into
curve segment due to a bend. Fourth-order (4-shock): an annihilation into a
point or a seed. The loci of these shocks gives Blum's Medial Axis.

19

6.3 The Shock Graph

It is an abstract representation of the shocks in a Medial Axis. The shock types
will label each vertex in the graph and the shock formation times (i.e. maximal
disk radius or Distance Transform function value) will direct edges to provide
an ordering for matching, and a basis for subgraph approximation.

By the shock labeling in the previous section it can be seen that 2-shocks
and 4-shocks are isolated points, whereas 1-shocks and 3-shocks are neighbored
by other shocks of the same type. To build the shock graph shocks of the same
type that form a connected component shall be grouped together, denoting the
groups with labels 1̃, 2, 3̃,4,1 and breaking apart 1̃'s at points with three or more
generative points (i.e., the points where its maximal disk touches the shape
boundary curve). Let each shock group be indexed by a distinct integer i and
let ti denote its time (or times) of formation (i.e., distance transform function
value or minimum distance to a shape boundary curve point), corresponding to
the radius function evaluated at the shocks in the group. Hence, ti will be an
interval for a 1̃; for 2's, 3̃'s (i.e., it is a set but all have the same value) and 4's it
will be a single number. Finally, let # denote a start symbol and Φ a terminal
symbol. The Shock Graph (SG) is a connected graph, rooted at a vertex labeled
#, such that all other (non-terminal) vertices are shock groups, and directed
edges to non-terminal vertices indicate the genesis of new shock groups.

Formally a Shock Graph of a 2-D shape, SG (O), is a labeled graph G =
(V,E, γ), with:

� vertices V = {1, ..., n} ;

� edges (i, j) ∈ E ⊆ V × V directed from vertex i to vertex j if and only if
i 6= j, ti ≥ tj , and i ∪ j is connected in the plane;

� labels γ : V → l, with l ∈
{

1̃, 2, 3̃, 4,#,Φ
}

; and

� topology such that, ∀j ∈ V with γ (j) 6= #,∃i ∈ V with (i, j) ∈ E

The SG is built in descendant order of the tivalues, the distance transform
values, because the shocks with higher values correspond to the most signi�cant
(central) features. The graph is rooted in the unique vertex labeled #, having
as children the last shock groups formed during the grass-�re analogy, i.e., the
shock group with the biggest maximal disk. And vertices with label Φ are leaves
of the SG, whose parents are the �rst shock groups to form. Any 2D shape O
has a unique corresponding shock graph SG (O). This uniqueness is proved in
[51]. An example of this representation is shown in �g. 6.

6.4 The Shock Graph Grammar

The set of rules presented in the previous section have been grouped according
to the semantic processes that they characterize, i.e., the birth, combination
and death of shock groups, obtaining a small set of rules shown in �gure 8.

1 ·̃stands for a set of points, and the rest cases represent one single point.

20

The Shock Graph Grammar, SGG, is a quadruple G (V,Σ, R, S), with

1. V =
{

1̃, 2, 3̃, 4,#,Φ
}
, the alphabet;

2. Σ = {Φ}, the set of terminals;

3. S = #, the start symbol; and

4. R = {R1, ..., R10}, the set of rules given in �gure 8.

The grammar in �gure 8 operates by beginning at the start symbol # and
repeatedly replacing the left-hand side of a rule by the corresponding right-
hand side until no further replacements can be made [52]. The rewrite rules of
the Shock Graph Grammar are su�cient to derive the shock graph of any 2D
shape O.

Several consequences of these de�nition:

� Since the same shock cannot be born at two distinct times there exists
no path from a vertex back to itself. Consequently, the Shock Graph is
a directed acyclic graph (DAG). The problem of searching into acyclic
graphs is computationally much simpler than in graphs with cycles on it.

� Since there exist rules in the SGG whose left-hand sides do not consist of
single nonterminals, the SGG is not context-free.

� The rewrite rules indicate that a 2-shock and a 4-shock can only be added
by rules 5 and 1 respectively, and that semantically equivalent rules exist
for a 3̃(rules 6 and 1). Hence, a 2-shock and a 4-shock are each semantically
equivalent to a 3̃ in a speci�c context. Following this observation, only
label types 1̃and 3̃ have been explicitly assigned. A 3̃ with a parent 1̃ at
each end acts as a 2 (a neck), and a 3̃ with a # as a parent acts as a 4
(seed).

