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Introduction

Consistency of learning processes

o Consistency: convergence in probability to the best possible
result.

@ Consistency of learning processes:

e To explain when a learning machine that minimizes empirical
risk can achive a small value of actual risk (to generalize) and
when it can not.

o Equivalently, to describe necessary and sufficient conditions for
the consistency of learning processes that minimize the
empirical risk.

@ This guarantees that the constructed theory is general and
cannot be improved from the conceptual point of view.
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Introduction

Theory of non-falsiability

e Kant's problem of demarcation (s. XVIII): is there a formal
way to distinguish true theories from false theories?

o One of the main questions of modern philosophy.
@ Popper’s theory of non-falsiability (s. XX): criterion for
demarcation between true and false theories.

@ Strongly related to what happens if the ERM method is not
consistent.
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Introduction

Bounds on the rate of convergence

@ It is required for any machine minimizing empirical risk to
satisfy consistency conditions.

o But, consistency conditions say nothing about the rate of
convergence of the obtained risk R(¢) to the minimal one
R(00).

@ It is possible to construct examples where the ERM principle is
consistent, but where the risks have an arbitrary slow
asymptotic rate of convergence.

@ The theory of bounds on the rate of convergence tries to
answer the following question:

o Under what conditions is the asymptotic rate of convergence
fast?
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Notation

e Let Q(z,04) be a function that minimizes the empirical risk
functional

1 l
Remp = 7 ZiQ(Zia(X)

for a given set of i.i.d. observations zy,...,2.
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Classical definition of consistency

@ The ERM principle is consistent for the set of functions
Q(z,a),a € A, and for the p.d.f. F(z) if the following two
sequences converge in probability to the same limit:

R(oy) = inf R(at) (1)
[—o0 kEA
P .
Remp (07) — inf R (a) (2)

e Equation (1) asserts that the values of achieved risks converge
to the best possible.

e Equation (2) asserts that one can estimate on the basis of the
values of empirical risk the minimal possible value of the risk.
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Classical definition of consistency

R (&g
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Figure: The learning process is consistent if both the expected risks
R(0y) and the empirical risks R, (0;) converge to the minimal possible
value of the risk infyecp R (1).
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Goal

@ To obtain conditions of consistency for the ERM method in
terms of general characteristics of the set of functions and the
probability measure.

@ This is an impossible task because the classical definition of
consistency includes cases of trivial consistency.
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Trivial consistency
@ Suppose that for some set of functions Q(z,a), o € A, the
ERM method is not consistent.
o Consider an extended set of functions including this set of

functions and the additinal function ¢ (z) that satisfies the
following inequality

inf Q(z,a) > ¢ (z), Vz
aEA

Qza),xe

b (2)

o
El
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Trivial consistency

@ For the extended set of functions (containing ¢ (z)) the ERM
method will be consistent.

@ For any distribution function and number of observations, the
minimum of the empirical risk will be attained on the function
¢ (z) that also gives the minimum of the expected risk.

@ This example shows that there exist trivial cases of consistency
that depend on wether the given set of functions contains a
minorizing function.
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ERM consistency

@ In order to create a theory of consistency of the ERM method
depending only on the general properties (capacity) of the set
of functions, a consistency definition excluding trivial
consistency cases is needed.

@ This is done by non-trivial consistency definition.
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Non-trivial consistency

@ The ERM principle is nontrivially consistent for the set of
functions Q (z,a), o € A, and the probability distribution
function F (z) if for any nonempty subset A(c), ¢ € (—oo,00)
defined as

Ae) = {a ; /Q(z,a)dF(z) > ¢, N GA}
the convergence
inf Repp (@) — inf R(a) (3)

aecA(c) [—o aeA(c)

is valid.
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Key theorem of learning theory

@ Vapnik and Chervonenkins, 1989.

