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1. Overview and scope 

 Unified, efficient model of random decision forests  

 Applications 
• Scene recognition from photographs,  

• Object recognition in images,  

• Automatic diagnosis from radiological scans  

• Semantic text parsing. 

 

 A brief literature survey 

 Breinman 

 “C4.5” of Quinlan 

 In this early work trees are used as individual entities. 
However, recently it has emerged how using an ensemble 
of learners (e.g. weak classiffiers) yields greater accuracy 
and generalization.1 
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1. Overview and scope 

 A random decision forest is an ensemble of randomly trained 
decision trees. 

 

 Ensemble methods became popular with the face and 
pedestrian detection papers of Viola and Jones 

 

 Decision forests compare favourably with respect to other 
techniques  

 

 One of the biggest success stories of computer vision in 
recent years  the Microsoft Kinect for XBox 360. 
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2. The random decision forest model 

 Problems can be categorized into a relatively small set of 
prototypical machine learning tasks.  
 Recognizing the type of a scene captured in a photograph can be cast 

as classification. 

 

 Predicting the price of a house as a function of its distance from a 
good school may be cast as a regression problem. 

 

 Detecting abnormalities in a medical scan can be achieved by 
evaluating the scan under a learned probability density function for 
scans of healthy individuals. 

 

 Capturing the intrinsic variability of size and shape of patients brains in 
magnetic resonance images may be cast as manifold learning. 
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2. The random decision forest model 

 Interactive image segmentation may be cast as a semi supervised 
problem, where the user's brush strokes define labeled data and the 
rest of image pixels provide already available unlabelled data. 

 

 Learning a general rule for detecting tumors in images using minimal 
amount of manual annotations is an active learning task, where 
expensive expert annotations can be optimally acquired in the most 
economical fashion. 
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2.The random decision forest model.  
2.1 Background and notation 

 Their recent revival is due to the discovery that ensembles of 
slightly different trees tend to produce much higher accuracy 
on previously unseen data, a phenomenon known as 
generalization 

 A tree is a collection of nodes and edges organized in a 
hierarchical structure . Nodes are divided into internal (or 
split) nodes and terminal (or leaf) nodes. 

Mathematical notation 

 vector v = (x1; x2;    ; xd) ∈ Rd.  xi represent some scalar feature 

responses. 

 feature dimensionality d 

 Function     (v) selecting a subset of features of interest. 
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2.The random decision forest model.  
2.1 Background and notation 

 Training and testing decision trees 
 At a high level, the functioning of decision trees can be separated into 

an off-line phase (training) and an on-line one (testing). 

 

 

 

 

 

 

 Given a training set S0 of data points {v} and the associated ground 
truth labels the tree parameters are chosen so as to minimize a 
chosen energy function 

 randomness is only injected during the training process, with testing 
being completely deterministic once the trees are fixed. 

 

Grupo de Inteligencia Computacional  25/01/2012 7  de 36 



2.The random decision forest model.  
2.1 Background and notation 

Entropy and information gain 
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2.The random decision forest model.  
2.2 The decision forest model 
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2.The random decision forest model.  
2.2 The decision forest model 
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 The weak learner model: linear or non-linear data separation 

 

 

 The training objective function 

 

 

 

The randomness model 

 random training data set sampling [11] (e.g. bagging), and 

 randomized node optimization [46] 
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2.The random decision forest model.  
 2.2 The decision forest model 

The leaf prediction model 

 The probabilistic leaf predictor model for the tth

  tree is then 

 

 

The ensemble model 
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2.The random decision forest model.  
 2.2 The decision forest model 

Stopping criteria 

 it is common to stop the tree when a maximum number of 
levels D has been reached. Alternatively, one can impose a 
minimum information gain. 
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3. Classification forest.  
 3.1 Classification algorithms in the literature 

 SVM in binary classification problems (only two target classes) it 
guarantees maximum-margin separation 
 

 Boosting builds strong classifiers as linear combination of many weak 
classifiers 

 

Do not extend naturally to multiple class problems 
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3. Classification forest.  
 3.2 Specializing the decision forest model for classification 

 Problem statement. The classification task may be 
summarized as follows: 

 

 

 

 The training objective function. 

 Forest training happens by optimizing the parameters of 
the weak learner at each split node j via: 
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3. Classification forest.  
 3.2 Specializing the decision forest model for classification 

 Randomness. 

 Randomness is injected via randomized node optimization 

 For instance, before starting training node j we can 
randomly sample  = 1000 parameter values out of possibly 
billions or even infinite possibilities. 

 

 The leaf and ensemble prediction models. 

 probabilistic output as they return not just a single class 
point prediction but an entire class distribution. 
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3. Classification forest.  
 3.3 Effect of model parameters 

The effect of the forest size on generalization 
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3. Classification forest.  
 3.3 Effect of model parameters 

Multiple classes and training noise 
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Fig. 3.4: The effect of multiple classes 

and noise in training data. (a,b,c) 

Training points for three different 

experiments: 2-class spiral, 4-class 

spiral and 

another 4-class spiral with noisier point 

positions, respectively. (a',b',c') 

Corresponding 

testing posteriors. (a",b",c") 

Corresponding entropy images (brighter 

for larger entropy). The classification 

forest can handle both binary as well as 

multiclass 

problems. With larger training noise the 

classification uncertainty increases 

(less saturated colours in c' and less 

sharp entropy in c"). All experiments in 

this 

figure were run with T = 200, D = 6, and 

a conic-section weak-learner model 
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3. Classification forest.  
 3.3 Effect of model parameters 