Later in [53] a modi�cation of this grammar is proposed in order to include
joint points (points where three or more skeleton branches intersect), since they
are usually located in the internal part of the skeleton. Consequently they are
usually more stable under noise on the boundary curves, so their representation
is proved to be more stable under noise than the original de�nition. Because
the points of type 2 and 4 are always isolated points and not point sets, they
ignore them in their grammar. Their grammar is V (1, 3, ·, S, T), where �1� and
�3� correspond to 1-shock and 3-shock groups, � ·� refers to a joint point, and
symbols �S� and �T � correspond to the root and leave nodes respectively. Set∑

= {T} contains terminal of the grammar and set R contains rules of the new
grammar given in �g. 9. Set S = {s} contains start symbol of the grammar.

Each joint point is assigned to a joint node so that all of the end nodes are
children of the root node, and the root node has only children of type joint node.
Then, for each end point �a� on the skeleton trace skeletal curves branching out
from it with identical speed and place shock groups as children of the end node
�a�. Direction of tracing always is from end points to the terminal points or

21

other end points. Tracing is stopped at terminal points or when two tracer
agents started from two distinct end points, reach to a common shock group. In
the last case, common shock group is placed as the child of the two end nodes
twice. An example of this kind of shock graph is shown in �g. 10.

6.5 Shock Graph Matching

Given two shock graphs, one representing an object in the scene (V2) and one
representing class template object (V1), we seek a method for computing their
similarity. Unfortunately, due to occlusion and clutter, the shock graph repre-
senting the scene object may, in fact, be embedded in a larger shock graph rep-
resenting the entire scene. Therefore, we have a largest subgraph isomorphism
problem, stated as follows: Given two graphs G = (V1, E1) and H = (V2, E2),
�nd the maximum integer k, such that there exists two subsets of cardinal-
ity k, E′1 ⊆ E1 and E′2 ⊆ E2, and the induced subgraphs G′ = (V1, E

′
1) and

H ′ = (V2, E
′
2), are isomorphic. Moreover, since shock graphs are labeled graphs,

consistency between node labels must be enforced in the isomorphism.
This graph matching problem is know to be NP-hard for general graphs [54],

however, polynomial time algorithms exist for the special case of �nite rooted
trees [55, 56, 57]. In the next section a method is presented to obtain a unique
rooted tree from a shock graph, to improve the e�ciency of the matching pro-
cedure while keeping consistency. In addition, a depth-�rst search is performed
on the underlying shock trees, to perform a matching beginning with the most
meaningful parts of the shape towards its details.

6.6 Shock Graphs to Shock Trees

This section presents a method to convert a DAG representing a shock graph
into a unique vertex labeled rooted tree whose size is polynomially bounded by
the size of the original shock graph.

Let G = (V,E) be a DAG representing a shock graph on n vertices. A loop
L is a subgraph of G formed by the intersection of two directed paths. more
formally, L originates at a vertex b, follows two paths P1 and P2, and ends at
the vertex t. We denote b as the base of L, t as the tip of L, and P1 and P2 the
wings of L. Due to the shock graph grammar rules the authors of [51] conclude
that the tips of all loops are adjacent to nodes having type Φ in G, and each
such tip participates in exactly one loop.

The reduction can be obtained therefore as follows. For each tip node t
duplicate copies t1 and t2 are maintained, and L is rede�ned to be the union of
b and two new disjoint paths P ′1 = P1 ∪ {t1} ∪ {Φ}and P ′2 = P2 ∪ {t2} ∪ {Φ}.
This reduction is unique and produces a directed, or equivalently, a rooted tree.
This reduction can be computed in linear time, since G has only O (n) tips, and
as it is derived from the SGG, consists of checking the in-degree of any 3̃'s and
2's, and duplicate them if necessary.

22

6.7 The Distance Between Two Vertices

Since both shock graphs and trees are labeled, part of the matching procedure
includes node label matching, which corresponds to the geometrical properties
of shape parts. In this particular case nodes are shock sequences, which are
compared one to one. Each shock in labeled by its position, its time of formation
(i.e., maximal disk radius), and its direction of �ow (or orientation in the case
of 3̃'s) using the shock detection algorithm in [58].

The main idea is to interpolate a low dimensional curve through their re-
spective shock trajectories, and assign a cost C (u, v) to an a�ne transformation
that aligns one interpolated curve with the other.