Theorem

Let Q(z,a), a € A, be a set of functions that satisfy the condition

A< /Q(z,(x)dF(z) <B (A<R(a)<B)

then for the ERM principle to be consistent, it is necessary and
sufficient that the empirical risk Ry, (Q) converges uniformly to the
actual risk R (o) over the set Q(z,a), oo € A, in the following sense:

limP{sup (R(&) = Remp (@0)) >8} =0, Ve>0 (4)

[=e | geA

v
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Consistency of the ERM principle

@ According to the key theorem, the uniform one-sided
convergence (4) is a necessary and sufficient condition for
(non-trivial) consistency of the ERM method.

@ Conceptually, the conditions for consistency of the ERM
principle are necessarily and sufficiently determined by the
“worst” function of the set of functions Q(z, @), a € A.
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Introduction

@ The key theorem expresses that consistency of the ERM
principle is equivalent to existence of uniform one-sided
convergence.

e Conditions for uniform two-sided convergence play an
important role in constructing conditions for uniform two-sided
convergence.

@ Necessary and suffficient conditions for both uniform one-sided
and two-sided convergence are obtained on the basis of the VC
entropy concept.
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Empirical process

@ An empirical process is an stochastic process in the form of a
sequence of random variables

1 )
7ZQ 7, o)y = 1P 0I(B)

1=

= sup
acEA

/QzadF

that depend on both, the probability measure F (z) and the set
of functions Q(z,@), a € A.

@ The problem is to describe conditions under which this
empirical process converges in probability to zero.
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Consistency of an empirical process

@ The necessary and sufficient conditions for an empirical process
to converge in probability to zero imply that the equality

1 l
lim P < sup /QzadF ZQ z,0)| >¢€,=0 Ve>0
l=e | qeA IrS
(6)
hols true.

http://www.ehu.es/ccwintco Vapnik UPV/EHU 20 / 39



Consistency
0000@000000000

Law of large numbers and its generalization

o If the set of functions contains only one element, then the
sequence of random variables &/ always converges in
probability to zero: law of large numbers.

@ Generalization of the law of large numbers for the case where
a set of functions has a finite number of elements:

Definition

The sequence of random variables &/ converges in probability to
zero if the set of functions Q(z,a), & € A, contains a finite number
N of elements.
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Law of large numbers and its generalization

@ When Q(z,a), a € A, has an infinite number of elements, the
sequence of random variables &/ does not necessarily converges
in probability to zero.

@ Problem of the existence of a law of large numbers in
functional space (uniform two-sided convergence of the means

to their probabilities): generalization of the classical law of
large numbers.
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Entropy

@ Necessary and sufficient conditions for both uniform one-sided
convergence and uniform two-sided convergence are obtained
on the basis of a concept called the entropy of a set of
functions Q (z,a), o € A, for a sample of size [.
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Entropy of the set of indicator functions
Diversity

@ Lets characterize the diversity of a set of indicator functions
0(z,a), o € A, on the given set of data by the quantity
N~ (z1,...,71) that evaluates how many different separations of
the given sample can be clone using functions from the set of
indicator functions.

e Consider the set of I-dimensional binary vectors:

q(a)=(0(z1,c0),...,0(m,)), €A

Geometrically, the diversity is the number of different vertices
of the [-dimensional cube that can be obtained on the basis of
the sample z1,...,7z and the set of functions.
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Entropy of the set of indicator functions

Diversity (geometrics)

Q {zf o)

AN

o

"Q I:332! U.)

Q {Z], )

Figure: The set of I-dimensional binary vectors g (a), o € A, is a subset
of the set of vertices of the [-dimensional unit cube.
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Entropy of the set of indicator functions

Random entropy and entropy

@ The random entropy

H" (z1,...,z1) =InN" (z1,...,71)

describes the diversity of the set of functions on the given data.

