Pattern Classification
Chapter 9.6 Estimating and Comparing Classifiers
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Introduction |

@ Two reasons to know the generalization rate of a classifier:

» the classifier performs well enough to be useful.
» to compare its performance with that of a competing design
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@ Parametric models
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Parametric model |

@ One approach: To estimate the generalization rate from the assumed
parametric model.

@ 3 problems:

> error estimate is often optimistic.
» suspect the validity of an assumed parametric model.

» it is very difficult to compute the error rate exactly, even if the
probabilistic structure is known completely.
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© Cross validation
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Cross validation |

@ Randomly split the set of labeled training samples D into two parts:

» Training set: for adjusting de parameters.
» Validation set: estimate the generalization error.

@ We train the classifier until set we reach a minimum of this validation
error:
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Cross validation Il
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Cross validation |

e Cross validation is heuristic and need not give improved classifiers in
every case.

@ There are several heuristics for choosing the portion v of D to be used
as a validation set (0 < v< 1).

» small portion of the data: validation set (y < 0.5)

» A traditional default is to split the data with v =0.1.

» m-fold cross validation: the cross validation training set is randomly
divided into m disjoint sets of equal size n/m. (m=n, leave-one-out)

» anti-cross validation: stop training when the validation error is the
first local maximum.

» If the true but unknown error rate of the classifier is p, and if k of the n
independent, randomly drawn test samples are misclassified, then k has

the binomial distribution
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Cross validation Il

n"\ . n—k A ,
P(k) = (k)pk(l—pj Foop=—.

n

the fraction of test samples misclassified is exactly the maximum
likelihood estimate for p.
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Cross validation |
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@ The 95% confidence intervals for a given estimated error probabili
can be derived from a binomial distribution of equation P(k).
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© Jackknife and bootstrap estimation of classification accuracy
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Jackknife and bootstrap estimation of classification accuracy
I

e Jackknife: we estimate the accuracy of a given algorithm by training
the classifier n separate times, each time using the training set D from
which a different single training point has been deleted. Each resulting
classifier is tested on the single deleted point and the jackknife
estimate of the accuracy is then simply the mean of these
leave-one-out accuracies.

@ There are several ways to generalize the bootstrap method to the
problem of estimating the accuracy of a classifier. One of the simplest
approaches is to train B classifiers, each with a different bootstrap
data set, and test on other bootstrap data sets.

@ The bootstrap estimate of the classifier accuracy is simply the mean of

these bootstrap accuracies.
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@ Maximum-likelihood model comparison
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Maximum-likelihood model comparison |

e Maximum-likelihood model comparison (ML-I1): Given a model with
unknown parameter vector 6, we find the value § which maximizes the
probability of the training data. The goal here is to choose the model
that best explains the training data

@ The posterior probability of any given model:

p(D) x P(D|h;)P(h;),

P(h|D) =

@ The data-dependent term, P(D|h;), is the evidence for h;; the second
term, P(h;), is our subjective prior over the space of hypotheses.

Pattern Classification s



Maximume-likelihood model comparison Il

evidence

Py

15 / 28

Pattern Classification



Outline

© Bayesian model comparison
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Bayesian model comparison |

@ Uses the full information over priors when computing posterior
probabilities.

@ The evidence for a particular hypothesis is an integral,

P(D|h;) = /p(D|9._hg)p(9|D._ h;)do.
: (41)

where as before 6 describes the parameters in the candidate model.

P(D|h;) = P(D|6.h;) p(0|h,)A0

best fit Oeccam factor
likelihood
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Bayesian model comparison |

Occam factor = p[Q\hz]fAQ = j_tg

param. vol. commensurate with D

param. vol. commensurate with any data’
is the ratio of two volumes in parameter space:
O the volume that can account for data D and

@ the prior volume, accessible to the model without regard to D.
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Bayesian model comparison |
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Figure 9.13: In the absence of training data, a particular model i has available a
large range of possible values of its parameters, denoted A", In the presence of a
particular training set D, a smaller range Aﬁ';’A”I?.
measures the fractional decrease in the volume of the model’s parameter space due
to the presence of training data D. In practice, the Oces
fairly if the evidence is approximated as a k-dimensional Gaussian, centered on

the 1n«1‘(111mm—l1k( lihood value 8. i'
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Bayesian model comparison |

In the general case, the full integral of Eq. 41 is too difficult to calculate ana-
lytically or even numerically. Nevertheless, if 8 is k-dimensional and the posterior
can be assumed to be a Gaussian, then the Occam factor can be calculated directly
(Problem 37}, vielding:

P(DIhy) 2= P(D|0, hy) p(0]hs)(2m)/2 1|12 {44)
N
best fit Oceam factor
likelihood

where

27 )
H— g 111p(9|2ﬂ i)
a0
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@ The problem-average error rate
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The problem-average error rate |

@ Having only a small number of samples is that the resulting classifier
will not perform well on new data.

@ We expect the error rate to be a function of the number n of training
samples

o To investigate this analytically:

» Estimate the unknown parameters from samples.
» Use these estimates to determine the classifier.
» Calculate the error rate for the resulting classifier.
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The problem-average error rate |

Consider a case in which two categories have equal prior probabilities. Suppose
that we partition the feature space into some number m of disjoint cells Cy, ..., Cp,. If
the conditional densities p(x|w) and p(x|ws) do not vary appreciably within any cell,
then instead of needing to know the actual value of x, we need only know into which
cell x falls. This reduces the problem to the discrete case. Let p; = P(x € Cifwy)
and g¢; = P(x € C;|lwa). Then, since we have assumed that P(wy) = P(ws) = 1/2, the
vectors p = (p1, ..., pm)" and q = (g1, ...,¢,)" determine the probability structure of
the problem. If x falls in C;, the Bayes decision rule is to decide w; if p; > ¢;. The
resulting Bayes error rate is given by

m

1 .
P(Elp,q) = Eme[pl.qm] (46)
=1
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The problem-average error rate |

@ Suppose that half of the samples are labeled w; and half are labeled
wz , with nj; being the number that fall in C; and are labeled wj -

o i = 2ni1/n and ¢ = 2nia/n

P(Ep,q.D) = % E G‘-:‘.+é ZP«;-

i1 >Mig i1 S T4a
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The problem-average error rate |
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Figure 9.14: The probability of error E on a two-category problem for a given number
of samples, n, can be estimated by splitting the feature space into m cells of equal size
and classifying a test point by according to the label of the most frequently represented
category in the cell. The graphs show the average error of a large number of random
problems having the given n and m indicated. i:
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@ The capacity of a separating plane
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The capacity of a separating plane |

Consider the partitioning of a d-dimensional feature space by a hyperplane w'x+wp =
0, as might be trained by the Perceptron algorithm (Chap. ?7). Suppose that we are
given n sample points in general position, that is, with no subset of 441 points falling
in a {d — 1)-dimensional subspace. Assume each point is labeled either wy or wy. Of
the 2" possible dichotomies of n points in d dimensions, a certain fraction f(n,d)
are said to be linear dichotomies. These are the labellings for which there exists a
hyperplane separating the points labeled w; from the points labeled ws. It can be
shown (Problem 40) that this fraction is given by

1 n<d+1

_ d
f(n,d) 221_1 E (n;l) n>dil,
2=0
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The capacity of a separating plane
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Figure 9.18: The fraction of dichotomies of n points in d dimensions that are linear,
as given by Eq. 53.
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