Assume that S and S′ are two (sampled) shock sequences of the form S =
(s1, ..., sp) and S′ =

(
s′1, ..., s

′
p

)
, where each shock point siis represented by a

4-tuple (x, y, t, α) , corresponding to its Euclidean coordinates (x, y), formation
time t, and direction α. For samples from a 1̃, the sequence is ordered by time of
formation, while for a 3̃ there is a partial order to the samples, but no preferred
direction. In the latter case, both directions will have to be tried. In order to
�nd the 4D-simplex corresponding to the basis for the a�ne transformation (in
a 4D space) between the two sets, they choose three equidistant points on the
chains formed by partial orders (s1 ≺ ... ≺ sp) and

(
s′1 ≺ ... ≺ s′q

)
. To preserve

the partial order of the points in each sequence, s1should be transferred to s′1,
and sp to s

′
q.

Let (A,B) be the transformation pair for this partial order and, without
loss of generality, assume that p ≤ q. They apply the transformation (A,B) to
sequence S to form the sequence Ŝ = (ŝ1, ..., ŝp). Once the curves Ψ

(
Ŝ
)
and

Ψ (S′), which denote the interpolated 4D curves passing through the points of
the sets Ŝ and S′, are de�ned, the Hausdor� distance measure is computed
between them,

∆
(

Ψ
(
Ŝ
)
,Ψ (S′)

)
=
∑
x∈Ŝ

inf
y∈Ψ(S′)

‖x− y‖2 +
∑
x∈S′

inf
y∈Ψ(Ŝ)

‖x− y‖2 (10)

6.8 Algorithms for Shock Tree Matching

In the original paper describing shape recognition based in Shock Graphs and
Medial Axis [51] a depth-�rst algorithm is used to obtain the maximum subgraph
correspondence between two Shock Graphs in their tree form. Depth-�rst is an
algorithm for traversing or searching a tree, tree structure, or graph. One starts
at the root (selecting some node as the root in the graph case) and explores
as far as possible along each branch before backtracking. See �g. 11 for a
graphical representation of the order followed by this procedure. It is therefore
an exhaustive exploration paradigm.

Later, Sebastian et al. [59] proposed the use of the edit distance, which is
a way to measure the minimum deformations needed to transform each of the
shock graphs into the other. This creates a high dimensional search space. They

23

de�ne a shape cell as a collection of shapes which have identical shock graph
topology, and a shape deformation bundle is the set of one-parameter families of
deformations passing through an identical sequence of shock transitions. Using
this two de�nitions the search space is partitioned and discretized into cells and
the transitions between them are limited to the most simple, the one which
includes less cells. In order to obtain this sequence, intermediate shock graphs
between both graphs are computed.

24

Figure 8: The Shock Graph Grammar, SGG. Dashed lines partition distinct
ends of a 3̃. The rules are grouped according to the di�erent semantic processes
(on the left) that they characterize. Note that the grammar is not context-free,
e.g., rule 3 indicates that a 1̃ can only be added onto an end of a 3̃ that has no
parent 1̃.

25

Figure 9: Shock Grammar modi�cation by [53]

Figure 10: Shock graph example using the modi�ed Shock Grammar in [53]

Figure 11: Example of tree traversing order by depth-�rst procedure. Image
courtesy of the Wikipedia

26

References

[1] G. Borgefors, �Distance transformations in digital images,� Comput. Vision

Graph. Image Process., vol. 34, no. 3, pp. 344�371, 1986. 2

[2] A. M. Vossepoel, �A note on �distance transformations in digital images",�
Comput. Vision Graph. Image Process., vol. 43, no. 1, pp. 88�97, 1988. 2

[3] A. L. D. Beckers and A. W. M. Smeulders, �A comment on �a note on `dis-
tance transformations in digital images� ',� Comput. Vision Graph. Image

Process., vol. 47, no. 1, pp. 89�91, 1989. 2

[4] I. Sintorn and G. Borgefors, �Weighted distance transforms in rectangular
grids,� Image Analysis and Processing, International Conference on, vol. 0,
p. 0322, 2001. 2

[5] F. Leymarie and M. Levine, �Simulating the grass�re transform using an
active contour model,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,
no. 1, pp. 56�75, 1992. 2

