Multilabel classification using heterogeneous ensemble of multi-label classifiers

Muhammad Atif Tahir, Josef Kittler, Ahmed Bouridane

a Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK b School of Computing, Engineering and Information Sciences, University of Northumbria, Newcastle upon Tyne NE2 1XE, UK

1. Introduction

- ☐ A conventional multi-class classification system assigns each instance x a single label I from a set of disjoint labels L.
- \square In this paper each instance is to be assigned to a subset of labels $Y \subseteq L$. This problem is known as multi-label learning.
- ☐ They include highly imbalanced training sets, as very limited data is available for some labels, and capturing correlation among classes.
- ☐ In this paper, we focus on highly imbalanced data distributions using ensemble of multi-label classifiers.

1. Introduction

- \Box Ensemble techniques are becoming increasingly important \Rightarrow they improve the accuracy with highly imbalanced data.
- ☐ Ensembles can be homogeneous (every base classifier using the same algorithm), or heterogeneous (different algorithms).
- ☐ The aim of this paper is to use **heterogeneous** ensembles of **multi-label** learners to improve the performance.

1. Introduction

☐ The proposed ensemble multilabel learning approach (EML)¹ is applied to six publicly available multi-label data sets

2. Related work

- Multi-label classification
 - Problem transformation methods
 - Algorithm adaptation methods
- ☐ RaKEL (Tsoumakas and Vlahavas, 2007),
- ☐ Calibrated Label Ranking (CLR) (Furnkranz et al., 2008),
- ☐ Multi-label KNN (MLKNN) (Zhang and Zhou, 2007),
- ☐ Instance Based Logistic Regression (IBLR) (Chengand Hullermeier, 2009) and
- ☐ Ensemble of Classifier Chains (ECC)(Read et al., 2009).

 \square Let X denote a set of instances and let Y = $\{1, 2, ..., N\}$ be a set of labels

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

- ☐ The goal is to design a multi-label classifier H that predicts a set of labels for an unseen example.
- □ Ensemble of multi-label classifiers train q multi-label classifiers H1,H2,...,Hq. For an unseen instance x, each kth individual model (of q models) produces an N-dimensional vector Pk = [p1k,p2k,...,pNk], where the value pbk is the probability of the bth class label assigned by classifier k being correct.

☐ MEAN, MAX, MIN are the simplest and most popular way to combine the scores of classifiers

1. Average of probabilities (EML_A)

$$\mu_b(x) = \frac{1}{q} \sum_{k=1}^q p_{bk}(x)$$

- 2. Average of probabilities and threshold selection via multilabelled-ness (EML_T)
 - Properly adjusting the decision thresholds (instead of the traditional value of 0.5) can improve the performance of a multi-label classifier.
 - Let X_T be the training set and X_S the test set. A threshold t is then selected using Eq. (2) to choose the final predicted multi-label set Z.

$$t = \arg\min_{\{t \in 0.00, 0.001, \dots, 1.00\}} |LCard(X_T) - LCard(H_t(X_s))|$$

$$LCard(X) = \frac{\sum_{i=1}^{|X|} |E_i|}{|X|}$$

where Ei is the actual set of labels for the training set and a predicted set of labels under threshold t for the test set

3. Static weighting by N-Fold Cross Validation (EML_S)

In static weighting, the weights for each classifier are computed in the training phase. In this paper, the weights for each classifier are learnt via N-Fold Cross Validation (N = 5)

- 4. Dynamic weighting using Dudani rule (EML_D)
 - A weighted k-NN rule is proposed for classifying new patterns
 - The main idea is to weight a neighbor with smaller distance more heavily than the one with a greater distance

$$w_j = \begin{cases} \frac{d_k - d_j}{d_k - d_1} & \text{if } d_k \neq d_1 \\ 1 & \text{otherwise} \end{cases}$$

For multi-label classifier

$$weight(M_j) = \begin{cases} \frac{d_q - d_j}{d_q - d_1} & \text{if } d_q \neq d_1 \\ 1 & \text{otherwise} \end{cases}$$

w(Mj) is the weight of multi-label classifier j for instance x

5. Dynamic weighting using Shepard rule (EMLP)

Shepard:

"the relevance of a previous stimulus for the generalization to a new stimulus is an exponentially decreasing function of its distance in psychological space".

$$weight(M_j) = e^{-\alpha d_j^{\beta}}$$

 α y β constants

4. Experiments

- ☐ Datasets: six multi-label datasets from a variety of domains
- Features: publicly available feature vectors are used for all datasets
- Evaluation measures: Hamming Loss, Accuracy, F1, and Classification Accuracy from the example-based category, and Micro/Macro F1/AUC from the label-based group. Additionally, we use One-error, Coverage, Ranking Loss and Average Precision from the ranking-based group

Table 1Standard and multilabel statistics for the data sets used in the experiments.

Datasets	Domain	Samples	Features	Labels	LCard
Enron	Text	1702	1001	53	3.38
Medical	Text	978	1449	45	1.25
Scene	Vision	2407	294	6	1.07
Pascal07	Vision	9963	500	20	1.44
Yeast	Biology	2417	103	14	4.24
Emotions	Music	593	72	6	1.87

4. Experiments

■ Benchmark methods

Table 4
Comparison of the proposed ensemble method (EML) with the state-of-the-art multi-label classifiers for emotions.

	MLkNN	IBLR	RAKEL	CLR	ECC	EML_A	EML_T	EML_S	EML_{P}	EML_D
Hamming Loss ↓	0.204	0.201	0,231	0,205	0.204	0.185*	0.199	0.200	0.199	0,200
Accuracy †	0.512	0,523	0.482	0.522	0.564	0.579*	0.568	0.567	0.568	0,568
Fmeasure †	0.625	0.630	0.599	0.635	0.681*	0.694	0.701*	0.700+	0.702*	0,699*
ClassAcc †	0,261	0,288	0,227	0.267	0.304	0,326*	0.272	0.272	0,271	0,272
Micro F ₁ ↑	0.644	0.656	0.616	0.660	0.676	0.697*	0.680	0.680	0.680	0,679
Macro F ₁ ↑	0.608	0.632	0.603	0.647	0.663	0.673*	0.656	0.656	0,657	0,656
Micro AUC †	0.844	0.851	0,811	0.844	0.828	0.871*	0.855	0.855	0.855	0.851
Macro AUC †	0.820	0.832	0.793	0.827	0.821	0.855*	0.848	0.848	0.849	0,845
One-error ↓	0.284	0,279	0,327	0.271	0.275	0.249*	0.249*	0.248	0,251*	0,254*
Coverage	1.83	1.77	2.02	1.73	1.90	1.68*	1.68*	1.68*	1.68*	1.694
Ranking Loss ↓	0.170	0.164	0.205	0.154	0.181	0.143*	0.143*	0.143*	0.144*	0.147
AvgPrecision †	0.791	0.798	0.762	0.807	0.795	0.818*	0.818*	0.818	0.817*	0,815
# Wins (Ind)	0/12	3/12	0/12	4/12	5/12	_	_	_	_	
# Wins (All)	0/12	0/12	0/12	0/12	0/12	10/12	3/12	4/12	2/12	0/12

4. Conclusions

- ☐ Heterogeneous ensemble of multi-label learners is proposed to simultaneously tackle both class imbalance and class correlation problems
- ☐ Ensemble methods are well-known for **overcoming over-fitting** problems and improving the performance of individual classifiers
- ☐ It has been shown that the presented approach provides a **very accurate** and efficient solution when compared with the state-of-the-art multilabel methods