Automatic Behaviour Pattern Classification for Social Robots

Abraham Prieto, Francisco Bellas, Pilar Caamaño, Richard J. Duro Integrated Group for Engineering Research Universidade da Coruña, Spain

Overview

- Introduction:
 - Cognitive Developmental Robotics.
- Proposal
- Development:
 - ANPAC: Automatic Neural-based Pattern Classification.
- Results:
 - Motion patterns in flocks.
- Conclusions

Introduction

- Cognitive Developmental Robotics:
 - It tries to obtain autonomous robot systems that continually adapt to their environment.
 - Autonomous development of social behaviours: communication, imitation, empathy, etc.
 - It must include some kind of description of the events that are not due to the robot.
- How to acquire and represent the information to guide the behaviour depending on the behaviour of its neighbors.

What is the problem?

Proposal

- A neural based pattern system which classifies behaviour patterns in other robot teams within the environment.
- Main Contributions:
 - It automatically adjusts the processing window size (T) and the preprocessing parameters.
 - It obtains the appropiate features (P) and reduces the amount of sensorial information.
 - Adaptive data classification strategy for large datasets.
- Objective: to classify the type of motion a multitude of agents is performing as a whole.

Development

Development – Data preparation phase

- Input dataset: high dimensional matrix with a representation of the behavior to be analyzed.
- Data preparation:
 - Normalization to adapt the data to the ANN inputs.
 - Principal Component Analysis (PCA):
 - It determines the principal components of the data.
 - It rewrites the vectors in terms of the projections over the principal components.
 - No information loss.
- Creation of the input window: select the T robots to be analyzed.

Development – Collective description phase

Incremental description:

- The system generates the P ANN inputs from de principal components matrix through an incremental procedure.
- The P inputs are a representation of the collective behavior.

Development - ANN training phase

Radial Basis Function ANN:

- Allow the system to modify P during the training procedure without restart from scratch.
- Smooth the consequences of the modifications: gradually increase or decrease the number of inputs and weights.

Development – Advisor training phase

- It modifies the parameters *T* and *P* after the evaluation of the classification error.
 - Random initial search direction while the discrimination level decreases.
 - If the level error increases, a new random advance direction is selected.
 - Small probability of a random change.

Motion Pattern in Flocks

- Example based in Reynold's boids:
 - Group of virtual agents that using a simple computational model carry out a coordinated motion.

- External force: generated by the environment and varied with time.
- Collective force: local interaction rules (Reynold's rules).
- Individual force: each boid follows a variable trajectory.

Collective force

Motion Pattern in Flocks

Chaotic behavior

Organized behavior

Orderer and chaotic behavior

Complex and ordered behavior

Motion Pattern in Flocks

Learning procedure:

- Record the data:
 - 2xAxN matrix of trajectories: x and y components.
- 2. Data preparation:
 - AxN matrix of deviation with respect to the average of the group.
 - PCA analysis.
 - Create an input window of size TxN.
- 3. Dimensional reduction:
 - Incremental description of the TxN principal components.
 - Select the P descriptors as network input.
- 4. ANN learning:
 - Adjust P and T using the discrimination level.

Results

Fixed individual force: from ordered to complex

Fixed external force: from complex to chaotic

Fixed collective force: from ordeder to chaotic

Conclusions

- This system allows a simple training procedure for ANN based classifier systems which imply large amount of data.
 - It automatically adjusts the sampling window size.
 - It automatically generates the caracterization parameters.
 - It uses an incremental strategy to generate the inputs that does not distort the training process.
- The approach has been tested on a synthetic problem involving the classification of agents motion patterns with very satisfactory results.

Thank you for your attention. Questions, suggestions, etc.