[6] A. Meijster, J. Roerdink, and W. H. Hesselink, �A general algorithm for
computing distance transforms in linear time,� inMathematical Morphology

and its Applications to Image and Signal Processing. Kluwer, 2000, pp.
331�340. 2

[7] Y. Lucet, �A linear euclidean distance transform algorithm based on the
linear-time legendre transform,� in CRV '05: Proceedings of the 2nd Cana-

dian conference on Computer and Robot Vision. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 262�267. 2

[8] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, �Linear time euclidean
distance transform algorithms,� IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 17, pp. 529�533, 1995. 2

[9] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, �2d euclidean dis-
tance transform algorithms: A comparative survey,� ACM Comput. Surv.,
vol. 40, no. 1, pp. 1�44, 2008. 2

[10] I. Ragnemalm, �The euclidean distance transform,� Linköping Studies in
Science and Technology - Dissertations - No.304, Linköping University,
Dept. of Electrical Engineering, Linköping, Sweden, 1993, 276 pages. 2

[11] F. Shih, Image Processing and Mathematical Morphology. CRC Press,
Inc., 2009, ch. 6. Distance Transformation, pp. 127�181. 2

[12] L. J. Latecki and R. Lakämper, �Convexity rule for shape decomposition
based on discrete contour evolution,� Comput. Vis. Image Underst., vol. 73,
no. 3, pp. 441�454, 1999. 3, 3, 3

27

[13] ��, �Shape similarity measure based on correspondence of visual parts,�
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1185�1190,
2000. 3

[14] ��, �Application of planar shape comparison to object retrieval in image
databases,� Pattern Recognition, vol. 35, pp. 15�29, 2002. 3, 3

[15] G. Dirichlet, �Uber die reduction der positeven quadrastischen formen mit
drei unbestimmten ganzen zahlen,� Journal of fur die Reine und Ange-

wandte Mathematik, vol. 40, pp. 209�234, 1850. 4

[16] G. Voronoi, �Nouvelles applications des paramètres continus à la théorie des
formes quadratiques premier mémoire: sûr quelques propriétés des formes
quadratiques positives parfaits,� Journal für die Reine und Angewandte

Mathematik, vol. 133, pp. 97�178, 1907. 4

[17] ��, �Nouvelles applications des paramètres continus à la théorie des
formes quadratiques deuxième mémoire: Recherches sûr les parallélloèdres
primitives,� Journal für die Reine und Angewandte Mathematik, vol. 134,
pp. 198�287, 1908. 4

[18] ��, �Nouvelles applications des paramètres continus à la théorie des
formes quadratiques deuxième mémoire: Recherches sûr les parallélloèdres
primitives, second partie: Domaines de formes quadratiques correspondant
aux di�érent types de parallélloèdres primitives,� Journal für die Reine und
Angewandte Mathematik, vol. 136, pp. 67�181, 1909. 4

[19] A. Thiessen, �Precipitation averages for large areas,� Monthly Weather Re-

view, vol. 39, pp. 1082�1084, 1911. 4

[20] E. Whitney, �Areal rainfall estimates,� Monrhly Weather Review, vol. 57,
pp. 462�463, 1929. 4

[21] F. Aurenhammer, �Voronoi diagrams�a survey of a fundamental geometric
data structure,� ACM Comput. Surv., vol. 23, no. 3, pp. 345�405, 1991. 4

[22] B. Aronov, �A lower bound on voronoi diagram complexity,� Inf. Process.
Lett., vol. 83, no. 4, pp. 183�185, 2002. 4

[23] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor, �A linear time algorithm for
computing the voronoi diagram of a convex polygon,� in STOC '87: Pro-

ceedings of the nineteenth annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1987, pp. 39�45. 4

[24] K. Buchin, �Delaunay triangulations in linear time? (part i),� CoRR, vol.
abs/0812.0387, 2008. 4.2

[25] E. Bengoetxea, �Inexact graph matching using estimation of distribution
algorithms,� Ph.D. dissertation, Ecole Nationale Supérieure des Télécom-
munications, Paris, France, 2003. 5, 5.3

28

[26] N. Joshi, G. Sita, A. G. Ramakrishnan, and S. Madhvanath, �Comparison
of elastic matching algorithms for online tamil handwritten character recog-
nition,� in IWFHR '04: Proceedings of the Ninth International Workshop

on Frontiers in Handwriting Recognition. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 444�449. 5.3.1

