Watermarking authentication based on the orthogonality of pseudo-random binary sequences

Manuel Graña,

Grupo de Inteligencia Computacional UPV/EHU, www.ehu.es/ccwintco

Contents

- Introduction
- Algorithm features
- Watermark insertion and removal
- Empirical results
- Conclusions

Introduction

- Watermarking consists of the insertion of information (the watermark) inside the image.
- The watermark is desired to be invisible and robust.
 - It does not introduce perceptual changes in the image
 - It is not easy to remove, and
 - It can be recovered after the so-called attacks: lossy compression, cropping, smoothing, adding noise, etc.

Introduction

- Our watermarking procedure works on the coefficients of the Haar DWT.
- Insertion of the watermark
 - addition of pseudo-random binary sequences generated for each bit in the watermark to DWT coefficients selected according to their magnitude.
- The watermark extraction
 - testing the correlation of the pseudo-random binary sequences generated for the watermark bits with the selected DWT coefficients.

- The watermark is a binary image,
- Each pixel in the watermark image is associated with a pair of pseudorandom binary number {-1,1} sequences.

 The watermark insertion is performed on the difference coefficients:

$$(LH_n, HL_n, HH_n; n = 1, 2)$$

LL (approx.)	HL_2	
LH_2	HH_2	HL ₁ (horizontal detail)
LH_1 (vertical detail)		HH_1 (diagonal detail)

- The watermark extraction is performed at each pixel independently,
 - through the regeneration of their associated pseudo-random binary {-1, 1} sequences.
 - we compare the correlation among the DWT selected coefficients and its associated pseudo-random binary {-1,1} sequences

- For watermark extraction we require the knowledge of
 - the random number seed (the key in the figures below),
 - the position of the DWT coefficients affected by the watermark and
 - the watermark itself.

 a key fact for our approach to work is that the pseudo-random binary sequences are (almost) orthogonal

DWT coefficient selection

- 1. All the $(LH_n, HL_n, HH_n; n = 1, 2)$ are sequenced into a vector Z.
- 2. We initialize the selection threshold as the maximum absolute value of the coefficients.
- 3. We select the coefficients according to the threshold $P=\left\{ j\left|Z\left(j\right)>Threshold\right. \right\}$.
- 4. If $|P| < n_r$ then decrease threshold and go to 3,
- 5. Save the values of the DWT coefficients $C = \{Z(j), j \in P\}$.

Watermark insertion

Pseudo random sequence

$$\{w_0(i) \in \{-1,1\}, w_1(i) \in \{-1,1\}, i = 1,..,n_r\}.$$

Modification of the selected DWT coefs

$$C(i) = \begin{cases} C(i) + kw_0(i) & \text{black pixel} \\ C(i) + kw_1(i) & \text{white pixel} \end{cases}$$

Fig. 4: Watermark insertion

Watermark extraction

- We regenerate the pseudo-random sequences
- Recovery is performed computing the correlation

$$W\left(p\right) = \left\{ \begin{array}{ll} 0 & corr\left(C^*,C^0\right) > corr\left(C^*,C^1\right) \\ 1 & else \end{array} \right. ,$$

Fig. 5: Watermark extraction

Computational results

Fig. 9: Lena watermarked with k = 0.3. Correlation of the recovered watermark with the true one after JPEG lossy compression attacks

Fig. 10: Lena watermarked with k=0.5. Correlation of the recovered watermark with the true one after JPEG lossy compression attacks

Fig. 11: Lena watermarked with k = 0.3. Correlation of the recovered watermark with the true one after cropping attacks

Fig. 12: Lena watermarked with k = 0.5. Correlation of the recovered watermark with the true one after cropping attacks

Fig. 13: Lena watermarked with k = 0.3. Correlation of the recovered watermark with the true one after gaussian additive attacks

Fig. 14: Lena watermarked with k=0.5. Correlation of the recovered watermark with the true one after gaussian additive attacks

Conclusions

- We present in this paper a watermak authentication procedure based on the DWT.
- The procedure tries to ascertain if the image contains a certain logo or binary image, given the original image and the watermarked image.
- The algorithm is based on the orthogonality of pseudo-random bynary number suquences, so that storing information over a mark pixel does not interfere with others stored previously or in the future. Wordcomp'09, Las Vegas, July 16, 2009

Conclusions

- We have tested is robusted with some encouraging success for the case of lossy compression and cropping, however the algorithm fails heavily when the attack consist of Gaussian noise addition.
- We need to do further computational experiments to test whole approach, also some improvements of the algorithm to correct the discovered problems when additive noise corrupts the images.