“Sloppy” labels and the effect of the tree depth 
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The effect of tree depth. A 

four-class problem with both 

mixing of training labels and 

large gaps. (a) Training 

points. (b,c,d) 

Testing posteriors for different 

tree depths. All experiments 

were run 

with T = 200 and a conic 

weak-learner model. The tree 

depth is a 

crucial parameter in avoiding 

under- or over-fitting. 
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3. Classification forest.  
 3.3 Effect of model parameters 

The effect of the weak learner 
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3. Classification forest.  
 3.3 Effect of model parameters 

The effect of randomness 

 Larger randomness yields a much lower overall 
condence, especially noticeable in shallower trees. 
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3. Classification forest.  
 3.4 Maximum-margin properties 

The hallmark of support vector machines is their 
ability to separate data belonging to different classes 
via a margin-maximizing surface. 

 

This important property is replicated in random 
classification forests under certain conditions. 
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3. Classification forest.  
 3.5 Comparisons with alternative algorithms 

Comparison with boosting 
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3. Classification forest.  
 3.5 Comparisons with alternative algorithms 

Comparison with SVM 
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Both forests and SVMs 

achieve good 

separation results. 

However, 

forests also produce 

uncertainty information. 

 

Probabilistic SVM 

counterparts such as 

the relevance vector 

machine do produce 

confidence output but 

at the expense of 

further computation. 
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3. Classification forest.  
 3.6 Human body tracking in Microsoft Kinect for XBox 360 

 There are thirty one different body part classes 

 

 The unit of computation is a single pixel in position p∈R2 and with 
associated feature vector v(p) ∈ Rd 

 

 Visual features are simple depth comparisons between pairs of pixel 
locations. So, for pixel p its feature vector v = (x1; : : : ; xi; : : : ; xd)∈ℝd is a 
collection of depth differences: 
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3. Classification forest.  
 3.6 Human body tracking in Microsoft Kinect for XBox 360 
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4. Regression forests.  

 Regression forests are used for the non-linear regression of 
dependent variables given independent input.  

 

 Both input and output may be multi-dimensional.  

 

 The output can be a point estimate or a full probability 
density function. 
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4. Regression forests. 
 4.1 Nonlinear regression in the literature  
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 In geometric computer vision, a popular technique for 
achieving robust regression via randomization is RANSAC. 
 Disadvantage  output is non probabilistic 

 Regression forests may be thought of as an extension of RANSAC 

 

 The success of support vector classification has encouraged 
the development of support vector regression (SVR) 
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4. Regression forests. 
4.2 Specializing the decision forest model for regression 
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4. Regression forests. 
 4.2 Specializing the decision forest model for regression 
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Fig. 4.1: Regression: training data and tree training. (a) Training 

data points are shown as dark circles. The associated ground truth 

label is denoted by their position along the y coordinate. The input 

feature space here is one-dimensional in this example (v = (x)). x is 

the independent input and y is the dependent variable. A previously 

unseen test input is indicated with a light gray circle. (b) A binary 

regression tree. During training a set of labelled training points fvg 

is used to optimize the parameters of the tree. In a regression tree 

the entropy of the continuous densities associated with dierent nodes 

decreases (their condence increases) when going from the root towards 

the leaves. 
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4. Regression forests. 
 4.2 Specializing the decision forest model for regression 
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 Given a multi-variate input v we wish to associate a 
continuous multi-variate label  

 

 

More generally, we wish to estimate the probability density 
function p(y∣v). 
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4. Regression forests. 
 4.2 Specializing the decision forest model for regression 
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 The prediction model. 
 when the data reaches a terminal node then that leaf needs to make a 

prediction. 
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4. Regression forests. 
 4.2 Specializing the decision forest model for regression 
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 The ensemble model. 

 

 

 Randomness model. (= classific.) 
 The amount of randomness is controlled during training by the 

parameter  

 The training objective function. 
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4. Regression forests. 
4.3 Effect of model parameters 
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 The effect of the forest size 
 As the number of trees increases both the prediction mean and its 

uncertainty become smoother. 

 

 The effect of the tree depth 
 Under and over-fitting 
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4. Regression forests. 
4.4 Comparison with alternative algorithms 
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 Comparison with Gaussian processes 
 The hallmark of Gaussian processes is their ability to model uncertainty in regression 

problems. 

 

 

 

Comparing regression forests with Gaussian processes. 

(a,b,c) Three training datasets and the corresponding testing posteriors overlaid on top. In both the forest and the GP model 

uncertainties increase as we move away from training data. However, the actual shape of the posterior is dierent. (b,c) Large 

gaps in the training data are lled in both models with similarly smooth mean predictions (green curves). However, the regression 

forest manages to capture the bi-modal nature of the distributions, while the GP model produces intrinsically uni-modal Gaussian 

predictions. 
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4. Regression forests. 
4.5 Semantic parsing of 3D computed tomography scans 
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 Commercial product Microsoft Amalga Unfied Intelligence System. 

 

 Detect the presence/absence of a certain anatomical structure 

 
 The position of each voxel p = (x y z). 

 

 For each organ of interest we wish to estimate the position of a 3D axis-
aligned bounding box 

 

 

 

 

 where J(p) denotes the density of the tissue in an element of volume at 
position p as measured by the CT scanner. B is the 3D feature box 
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4. Regression forests. 
4.5 Semantic parsing of 3D computed tomography scans 
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