[27] H. Bunke and K. Shearer, �A graph distance metric based on the maximal
common subgraph,� Pattern Recogn. Lett., vol. 19, no. 3-4, pp. 255�259,
1998. 5.3.4

[28] J. Lladoós, E. Martí, and J. J. Villanueva, �Symbol recognition by error-
tolerant subgraph matching between region adjacency graphs,� IEEE

Trans. Pattern Anal. Mach. Intell., vol. 23, no. 10, pp. 1137�1143, 2001.
5.3.4

[29] H. Bunke, �Error correcting graph matching: On the in�uence of the under-
lying cost function,� IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 21, no. 9, pp. 917�922, 1999. 5.3.4

[30] B. Messmer and H. Bunke, �A new algorithm for error-tolerant subgraph
isomorphism detection,� IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 20, no. 5, pp. 493�504, 1998. 5.3.4, 5.3.5

[31] K. G. Khoo and P. N. Suganthan, �Evaluation of genetic operators and so-
lution representations for shape recognition by genetic algorithms,� Pattern
Recogn. Lett., vol. 23, no. 13, pp. 1589�1597, 2002. 5.3.5

[32] S. Auwatanamongkol, �Inexact graph matching using a genetic algorithm
for image recognition,� Pattern Recogn. Lett., vol. 28, no. 12, pp. 1428�1437,
2007. 5.3.5

[33] R. Myers and E. R. Hancock, �Genetic algorithms for ambiguous labelling
problems,� in EMMCVPR '97: Proceedings of the First International

Workshop on Energy Minimization Methods in Computer Vision and Pat-

tern Recognition. London, UK: Springer-Verlag, 1997, pp. 345�360. 5.3.5

[34] E. Hancock and J. Kittler, �Edge-labeling using dictionary-based relax-
ation,� IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 2, pp. 165�181, 1990. 5.3.5

[35] J. Kittler, W. Christmas, and M. Petrou, �Probabilistic relaxation for
matching problems in computer vision,� in Computer Vision, 1993. Pro-

ceedings., Fourth International Conference on, May 1993, pp. 666�673.
5.3.5

[36] L. B. Shams, M. J. Brady, and S. Schaal, �Graph matching vs mutual in-
formation maximization for object detection,� Neural Netw., vol. 14, no. 3,
pp. 345�354, 2001. 5.3.5

29

[37] R. Wilson and E. Hancock, �Structural matching by discrete relaxation,�
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19,
no. 6, pp. 634�648, Jun 1997. 5.3.5

[38] H.-Y. Kim and J. H. Kim, �Hierarchical random graph representation of
handwritten characters and its application to hangul recognition,� Pattern
Recognition, vol. 34, pp. 187�201, 2001. 5.3.5

[39] K. Shearer, H. Bunke, and S. Venkatesh, �Video indexing and
similarity retrieval by largest common subgraph detection using decision
trees,� Pattern Recognition, vol. 34, no. 5, pp. 1075 � 1091,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V14-42810JK-C/2/97ba992f6082cb8d8b267ac80fc327ad 5.3.5

[40] D. Rivière, J.-F. Mangin, D. Papadopoulos-Orfanos, J.-M. Martinez,
V. Frouin, and J. Régis, �Automatic recognition of cortical sulci using a
congregation of neural networks,� inMICCAI '00: Proceedings of the Third

International Conference on Medical Image Computing and Computer-

Assisted Intervention. London, UK: Springer-Verlag, 2000, pp. 40�49.
5.3.5

[41] D. Rivière, J. Mangin, D. Papadopoulos-Orfanos, J. Martinez, V. Frouin,
and J. Régis, �Automatic recognition of cortical sulci of the human brain
using a congregation of neural networks,� Elsevier, Medical Image Analysis,
vol. 6, p. 7792, 2002. 5.3.5

[42] A. Sanfeliu, R. Alquézar, and F. Serratosa, �Clustering of attributed graphs
and unsupervised synthesis of function-described graphs,� Pattern Recog-

nition, International Conference on, vol. 2, p. 6022, 2000. 5.3.5

[43] T. Caelli and S. Kosinov, �An eigenspace projection clustering method for
inexact graph matching,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,
no. 4, pp. 515�519, 2004. 5.3.5

[44] S. Medasani, R. Krishnapuram, and Y. Choi, �Graph matching by relax-
ation of fuzzy assignments,� Fuzzy Systems, IEEE Transactions on, vol. 9,
no. 1, pp. 173�182, Feb 2001. 5.3.5

