10th IFAC Symposium on Advances in Control Education Sheffield, UK, August 28-30 2013

Low-cost platforms used in Control Education: An educational case study

E. Irigoyen, E. Larzabal, R. Priego Automation and Engineering Systems Department UPV/EHU, Spain

Outline

- Why think in low-cost platforms?
 - Subjects' contents
 - Students' interest
 - Easy accessibility
- Two criteria for selecting these low-cost platforms.
- Proposals in UPV/EHU
 - O NXT Arduino Raspberry Pi Kinect
- Conclusions

Why think in low-cost platforms?

Increase and improve learning content related to Control Education

Capabilities and **interest** of students

Low cost
... even for
students

Learning contents

- Increase and improve learning content related to Control Education
 - o Transition from...
 - ... theoretical approaches + developments...
 ...to learning by practical + real developments.
 - Without removing...

... analytical part,...

... strengthen learning with real applications.

"New" teaching proposals...
 Beyond PCs and simulations

Students: capabilities & interest

• Achieving the convergence in:

capabilities and interest of students

- New technologies are assimilated for students faster than tutors or teachers.
- Using real platforms increases the possibility of theoretical and practical learning

New platforms accessibility

- Low-cost
 - Investment in laboratories or classrooms.
 - Complementing the "classic" models.
 - o ... even for students.
 - Curiously, before preparing works related to these platforms...

... some students had previously bought them for "playing" and implementing their solutions at home.

Our proposal

- Practical works
 - Independents: Without guidance
 - Outside of laboratory regular time table
 - Giving general objectives to obtain...
 - ... services / system behaviour / final achievement...
- Advantages and stimuli
 - Thinking in a competitive environment...
 - ... for stimulation of students' interest.
 - Evaluating as a complementary grade for the course
 - More close to the real solutions...
 - ...further from the simulations

Selecting low-cost platforms

• Two criteria:

The particular **concern** of the teacher to include more didactic contents in courses and subjects

The continuously growing **experience** of students in relation to every low-cost platform

Proposals in UPV/EHU

Learning & Researching

• Features of the equipment

- O LEGO® MINDSTORMS® NXT 2.0
 - Microcontroller ARM7 of 32 bits
 - **256 Kb Flash memory**
 - 64 Kb de RAM
 - Ports: 4 I + 3 O
 - Communication: USB + Bluetooth
 - Firmware
 - Running: autonomous + remote
- Specific sensoring
 - HiTechnic
- New units EV3

- Programming
 - o SW LEGO
 - RobotC
 - o MATLAB Toolbox
 - o NI LabVIEW
 - o ADA
 - o JAVA
 - o ROS

- Programming
 - o SW LEGO
 - o RobotC
 - o MATLAB Toolbox
 - o NI LabVIEW
 - o ADA
 - o JAVA
 - o ROS

Programming

o SW LEGO

- RobotC
- o MATLAB/SIMULINK Toolbox
- o NI LabVIEW
- o ADA
- o JAVA
- o ROS

- Programming
 - o SW LEGO
 - RobotC
 - o MATLAB Toolbox
 - NI LabVIEW
 - o ADA
 - o JAVA
 - o ROS

Programming

- SW LEGO
- RobotC
- MATLAB Toolbox
- o NI LabVIEW

Light Sensors

- \circ ADA
- o JAVA
- o ROS

Ultrasonic Sensor

```
with Ada.Real Time; use Ada.Real Time;
with NXT.Display; use NXT.Display;
with NXT.Ultrasonic Sensors; use NXT.Ultrasonic Sensors;
with NXT.Ultrasonic Sensors.Ctors;
procedure Ultrasonic Test is
  use NXT;
  Result : Button Id;
  Cur Sensor : MXT.Ultrasonic Sensors.Ultrasonic Sensor := MXT.Ultrasor
  Distance : Natural range 0..255;
NXT.AVR.Await Data Available;
Put Line ("Ultrasonic Test: Ping!");
  loop
   Ping(Cur Sensor);
    Get Distance (Cur Sensor, Distance);
    if (Distance = 255) then
     Clear Screen Noupdate;
      Put Noupdate ("Nothing in sight!");
      Screen Update;
     Clear Screen Noupdate;
      Put Noupdate ("Hi Ken! Something is ");
      Put Noupdate (Distance);
      Put Noupdate (" cm away!");
      Screen Update;
    end if;
  end loop;
end Ultrasonic Test;
```