@ The expectation of the random entropy over the joint
distribution function F (zq,...,7):

H"(I)=E[InN"(z1,....1)] (7)

is the entropy of the set or indicator functions Q(z, o), a € A,
on samples of size I.
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Entropy of the set of real functions
Diversity

o Let A< Q(z,a) <B, o € A, a set of bounded loss functions.

e Considering this set of functions and the training set zy,...,2
one can construct the following set of I-dimensional vectors:

q(a):(Q(ZI,O(),...,Q(Z],O!)), aeA

e The diversity, N =N"(€,24,...,71), indicates the number of
elements of the minimal e-net of this set of vectors ¢ (o),
ae€A.
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Entropy of the set of real functions

Minimal e-net

@ The set of vectors ¢ (&), o € A, has a minimal &-net
q(al),...,q(aN) if:
© There exist N=N"(¢g,24,...,7) vectors g(Q),...,q (o) such
that for any vector ¢ (a*), a* € A, one can find among these
N vectors one ¢ (0,) that is e-close to ¢ (a*) in a given metric.
@ N is the minimum number of vectors that posseses this
property.

http://www.ehu.es/ccwintco Vapnik UPV/EHU 28 / 39



Consistency
0000000000080

Entropy of the set of real functions

Diversity (geometrics)

Qlz au)t

g o), aer

Qlzy @)
Q(zy, )

Figure: The set of I-dimensional vectors g(@), o € A, belongs to an
[-dimensional cube.
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Entropy of the set of real functions

Random entropy and entropy

@ The random VC entropy of the set of functions
A<Q(z,a) <B, a €A, on the sample z;,...,7 is given by:
H” (S;Zl,. .. ,Z]) =InN" (E;Zl,. o o 7Z])

@ The expectation of the random VC entropy over the joint
distribution function F (zy,...,2):

H" (&;l) =E[InN" (&;21,...,71)]

is the VC entropy of the set of real functions A < Q(z, o) < B,
o € A, on samples of size .
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Conditions for uniform two-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded
functions A < Q(z,a) < B, o € A, for uniform two-sided
convergence it is necessary and sufficient that the equality
. H~ (gl
lim y

[—o0

=0, Ve>0 (8)

be valid.

http://www.ehu.es/ccwintco Vapnik UPV/EHU 32 /39



Consistency
00®000

Conditions for uniform two-sided convergence
Corollary

Corollary

Under some conditions of measurability on the set of indicator
functions Q (z, @), a € A, for uniform two-sided convergence it is
necessary and sufficient that

-
lim 7(1) =0

[—o0 I

which is a particular case of (8).
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Uniform one-sided convergence

@ Uniform two-sided convergence can be described as

0

tim 2 [sup (00~ Ronp ()] V [s0p ey () - R @) |
9

~—

which includes uniform one-sided convergence, and it's
sufficient condition for ERM consistency.

@ But for consistency of ERM principle, left-hand side of (9) can
be violated.
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Conditions for uniform one-sided convergence
o Consider the set of bounded real functions A < Q(z,a) < B,
o € A, together with a new set of functions Q* (z,a™),

a* € A*, such that

Q(Z,(X)—Q* (Z,(X*) 207 vz

[@@a)-0 @a)dF @) <s (10)
Q iz, 0}
Q* (z, &*}

o r
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Conditions for uniform one-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded
functions A < Q(z,a) < B, o € A, for uniform one-sided
convergence it is necessary and sufficient that for any positive &, N
and € there exist a set of functions Q* (z,a*), o* € A*, satistying
(10) such that the following holds:

i H(l‘”) <1 (11)

[—o

<
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Appendix

For Further Reading

[M The Nature of Statistical Learning Theory. Vladimir N. Vapnik.
ISBN: 0-387-98780-0. 1995.

[§ Statistical Learning Theory. Vladimir N. Vapnik. ISBN:
0-471-03003-1. 1998.
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Appendix

Questions?

Thank you very much for your attention.

o Contact:

Miguel Angel Veganzones

Grupo Inteligencia Computacional

Universidad del Pais Vasco - UPV/EHU (Spain)

E-mail: miguelangel.veganzones@ehu.es

Web page: http://www.ehu.es/computationalintelligence
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