[45] Y. Keselman, A. Shokoufandeh, M. Demirci, and S. Dickinson, �Many-
to-many graph matching via metric embedding,� in Computer Vision and

Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Con-

ference on, vol. 1, June 2003, pp. I�850�I�857 vol.1. 5.3.5

[46] A. Hlaoui and S. Wang, �A new algorithm for inexact graph matching,� in
Pattern Recognition, 2002. Proceedings. 16th International Conference on,
vol. 4, 2002, pp. 180�183 vol.4. 5.3.5

[47] M. A. Eshera and K. S. Fu, �An image understanding system using
attributed symbolic representation and inexact graph-matching,� IEEE

Trans. Pattern Anal. Mach. Intell., vol. 8, no. 5, pp. 604�618, 1986. 5.3.5

30

http://www.sciencedirect.com/science/article/B6V14-42810JK-C/2/97ba992f6082cb8d8b267ac80fc327ad
http://www.sciencedirect.com/science/article/B6V14-42810JK-C/2/97ba992f6082cb8d8b267ac80fc327ad

[48] S. Berretti, A. Del Bimbo, and E. Vicario, �E�cient matching and indexing
of graph models in content-based retrieval,� IEEE Trans. Pattern Anal.

Mach. Intell., vol. 23, no. 10, pp. 1089�1105, 2001. 5.3.6

[49] P. Lax, Contributions to Nonlinear Functional Analysis. New York: Aca-
demic Press, 1971, ch. Shock waves and entropy. 6.2

[50] J. Serra, Image Analysis and Mathematical Morphology. Orlando, FL,
USA: Academic Press, Inc., 1982. 6.2

[51] K. Siddiqi, A. Shokoufandeh, S. Dickenson, and S. Zucker, �Shock graphs
and shape matching,� Jan 1998, pp. 222�229. 6.3, 6.6, 6.8

[52] H. R. Lewis and C. H.-H. Papadimitriou, Elements of the Theory of Com-

putation, 1st ed. Englewood Cli�s, NJ: Prentice-Hall, 1981. 6.4

[53] H. Zaboli and M. Rahmati, �An improved shock graph approach for shape
recognition and retrieval,� in AMS '07: Proceedings of the First Asia Inter-

national Conference on Modelling & Simulation. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 438�443. 6.4, 9, 10

[54] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to

the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1990. 6.5

[55] J. Edmonds and D. W. Matula, �An algorithm for subtree identi�cation,�
SIAM Rev., vol. 10, pp. 273�274, 1968, abstract. 6.5

[56] R. M. Verma and S. W. Reyner, �An analysis of a good algorithm for the
subtree problem, correlated,� SIAM J. Comput., vol. 18, no. 5, pp. 906�908,
1989. 6.5

[57] J. Hopcroft and R. Karp, �An n(5/2) algorithm for maximum matching in
bipartite graphs,� SIAM J. Comput., pp. 225�231, 1975. 6.5

[58] K. Siddiqi and B. Kimia, �A shock grammar for recognition,� in CVPR 96,
1996, pp. 507�513. 6.7

[59] T. B. Sebastian, P. N. Klein, and B. B. Kimia, �Recognition of shapes
by editing their shock graphs,� IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 5, pp. 550�571, 2004. 6.8

31

	1 Introduction
	2 Distance Transform function (DT)
	3 Discrete Curve Evolution (DCE)
	4 Voronoi Tessellation in R2
	4.1 Planar Ordinary Voronoi Tessellation/Diagram
	4.2 Delaunay Triangulation

	5 Graph Matching
	5.1 Introduction
	5.2 Isomorphism and Homomorphism Graph Matching
	5.3 Graph Matching Techniques
	5.3.1 Elastic matching
	5.3.2 Morphological Graph Matching
	5.3.3 Graph Edit Distance
	5.3.4 Error Correction Graph Matching
	5.3.5 Other Approaches
	5.3.6 Multiple Graph Matching

	6 Shock Graph
	6.1 Introduction
	6.2 Shapes and shocks
	6.3 The Shock Graph
	6.4 The Shock Graph Grammar
	6.5 Shock Graph Matching
	6.6 Shock Graphs to Shock Trees
	6.7 The Distance Between Two Vertices
	6.8 Algorithms for Shock Tree Matching

	References