Programming

- o SW LEGO
- RobotC
- o MATLAB Toolhox
- o NI LabVIEW
- o ADA
- o JAVA
- o ROS

Programming

SW LEGO

∷ROS.org

- RobotC
- MATLAB Toolbox
- o NI LabVIEW.
- o ADA
- o JAVA
- o ROS

- Student developments
 - O Subjects:
 - RTOS
 - Perception Systems
 - Final career projects
 - Participation on the competition of GT CEA de CI

http://www.youtube.com/watch?v=TlcvtBaVg_c

http://www.youtube.com/watch?v=3W6MwTS_syc

- Science week Engineering working days:
 - Segway + Johnny 5

Handkerchief game

- O Surface for competition:
 - A black square surface (1x1 m) with a white line (1 cm of width)

- Each robot drives over a white line until the target, catch it and turn back to the start.
- All robots have to be designed and created by students without any help from their teacher.
- Robot structure
 - Based on LEGO NXT + HiTechnic sensors
- O Line identification and Driving control:
 - Applying several techniques learned at classes

target

http://www.youtube.com/watch?v=TlcvtBaVg_c

Arduino

Features of the equipment

- Arduino Due
 - Microcontroller Atmel SAM3X8E ARM Cortex-M3 CPU of 32 bits
 - **256** to 512 Kb of Flash memory
 - **32** to 100 Kb of SRAM
 - **54** I/O digital pins (12 for PWM-O)
 - Clock: 84 MHz
 - Communication: USB 2.0
 - Running: autonomous + remote
- Several sensors
 - **■** Temperature, ultrasounds, accelerometer,...
- O Broad family of mother board and shields

Arduino

- Student developments
 - Basic study of a ultrasound sensor

http://www.youtube.com/watch?v=b5Jfze6lthQ

Integration of several components/elements

Arduino

- Next developments
 - Combined with PLCs
 - Arduino Ethernet Shield

- Domotica X10
 - With X10 protocol and domestic sensors

Kinect

Features

- O A multi-sensorial platform originally developed by Microsoft
- O Sensos: RGB camera; depth sensor (infrared projector + monochrome CMOS sensor); microphone
- O SDK developed by Microsoft

Student development

http://www.youtube.com/watch?v=UrYv1IArDJs

Raspberry pi

- Raspberry pi (http://www.raspberrypi.org/)
 - O Processor ARM1176JZF-S to 700 MHz
 - O Clock til 1 GHz
 - O 512 Mb of RAM
 - O SD card

Student development

... and next?

• Is it necessary to limit these works to the previously presented platforms?

No... why?

- O There exist other platforms less known (among others):
 - Skybot
 - O Boe-bot
 - Protobot
 - O Dwengo board

New platforms will appear in a next future...

Conclusions

- This work deals with two questions:
 What low-cost platforms select for teaching in Control subjects.
 What new schedule configure in order to evaluate our students.
- Selection based on: Concerns of the teachers. Interest of the students.
- Laboratory practices framework:
 Without guidance
 General objectives
 Competition
- Significant improvements:
 Increasing of student involvement.
 Reinforcement of Engineering basics.
 Higher grade in students performing this activity.

Low-cost platforms used in Control Education: An educational case study

Thank you for your attention!

Thanks to:
Computational Intelligent Research Group: www.ehu.es/ccwintco/

eloy.irigoyen@ehu.es